首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two brothers with X-linked ataxia (XLA) were found to have hypochromic red cells and increased erythrocyte protoporphyrin despite normal iron stores. The mother was unaffected by ataxia and had normal iron stores but showed evidence of some red cell hypochromia with heavy basophilic stippling that stained positive for iron. Bone marrow biopsy confirmed the presence of ring sideroblasts in one of the brothers. The absence of mutations in the ALAS2 gene and the predominance of zinc over free protoporphyrin led to a search using a combination of DNA and cDNA analysis for the presence of mutations in the ABC7 gene. ABC7 encodes a mitochondrial half-type ATP Binding Cassette transporter involved in iron homeostasis. The published cDNA sequence was used to search databases for the genomic sequence of which 12 exons spanning 23.4 kb were mapped leaving the most 5' nucleotides unaccounted for. The identified exons and their exon-intron boundaries were amplified from DNA while the most 5' sequence including the initiation codon was amplified from cDNA of peripheral blood cells. Direct sequencing revealed hemizygosity in the brothers and heterozygosity in the mother for a G-->C transversion at position 1299 of the published cDNA. This predicts a V411L substitution at the beginning of the last of six putative transmembrane regions of the protein. Restriction enzyme digestion confirmed the presence of this mutation in the three family members but could not detect it in 200 normal alleles. An uncle affected by ataxia also carried this mutation. This study supports the recently hypothesized involvement of the ABC7 gene in XLSA/A and highlights a protein structure region of importance to this syndrome.  相似文献   

2.
X-linked sideroblastic anemia with ataxia (XLSA/A) is a rare syndromic form of inherited sideroblastic anemia associated with spinocerebellar ataxia, and is due to mutations in the mitochondrial ATP-binding cassette transporter Abcb7. Here, we show that Abcb7 is essential for hematopoiesis and formally demonstrate that XLSA/A is due to partial loss of function mutations in Abcb7 that directly or indirectly inhibit heme biosynthesis.  相似文献   

3.
Historically X-linked sideroblastic anemia, with rare exceptions, was thought to be manifested only in males. Since the discovery of the erythroid-specific isoform of 5-aminolevulinate synthase (ALAS2) and the cloning of its gene (ALAS2) 15 years ago, mutation analysis has revealed that clinical expression of this X-linked disorder is prevalent in females as well. However, presence of the disease in both genders within affected kindreds appears to be very uncommon. We report a unique family with the disorder in three women who have had widely disparate clinical courses. The anemia is associated with a previously unrecognized ALAS2 mutation (Arg436Trp) and is unresponsive to pyridoxine. To clarify the varied clinical courses of the patients, X-chromosome inactivation patterns were examined in hematopoietic and non-hematopoietic cells. We observed inactivation patterns supporting the conclusions that one daughter has a mild phenotype at age 31 because of moderate constitutive skewed X-chromosome inactivation, another daughter with clinical onset at age 16 is severely affected due to extreme constitutive X-skewing, whereas the mother developed progressive anemia in the fifth decade as she acquired an age-related non-random X-inactivation in hematopoietic cells. In addition, we observed random X-inactivation in reticulocytes of all three women that contrasted with a markedly skewed inactivation pattern in bone marrow erythroid cells. This discordance is attributable to apoptosis of erythroid precursors derived from progenitor cells with an active X-chromosome bearing the ALAS2 mutation. The features of the disorder in this family are also instructive in regard to the differential diagnosis of sideroblastic anemias in women.  相似文献   

4.
Cazzola M  May A  Bergamaschi G  Cerani P  Ferrillo S  Bishop DF 《Blood》2002,100(12):4236-4238
X-linked sideroblastic anemia (XLSA) is caused by mutations in the erythroid-specific 5-aminolevulinic acid synthase (ALAS2) gene. Hemizygous males have microcytic anemia and iron overload. A 38-year-old male presented with this phenotype (hemoglobin [Hb] 7.6 g/dL, mean corpuscular volume [MCV] 64 fL, serum ferritin 859 microg/L), and molecular analysis of ALAS2 showed a mutation 1731G>A predicting an Arg560His amino acid change. A 36-year-old brother was hemizygous for this mutation and expressed the mutated ALAS2 mRNA in his reticulocytes, but showed almost no phenotypic expression. All 5 heterozygous females from this family, including the 3 daughters of the nonanemic hemizygous male, showed marginally increased red-cell distribution width (RDW). Although variable penetrance for XLSA in males has been previously described, this is the first report showing that phenotypic expression can be absent in hemizygous males. This observation is relevant to genetic counseling, emphasizing the importance of gene-based diagnosis.  相似文献   

