首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
背景:包覆层的存在能够阻止纳米粒子氧化、晶体长大、腐蚀和团聚,并赋予特殊的性能.目的:制备SiO2/Ni核壳结构纳米粒子,并评估复合粉体的磁性能.设计、时间及地点:观察性实验,于2005-11/2006-03在大连理工大学纳米复合材料研究实验室完成.材料:应用直流电弧等离子体法制备纳米镍粉,硅酸钠由天津市石英钟厂霸州市化工分厂生产.方法:以硅酸钠为主要原料,通过液相沉淀法在纳米镍粉表面包覆了一层SiO2.主要观察指标:应用X射线衍射仪、傅里叶红外光谱仪、透射电镜、振动样品磁强计、热重分析仪等对复合粉体的结构、形貌和磁性能进行检测.结果:SiO2以非晶态的形式包覆在纳米镍粒子表面,形成了核壳结构,降低了纳米粉体的团聚现象.经SiO2包覆后纳米镍粉氧化温度由287℃提高到385℃.磁性分析结果表明,粉体包覆前由于表面氧化层(NiO)的存在,粉体的磁滞回线偏移;包覆后的粉体由于SiO2的存在,饱和磁化强度降低,矫顽力升高.结论:成功制备了SiO2/Ni核壳结构纳米粒子,SiO2的包覆提高了纳米粉体的抗氧化性,且纳米镍粉具有很好的铁磁性能,矫顽力升高.  相似文献   

2.
背景:磁力压榨式吻合器以其优越的性能受到越来越多的关注,但是其留置体内会对机体造成不良影响,可降解磁力吻合器有望解决此问题.目的:制备适于外科吻合用的硅胶表面修饰的壳核结构纳米钕铁硼(SiO2/Nd-Fe-B)磁性材料,并评价其细胞毒性.方法:高能球磨法制备纳米钕铁硼(Nd-Fe-B)材料,溶胶-凝胶法对其进行表面修饰.MTT法检测纳米SiO2/Nd-Fe-B材料的细胞毒性,纳米SiO2/Nd-Fe-B材料与L929细胞共培养,观察其在细胞内分布以及细胞器的改变,传代培养检测粒子代谢情况.结果与结论:成功制备出纳米SiO2/Nd-Fe-B材料,MTT法检测材料浸提液细胞毒性分级为1级,其吸光度值与空白对照组相比差异无显着性意义(P>0.05).纳米SiO2/Nd-Fe-B材料可以通过胞吞方式进入细胞内,其在胞内分布于细胞浆中,TEM观察细胞线粒体轻微水肿,内质网扩张.传代培养发现3代内胞内纳米材料迅速减少.提示高能球磨法结合溶胶-凝胶法可以制备纳米SiO2/Nd-Fe-B材料,此材料细胞毒性小,符合植入人体生物材料的细胞毒性要求.纳米SiO2/Nd-Fe-B材料通过胞吞方式进入细胞内,对细胞器影响轻微,代谢迅速.  相似文献   

3.
背景:硅壳荧光磁性纳米载体表面功能化后不仅仍具备荧光性、磁性功能,而且还具有携药和携基因潜能,片有良好的生物相容性,可实现对细胞的标记功能.目的:制备Fe3O4@SiO2(FITC)-3-异氰基丙基三乙氧基硅烷-聚酰胺-胺树状大分子(G2.O)纳米颗粒型多功能纳米载体,并评估纳米载体标记A549细胞的能力,在细胞内的分布及与细胞的生物相容性.设计、时间及地点: 观察性实验,于2006-06/2007-06在首都医科大学化学生物学与药学院合成了纳米载体,2007-07/2008-07在首都医科大学神经科学研究所完成了复合纳米载体的生物评估.材料和方法:15 μ L 3-异氰基丙基三乙氧基硅烷和195.12 mg聚酰胺-胺树状大分子(G2)在无水甲醇环境中反应24 h,得到目的产物3-异氰基丙基三乙氧基硅烷-聚酰胺-胺树状大分子:然后将合成好的Fe3O4@SiO2(FITC)与3-异氰基丙基三乙氧基硅烷-聚酰胺-胺树状大分子在甲醇溶液环境下,避光搅拌48 h,用水磁铁分离固体,并经无水乙醇沈后真空干燥,得到最终目标载体.主要观察指标:透射电镜观察纳米载体的大小和细胞内分布,Zeta电位测定其生理情况下电荷情况,激光共聚焦显微镜下观察FITC、DAPI和Lysotracker Blue细胞染色情况以评估载体在细胞内定位,CCK-8评估其对细胞毒性作用,流式细胞计数法评价其标记细胞的效率.结果:透射电镜分析表明,修饰的硅壳纳米载体大小约为80 nm,pH=7.4,纳米载体zeta电位为+23.93 mV.透射电镜和激光共聚焦显微镜结果表明纳米粒主要存在细胞浆中,且能被溶酶体吞噬.CCK-8结果显示纳米载体的浓度高达1 g/L时仍无明显的毒件作用.流式细胞计数结果表明,细胞摄取纳米粒呈浓度和时间依赖性.结论:成功制备了硅壳结构的荧光磁性纳米载体,主要分布在细胞浆中,且细胞相容性好.  相似文献   