5.
Cotter  PD; Rucknagel  DL; Bishop  DF 《Blood》1994,84(11):3915-3924
In 1945, Thomas Cooley described the first cases of X-linked sideroblastic anemia (XLSA) in two brothers from a large family in which the inheritance of the disease was documented through six generations. Almost 40 years later the enzymatic defect in XLSA was identified as the deficient activity of the erythroid-specific form of delta-aminolevulinate synthase (ALAS2), the first enzyme in the heme biosynthetic pathway. To determine the nature of the mutation in the ALAS2 gene causing XLSA in Cooley's original family, genomic DNAs were isolated from two affected hemizygotes, and each ALAS2 exon was PCR amplified and sequenced. A single transversion (A to C) was identified in exon 5. The mutation predicted the substitution of leucine for phenylalanine at residue 165 (F165L) in the first highly conserved domain of the ALAS2 catalytic core shared by all species. No other nucleotide changes were found by sequencing each of the 11 exons, including intron/exon boundaries, 1 kb of 5'-flanking and 350 nucleotides of 3'-flanking sequence. The mutation introduced an Mse I site and restriction analysis of PCR-amplified genomic DNA confirmed the presence of the lesion in the two affected brothers and in three obligate heterozygotes from three generations of this family. Carrier diagnosis of additional family members identified the mutation in one of the proband's sisters. After prokaryotic expression and affinity purification of both mutant and normal ALAS2 fusion proteins, the specific activity of the F165L mutant enzyme was about 26% of normal. The cofactor, pyridoxal 5'-phosphate, activated and/or stabilized the purified mutant recombinant enzyme in vitro, consistent with the pyridoxine-responsive anemia in affected hemizygotes from this family.  相似文献   

6.
A novel missense mutation, G663A, in exon 5 of the erythroid-specific delta-aminolevulinate synthase gene (ALAS2) was identified in a Japanese male with pyridoxine-responsive sideroblastic anemia. Activity of the mutant delta-aminolevulinate synthase protein expressed in vitro was 15.1% compared with the normal control, but was increased up to 34.5% by the addition of pyridoxal 5'-phosphate, consistent with the clinical response of the patient to pyridoxine treatment. The same mutation was also detected in genomic DNa from the oral mucosal membrane of the patiet; however, it was not detected in other family member. These findings suggest that this G663A mutation is responsible for sideroblastic anemia in the proband, and may be an index mutation in this pedigree.  相似文献   

7.
8.
A novel missense mutation, A1754G, in exon 11 of the erythroid-specific delta-aminolaevulinate synthase gene (ALAS2) was identified in a Japanese male with sideroblastic anaemia. ALAS activity in bone marrow cells of the patient was reduced to 53.3% of the normal control. Consistent with this finding, activity of a bacterially expressed ALAS2 mutant protein harbouring this mutation was 19.5% compared with the normal control, but was increased up to 31.6% by the addition of pyridoxal 5'-phosphate (PLP) in vitro. RFLP analysis with Bsp HI restriction revealed that his mother was a carrier of the mutation. These findings suggest that A1754G mutation was inherited in this family in a manner consistent with X-linked inheritance, and is responsible for sideroblastic anaemia in the patient.  相似文献   

9.
10.
X-linked sideroblastic anemia (XLSA) in four unrelated male probands was caused by missense mutations in the erythroid-specific 5-aminolevulinate synthase gene (ALAS2). All were new mutations: T647C, C1283T, G1395A, and C1406T predicting amino acid substitutions Y199H, R411C, R448Q, and R452C. All probands were clinically pyridoxine-responsive. The mutation Y199H was shown to be the first de novo XLSA mutation and occurred in a gamete of the proband's maternal grandfather. There was a significantly higher frequency of coinheritance of the hereditary hemochromatosis (HH) HFE mutant allele C282Y in 18 unrelated XLSA hemizygotes than found in the normal population, indicating a role for coinheritance of HFE alleles in the expression of this disorder. One proband (Y199H) with severe and early iron loading coinherited HH as a C282Y homozygote. The clinical and hematologic histories of two XLSA probands suggest that iron overload suppresses pyridoxine responsiveness. Notably, reversal of the iron overload in the Y199H proband by phlebotomy resulted in higher hemoglobin concentrations during pyridoxine supplementation. The proband with the R452C mutation was symptom-free on occasional phlebotomy and daily pyridoxine. These studies indicate the value of combined phlebotomy and pyridoxine supplementation in the management of XLSA probands in order to prevent a downward spiral of iron toxicity and refractory anemia.  相似文献   