4.
背景:微弧氧化技术可增强镁及其合金的耐腐蚀性,提高其表面生物性能。
  目的:为了调控医用纯镁的生物活性,在镀液中添加纳米 SiO2或纳米 TiO2对纯镁微弧氧化涂层改良,研究其对成骨细胞增殖及分化的影响。
  方法:将圆形镁片分为3组,其中两组分别置入含7.5 g/L纳米SiO2或4.8 g/L纳米TiO2的硅酸盐电解液中进行表面微弧氧化处理,以未作任何处理的纯镁作为对照。将第3代成骨细胞分别接种于3组试件表面,观察成骨细胞的早期形态、增殖与碱性磷酸酶活性。
  结果与结论:成骨细胞在纳米SiO2组、纳米TiO2组试件表面生长状态良好,轮廓清晰,呈长梭形,多角形;在对照组表面生长状态较差。CCK-8检测显示,3组细胞吸光度值与碱性磷酸酶活性随时间推移呈上升趋势,纳米SiO2组、纳米TiO2组试件接种1,3,5 d的细胞增殖活性高于对照组;纳米SiO2组、纳米TiO2组接种3,5 d的细胞碱性磷酸酶活性高于对照组。结果表明纳米SiO2或纳米TiO2微弧氧化生物涂层可促进成骨细胞增殖及成骨活性,具有良好的生物相容性。  相似文献   

5.
溶剂挥发法制备磷脂-聚乳酸纳米粒子及其性质   总被引:1,自引:0,他引:1  
背景:含磷脂胆碱的聚乳酸具有优良的生物相容性和降解性能,而且是两性分子.课题前期研究表明用成膜水化法可以自组装成胶束来作为药物载体,但随着疏水链段的增加,成膜水化法很难形成胶束,对于疏水链段较长的磷脂胆碱聚合物能否形成胶束来作为药物载体,目前尚不清楚.目的:采用溶剂挥发法制备磷脂胆碱聚乳酸[phosphorylcholine-containing poly(L-lactide),PLLA-PC]自组装纳米粒子,探讨影响纳米粒子形成和稳定性的因素.方法:①制备PLLA-PC纳米粒子:将PLLA-PC的丙酮溶液滴加到二蒸水中,在室温下磁力搅拌至丙酮挥发完全.F-7000FL220-240V荧光,磷光分光光度计测试胶束溶液的临界胶束浓度,芘为荧光探针,发射波长为395 nm,激发波长为300 nm.JEM-100CX透射电子显微镜观察纳米粒子形态;NANOZSZEN 3600纳米粒度分析仪测其粒径及粒径分布,测试温度为25℃.②凝胶渗透色谱仪GPC测定相对分子质量,色谱仪为Waters 717,流动相为THF,流速1.0 mL/min,聚苯乙烯为标样.每次进样时注入50 μL质量浓度为1 g/L样品溶液.结果与结论:透射电镜显示,PLLA-PC自组装纳米粒子呈壳/核结构.荧光探针检测临界胶束浓度表明,PLLA-PC有很强的表面活性,临界胶束浓度均低于10~(-3)g/L,且随LLA比例变化.动态光散射结果表明,聚合物的亲,疏水链段比例、有机溶剂以及水的用量在纳米粒子形成过程中对粒径有影响,纳米粒子用水稀释时粒径变化不大,且37℃可发生降解.提示溶剂挥发法可以制备粒径可控的PLLA-PC纳米粒子,有望用作新型的纳米药物载体.  相似文献   

6.
目的 考察氧化铁医用磁性纳米粒子的制备方法和条件,为其在生物医学领域发挥更好的作用提供参考。方法 通过控制铁盐浓度、氨水浓度和反应温度对氧化铁纳米粒子的制备条件进行筛选。配制不同浓度(0.25、0.20、0.15 mol/L)的铁盐混合溶液,不同浓度(2.0、1.5、1.0 mol/L)的氨水溶液,在其他条件不变的情况下,控制反应温度(30、40、50℃),检测不同条件下制备的氧化铁纳米粒子粒径及磁性。结果单因素试验结果显示,共沉淀法制备氧化铁纳米粒子时,铁盐混合溶液浓度为0.25 mol/L时产品平均粒径最大,为(20.6±0.2)nm,磁铁吸引距离最长,为(4.06±0.19)cm。控制铁盐混合溶液浓度为0.25 mol/L,其他条件不变,氨水浓度为1.0 mol/L时,制备的粒子磁铁吸引距离最长,为(4.06±0.20)cm。在其他条件最优的前提下,随着反应温度的不断升高,粒子的磁性降低,最佳反应温度为30℃。结论 采用共沉淀法制备的氧化铁磁性纳米粒子的最优方案为0.20 mol/L的铁盐溶液、1.0 mol/L的氨水溶液在30℃下反应。  相似文献   

7.
载顺铂超顺磁γ-Fe2O3纳米粒子的制备与表征   总被引:1,自引:0,他引:1  
背景:将化疗药物联接在磁性纳米载体上,在外加磁场的引导下使所载药物定向集中于靶向治疗部位,在增强疗效同时还可降低毒性不良反应。目的:制备海藻酸钠改性的磁性纳米粒子及其负载顺铂药物,分析产物的磁学性质。方法:通过Fe2+在乙醇胺水溶液中一步合成磁性纳米粒子,用海藻酸钠作偶联剂使磁性纳米粒子与顺铂相连,制备磁性纳米粒子药物。结果与结论:X射线衍射花样证明产物为γ-Fe2O3纯相,透射电子显微镜表明磁性纳米粒子直径平均约10nm,载顺铂后药物包覆于纳米粒子周围,磁化曲线显示纳米粒子为超顺磁性,核磁共振得到纳米粒子的弛豫率为0.11602mmol/ms。表明所制备磁性纳米粒子及其载顺铂超顺磁性纳米粒子药物性质稳定,具有作为磁性纳米粒子药物的特性。  相似文献   

8.
背景:将化疗药物联接在磁性纳米载体上,在外加磁场的引导下使所载药物定向集中于靶向治疗部位,在增强疗效同时还可降低毒性不良反应。目的:制备海藻酸钠改性的磁性纳米粒子及其负载顺铂药物,分析产物的磁学性质。方法:通过Fe2+在乙醇胺水溶液中一步合成磁性纳米粒子,用海藻酸钠作偶联剂使磁性纳米粒子与顺铂相连,制备磁性纳米粒子药物。结果与结论:X射线衍射花样证明产物为γ-Fe2O3纯相,透射电子显微镜表明磁性纳米粒子直径平均约10nm,载顺铂后药物包覆于纳米粒子周围,磁化曲线显示纳米粒子为超顺磁性,核磁共振得到纳米粒子的弛豫率为0.11602mmol/ms。表明所制备磁性纳米粒子及其载顺铂超顺磁性纳米粒子药物性质稳定,具有作为磁性纳米粒子药物的特性。  相似文献   