11.
12.
Soluble P loop NTPases represent a large protein family and are involved in diverse cellular functions. Here, we functionally characterized the first member of the Mrp/Nbp35 subbranch of this family, the essential Nbp35p of Saccharomyces cerevisiae. The protein resides in the cytosol and nucleus and carries an Fe/S cluster at its N terminus. Assembly of the Fe/S cluster requires the mitochondrial Fe/S cluster (ISC)-assembly and -export machineries. Depletion of Nbp35p strongly impairs the activity of the cytosolic Fe/S protein, isopropylmalate isomerase (Leu1p), whereas mitochondrial Fe/S enzymes are unaffected. Moreover, defects in the de novo maturation of various cytosolic and nuclear Fe/S proteins were observed in the absence of Nbp35p, demonstrating the functional involvement of Nbp35p in the biogenesis of extramitochondrial Fe/S proteins. Furthermore, Nbp35p genetically interacts with the closely similar P loop NTPase, Cfd1p, and the hydrogenase-like Nar1p, both of which were recently shown to perform a crucial function in cytosolic and nuclear Fe/S protein biogenesis. Hence, our study suggests that eukaryotic Nbp35 NTPases function in Fe/S protein maturation. The findings provide strong evidence for the existence of a highly conserved and essential machinery dedicated to assembling cytosolic and nuclear Fe/S proteins.  相似文献   

13.
Diamond-Blackfan anemia (DBA) typically presents with red blood cell aplasia that usually manifests in the first year of life. The only gene currently known to be mutated in DBA encodes ribosomal protein S19 (RPS19). Previous studies have shown that the yeast RPS19 protein is required for a specific step in the maturation of 40S ribosomal subunits. Our objective here was to determine whether the human RPS19 protein functions at a similar step in 40S subunit maturation. Studies where RPS19 expression is reduced by siRNA in the hematopoietic cell line, TF-1, show that human RPS19 is also required for a specific step in the maturation of 40S ribosomal subunits. This maturation defect can be monitored by studying rRNA-processing intermediates along the ribosome synthesis pathway. Analysis of these intermediates in CD34- cells from the bone marrow of patients with DBA harboring mutations in RPS19 revealed a pre-rRNA-processing defect similar to that observed in TF-1 cells where RPS19 expression was reduced. This defect was observed to a lesser extent in CD34+ cells from patients with DBA who have mutations in RPS19.  相似文献   

14.
Sideroblastic anemia is characterized by anemia with the emergence of ring sideroblasts in the bone marrow. There are two forms of sideroblastic anemia, i.e., congenital sideroblastic anemia (CSA) and acquired sideroblastic anemia. In order to clarify the pathophysiology of sideroblastic anemia, a nationwide survey consisting of clinical and molecular genetic analysis was performed in Japan. As of January 31, 2012, data of 137 cases of sideroblastic anemia, including 72 cases of myelodysplastic syndrome (MDS)–refractory cytopenia with multilineage dysplasia (RCMD), 47 cases of MDS–refractory anemia with ring sideroblasts (RARS), and 18 cases of CSA, have been collected. Hemoglobin and MCV level in CSA are significantly lower than those of MDS, whereas serum iron level in CSA is significantly higher than those of MDS. Of 14 CSA for which DNA was available for genetic analysis, 10 cases were diagnosed as X-linked sideroblastic anemia due to ALAS2 gene mutation. The mutation of SF3B1 gene, which was frequently mutated in MDS-RS, was not detected in CSA patients. Together with the difference of clinical data, it is suggested that genetic background, which is responsible for the development of CSA, is different from that of MDS-RS.  相似文献   