9.
背景:紫杉醇临床用剂型紫素易引起过敏反应,因此研制新的紫杉醇新剂型就显得十分有意义。目的:研制紫杉醇新剂型,观察其在动物模型上治疗肿瘤的效果。方法:合成具有自主知识产权的生物可降解材料医用聚己内酯。采用溶剂替代法制备载紫杉醇纳米粒子,对其粒径、形态、紫杉醇含量、体外释放等进行测定。选用TA2系实验小鼠,建立乳腺癌动物模型,随机分为5组,分别局部注射生理盐水、紫素、低剂量、中剂量及高剂量紫杉醇纳米粒子进行治疗。结果与结论:实验制备的紫杉醇纳米粒子平均粒径约为153.54nm,包埋率为87.25%,紫杉醇含量19.06%。体外可恒定释放30d以上。2周药物治疗显示,各治疗组均不同程度上抑制了肿瘤的生长,其中紫杉醇纳米粒子中、高剂量组的抑瘤率明显高于紫素治疗组(P<0.01)。提示紫杉醇纳米粒子可缓释药物,中剂量组和高剂量组对小鼠乳腺癌的抑瘤率高于紫素组。  相似文献   

10.
背景:前期实验发现纳米Ag可以原子态沉积于纳米TiO2涂层表面,增强涂层的可见光催化抗菌性能。目的:研制纳米Ag/TiO2涂层托槽,并分析其力学性能。方法:使用溶胶-凝胶法制备不同退火温度下的纳米Ag/TiO2涂层托槽,在扫描电镜下观察纳米Ag/TiO2涂层托槽的表面形貌;测量普通金属托槽、纳米TiO2涂层托槽和各组纳米Ag/TiO2涂层托槽的表面粗糙度;采用划痕实验法检测纳米TiO2涂层和各组纳米Ag/TiO2涂层与基体托槽的结合强度。结果与结论:纳米Ag/TiO2涂层厚度约120nm,为具有严整组织结构的纳米颗粒膜,表面平整、光滑、光洁度高,并可见Ag颗粒沉积在涂层上。纳米TiO2涂层托槽和各组纳米Ag/TiO2涂层托槽表面粗糙度与普通商业用托槽差别无差异(P〉0.05);纳米TiO2涂层、120,200,300℃退火温度纳米Ag/TiO2涂层与基体托槽的结合强度分别为1.18,1.16,1.12,1.26kg。表明研制的纳米Ag/TiO2涂层托槽具有良好的力学性能,可以满足口腔正畸临床需要。  相似文献   

11.
背景:前期实验发现纳米Ag可以原子态沉积于纳米TiO2涂层表面,增强涂层的可见光催化抗菌性能.目的:研制纳米Ag/TiO2涂层托槽,并分析其力学性能.方法:使用溶胶-凝胶法制备不同退火温度下的纳米Ag/TiO2涂层托槽,在扫描电镜下观察纳米Ag/TiO2涂层托槽的表面形貌;测量普通金属托槽、纳米TiO2涂层托槽和各组纳米Ag/TiO2涂层托槽的表面粗糙度;采用划痕实验法检测纳米TiO2涂层和各组纳米Ag/TiO2涂层与基体托槽的结合强度.结果与结论:纳米Ag/TiO2涂层厚度约120 nm,为具有严整组织结构的纳米颗粒膜,表面平整、光滑、光洁度高,并可见Ag颗粒沉积在涂层上.纳米TiO2涂层托槽和各组纳米Ag/TiO2涂层托槽表面粗糙度与普通商业用托槽差别无差异(P>0.05);纳米 TiO2涂层、120,200,300℃退火温度纳米Ag/TiO2涂层与基体托槽的结合强度分别为1.18,1.16,1.12,1.26 kg.表明研制的纳米Ag/TiO2涂层托槽具有良好的力学性能,可以满足口腔正畸临床需要.  相似文献   

12.
背景:肝细胞生长因子半衰期短,且不具有靶向性。成熟肝细胞体外大量培养及活力维持难度较大,严重制约肝细胞移植及生物人工肝的临床应用。 目的:制备并表征载肝细胞生长因子的聚乳酸-O-羧甲基壳聚糖纳米粒子,探讨其体外降解、释药行为及对培养大鼠肝细胞活力的影响。 设计、时间及地点:对比观察实验,于2006-07/2008—01在南通大学肝胆外科研究所及南通大学江苏省神经再生重点实验室设计完成。 材料:SD大鼠10只,肝细胞生长因子由英国Pepro Tech公司提供,聚乳酸由美国Sigma公司提供,O-羧甲基壳聚糖由上海伟康生物技术有限公司提供。 方法:以聚乳酸和O-羧甲基壳聚糖为基质材料,采用超声波法制备聚乳酸-O-羧甲基壳聚糖纳米粒子,用低温磁力搅拌法制备载肝细胞生长因子的聚乳酸-O-羧甲基壳聚糖纳米粒子。用该载药纳米粒子进行原代大鼠肝细胞培养,并以不加肝细胞生长因子的普通培养作为对照,采用CCK-8体外细胞增殖检测试剂盒检测培养肝细胞活力。 主要观察指标;观察该载药纳米粒子的结构、粒径及表面形貌,测定其粒径分布和表面电位,动态监测降解过程中粒子表面形貌的变化、降解过程中质量的损失情况和降解介质的pH值变化情况。并进一步检测培养1周内肝细胞的活力。 结果:载肝细胞生长因子的PLA-O-CMC纳米粒子呈球形,其平均粒径为140nm,粒径分布指数为0.108,载药率为0.12665%,包封率为76.32%,粒子表面电位为32.8eV。该载药纳米粒子前24h释药动力学方程为Q=148.4266+189.0493t^1/2(R=0.97589),符合Huguchi方程:前30d内释放动力学方程Q=1086.28966+58.23938t(R=0.99716),符合零级释放方程。载药纳米粒子组肝细胞活力明显高于普通培养组(P〈0.05)。 结论:实验成功制备并表征了载肝细胞生长因子的聚乳酸-O-羧甲基壳聚糖纳米粒子,并证实其能够有效维持培养大鼠肝细胞的活力。  相似文献   

13.
背景:为改善聚氨酯材料的抗菌性能,前期研究中合成了纳米Ag-SiO2聚氨酯材料。目的:比较7种含不同质量分数纳米Ag-SiO2聚氨酯材料的体外细胞毒性。方法:将纳米Ag-SiO2与聚氨酯以熔融共混方式制备成含纳米Ag-SiO2,质量分数分别为0,0.5%,1.0%,1.5%,2.0%,2.5%,5.0%的聚氨酯材料。以上述7种聚氨酯材料浸提液、高密度聚乙烯浸提液(阴性对照)、0.1%苯酚液浸提液(阳性对照)分别培养L929细胞24,48,72h后,并设置试剂对照(含体积分数10%胎牛血清的RPMI1640液体培养基)和空白对照(不加细胞,只加含体积分数10%胎牛血清的RPMI1640液体培养基)。采用MTT比色法定量检测各组细胞相对增殖率,并进行毒性反应分级;同时在显微镜下观察细胞形态。结果与结论:7种含不同质量分数纳米Ag-SiO2聚氨酯材料组、试剂对照组、阴性对照组细胞贴壁良好,形态正常,胞体丰满,胞质、核质分布均匀,细胞相对增殖率均大于80%,毒性反应分级均为1级,且随着纳米Ag-SiO2质量分数的降低,体外细胞毒性渐小、生物相容性更好。随培养时间延长,阳性对照组细胞相对增殖率逐渐降低,72h后细胞相对增殖率降至8.7%,与其他组比较差异有显著性意义(P<0.05),细胞萎缩、变圆、漂浮、片状脱落。表明7种含不同质量分数纳米Ag-SiO2聚氨酯材料均具有良好的体外细胞相容性,毒性反应分级均为1级,符合医用材料体外实验要求。  相似文献   