15.
Genetic mutations with major effects on ovulation rate and litter size in sheep were recently identified in three genes belonging to the TGFbeta superfamily pathway: the bone morphogenetic protein 15 (BMP15, also known as GDF9b), growth differentiation factor 9 (GDF9), and BMP receptor type IB (also known as activin-like kinase 6). Homozygous BMP15 or GDF9 mutations raise female sterility due to a failure of normal ovarian follicle development, whereas heterozygous animals for BMP15 or GDF9 as well as heterozygous and homozygous animals for BMP receptor type IB show increased ovulation rates. In the present work, a new naturally occurring mutation in the BMP15 gene in the high prolific Lacaune sheep breed is described. The identified variant is a C53Y missense nonconservative substitution leading to the aminoacidic change of a cysteine with a tyrosine in the mature peptide of the protein. As for other mutations found in the same gene, this is associated with an increased ovulation rate and sterility in heterozygous and homozygous animals, respectively. Further in vitro studies showed that the C53Y mutation was responsible for the impairment of the maturation process of the BMP15 protein, resulting in a defective secretion of both the precursor and mature peptide. Overall, our findings confirm the essential role of the BMP15 factor in the ovarian folliculogenesis and control of ovulation rate in sheep.  相似文献   

16.
X-linked nephrogenic diabetes insipidus (NDI) is a rare disease characterized by a malfunctioning renal response to the antidiuretic hormone arginine vasopressin (AVP) due to mutations in the AVPR2 gene. A limited number of mutations in the AVPR2 gene resulting in partial phenotype have been described so far. In this mini-review the retrospective analysis of 13 known AVPR2 mutations that have been previously shown in vitro to partially abolish AVPR2 function is described, along with a novel mutation diagnosed in a kindred with partial NDI. In the present study, a 14 year old male and his 73 year old maternal grandfather were diagnosed with partial NDI based on the clinical phenotype, the water deprivation test and the inadequate response to 1-desamino-8-d-arginine vasopressin (DDAVP) administration. Sequencing analysis of the AVPR2 gene revealed the novel missense mutation p.N317S (g.1417A > G) in both patients. This mutation was re-created by site directed mutagenesis in an AVPR2 cDNA expression vector and was functionally characterized, in terms of arginine vasopressin (AVP) and DDAVP response. AVPR2 activity of the p.N317S mutant receptor after the AVP and DDAVP administration, as assessed by cAMP production was reduced and impaired when compared to cells that expressed the wild type AVPR2 gene. In conclusion, the affected members of this family have X-linked NDI with partial resistance to AVP, due to a missense mutation in the AVPR2 gene.  相似文献   

17.
Rationale:X-linked chronic granulomatous disease (X-CGD) is an X-linked recessive disorder of the Nicotinamide adenine dinucleotide phosphate oxidase system that can cause primary immunodeficiency. Mutations in the CYBB gene located in Xp21.1 were accounting for X-CGD disease. More than 600 mutations have been identified as the cause of X-CGD in various populations worldwide.Patient concerns and diagnosis:In this study, the proband suffered from elevated white blood cells (WBC, 23.65 × 109/L), mainly in neutral (16.4 × 109/L). The neutrophil oxidative index of the patient was 2.13, which was extremely low, whereas his mother was 69.0 (Ref >100). Next, next-generation sequencing of the primary immunodeficiency diseases -related gene panel was performed. One novel mutation was identified in the CYBB gene in the CGD case: c.55C>G in exon 2. The mutation was verified by Sanger sequencing. The mother of the patient was heterozygous for the c.55C>G mutation, and the father was normal. These mutations were not present in the 100 unrelated normal controls.Interventions and outcomes:The patient died from severe and uncontrollable pulmonary infection at 3 months of age.Lessons:The identification of these mutations in this study further expands the spectrum of known CYBB gene mutations and contributes to the genetic counseling and prenatal molecular diagnosis of X-CGD.  相似文献   

18.
Human alpha-tocopherol (alpha-T) transfer protein (ATTP) plays a central role in vitamin E homeostasis, preventing degradation of alpha-T by routing this lipophilic molecule for secretion by hepatocytes. Mutations in the gene encoding ATTP have been shown to cause a severe deficiency in alpha-T, which results in a progressive neurodegenerative spinocerebellar ataxia, known as ataxia with vitamin E deficiency (AVED). We have determined the high-resolution crystal structure of human ATTP with (2R,4'R,8'R)-alpha-T in the binding pocket. Surprisingly, the ligand is sequestered deep in the hydrophobic core of the protein, implicating a large structural rearrangement for the entry and release of alpha-T. A comparison to the structure of a related protein, Sec14p, crystallized without a bona fide ligand, shows a possibly relevant open conformation for this family of proteins. Furthermore, of the known mutations that cause AVED, one mutation, L183P, is located directly in the binding pocket. Finally, three mutations associated with AVED involve arginine residues that are grouped together on the surface of ATTP. We propose that this positively charged surface may serve to orient an interacting protein, which might function to regulate the release of alpha-T through an induced change in conformation of ATTP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号