14.
目的研究复凝法制备壳聚糖包裹PEB1纳米粒子的优化条件,并初步探讨其在动物体内的缓释作用。方法雌性清洁级Balb/c小鼠40只,分4组,皮下注射的方式免疫接种。A组:PBS对照组(每只小鼠注射200μl PBS);B组:空白质粒组(每只小鼠注射20μg空白质粒);C组:重组质粒组(每只小鼠注射20μg DNAPEB1);D组:纳米粒子组(每只小鼠注射100μg含20μg DNAPEB1的纳米粒子)。考虑单因素N/P比值、硫酸钠、酸碱度、温度和DNAPEB1浓度对纳米粒子粒径的影响,透射电子显微镜下观察形态;测量纳米粒子粒径和包封率。分组免疫小鼠,检测小鼠血清中抗PEB1抗体含量。结果制备纳米粒子的最适条件为:N/P=5、DNA浓度为100μg/ml、p H=5.5、Na2SO4浓度为0.01 mol/L、水浴温度55℃。扫描电镜图片显示纳米粒子平均粒径在(300±23)nm左右,包封率为(91.23±3.24)%。0~10周重组质粒组抗体水平高于纳米粒子组,12周两组水平相差不大,但14、16周,纳米粒子组水平显著高于重组质粒组。结论 CS-DNAPEB1核酸纳米粒子在小鼠体内对核酸疫苗起到了很好的缓释作用。  相似文献   

15.
背景:为改善聚氨酯材料的抗菌性能,前期研究中合成了纳米Ag-SiO2聚氨酯材料。目的:比较7种含不同质量分数纳米Ag-SiO2聚氨酯材料的体外细胞毒性。方法:将纳米Ag-SiO2与聚氨酯以熔融共混方式制备成含纳米Ag-SiO2,质量分数分别为0,0.5%,1.0%,1.5%,2.0%,2.5%,5.0%的聚氨酯材料。以上述7种聚氨酯材料浸提液、高密度聚乙烯浸提液(阴性对照)、0.1%苯酚液浸提液(阳性对照)分别培养L929细胞24,48,72h后,并设置试剂对照(含体积分数10%胎牛血清的RPMI1640液体培养基)和空白对照(不加细胞,只加含体积分数10%胎牛血清的RPMI1640液体培养基)。采用MTT比色法定量检测各组细胞相对增殖率,并进行毒性反应分级;同时在显微镜下观察细胞形态。结果与结论:7种含不同质量分数纳米Ag-SiO2聚氨酯材料组、试剂对照组、阴性对照组细胞贴壁良好,形态正常,胞体丰满,胞质、核质分布均匀,细胞相对增殖率均大于80%,毒性反应分级均为1级,且随着纳米Ag-SiO2质量分数的降低,体外细胞毒性渐小、生物相容性更好。随培养时间延长,阳性对照组细胞相对增殖率逐渐降低,72h后细胞相对增殖率降至8.7%,与其他组比较差异有显著性意义(P〈0.05),细胞萎缩、变圆、漂浮、片状脱落。表明7种含不同质量分数纳米Ag-SiO2聚氨酯材料均具有良好的体外细胞相容性,毒性反应分级均为1级,符合医用材料体外实验要求。  相似文献   

16.
目的以高分子聚合物聚乳酸-羟基乙酸(PLGA)为成膜材料制备携抗HER-2抗体空心纳米靶向超声造影剂,并考察其体外寻靶及显像效果。方法以樟脑为致孔剂,通过改进的双乳化溶剂挥发法制备PLGA纳米超声造影剂,利用扫描电子显微镜、透射电子显微镜及激光粒度仪对其一般特性进行表征;并用碳二亚胺法将造影剂与抗HER-2抗体耦联制备携抗HER-2抗体的PLGA靶向纳米超声造影剂,用激光共聚焦扫描显微镜对其体外寻靶能力进行初步评估,考察其体外成像效果。结果 PLGA纳米超声造影剂的平均粒径为(152.00±58.08)nm,粒子呈规则球形,大小均一,分散性好。体外寻靶实验显示,携抗HER-2抗体的PLGA靶向造影剂较多牢固地聚集到乳腺癌细胞表面。体外成像实验显示,PLGA靶向纳米超声造影剂显像呈细腻均匀的点状高回声,后方回声未见明显衰减。结论本研究成功制备了携抗HER-2抗体的PLGA靶向纳米超声造影剂,其能与HER-2受体高表达的乳腺癌细胞体外特异性靶向结合,且体外显像效果较好。  相似文献   

17.
背景:在基因治疗中选择合适、低毒、对人体和环境无害的载体,使基因高效地转移至靶向部位并有效表达相关产物尤为关键。目的:制备超顺磁性Fe3O4/SiO2-聚乙酰亚胺复合微球。方法:通过乳化溶剂挥发法制备Fe3O4纳米粒子聚集体,再利用stober法合成超顺磁性Fe3O4/SiO2核壳型微球,进一步在该微球表面修饰聚乙酰亚胺,得到超顺磁性Fe3O4/SiO2-聚乙酰亚胺复合微球,并对其进行透射电镜、Zeta电位和磁性等结构性能表征。将Fe3O4/SiO2-聚乙酰亚胺复合微球与Plasmid DNA按照不同的质量比(29∶1,39∶1,49∶1,59∶1,68∶1,78∶1,88∶1)混合,通过凝胶电泳测定该复合微球与绿色荧光蛋白基因的结合能力。将Plasmid DNA分别与Fe3O4/SiO2-聚乙酰亚胺、聚乙酰亚胺混合,通过共聚焦荧光显微镜观测其在HeLa细胞中转染绿色荧光蛋白基因的情况。结果与结论:成功合成了Fe3O4/SiO2-聚乙酰亚胺复合微球,分散性良好,粒径分布均匀,约为100 nm,表面电荷为21.07 mV,饱和磁化强度为28.05 emu/g,为超顺磁性。随着复合微球与Plasmid DNA质量比的不断增加,越来越多的Plasmid DNA质粒被吸附在Fe3O4/SiO2-聚乙酰亚胺复合微球上,此时Plasmid DNA质粒过量,当质量比达到59∶1时,所有的pDNA质粒都被吸附在复合微球上;质量比大于59∶1时,复合微球过量,因此质量比为59∶1时二者均无过量,结果较好,用于 HeLa 细胞转染。与聚乙酰亚胺相比, Fe3O4/SiO2-聚乙酰亚胺复合微球可显著提高Plasmid DNA的转染效率。  相似文献   

18.
背景:Fe3O4纳米粒子具有良好的磁学特性,SiO2具有良好的生物相容性,Fe3O4@SiO2复合纳米粒子有望成为靶向治疗的载体。目的:采用反相微乳液法合成生物相容性的Fe3O4@SiO2纳米粒子。方法:首先,以FeCl3?6H2O、FeCl2?4H2O、油酸、氨水等为原料,采用一壶化学共沉淀法合成油酸修饰的疏水性Fe3O4纳米粒子。随后,将油酸包裹的Fe3O4纳米粒子分散于环己烷中,然后将Triton-X100、正己醇及水在搅拌条件下加入到上述溶液,形成稳定的反相微乳液;在反相微乳液中,以氨水为催化剂,使正硅酸四乙酯水解、缩合,从而获得Fe3O4@SiO2复合纳米粒子。结果与结论:①透射电镜、X射线衍射显示:采用一壶化学沉淀法合成的Fe3O4具有尖晶石结构,平均粒径约为3.5nm;微乳液法能将SiO2成功包覆于Fe3O4表面,形成平均粒径为40nm的均一Fe3O4@SiO2复合纳米粒子。②磁性能分析显示:Fe3O4纳米粒子包裹后饱和磁化强度下降,但包裹前后矫顽力趋于零,均显示超顺磁性。③MTT结果显示纳米粒子与人脐静脉细胞融合细胞(EA.hy926)共培养24h时Fe3O4@SiO2组吸光度高于对照组(P<0.05);细胞培养48,72h,两组比较差异无显著性意义(P>0.05)。结果表明经反相微乳液法合成的Fe3O4@SiO2纳米粒子是一种优良的生物材料,其具有稳定、易分散及超顺磁性等特性。  相似文献   

19.
背景:金纳米颗粒在近红外激光照射下对肿瘤细胞具有杀伤效应。目的:评价金纳米链及anti-EGFR/Au共轭物近红外照射对人喉癌Hep-2细胞的生长抑制和热杀伤作用。方法:取对数生长期的Hep-2细胞,随机分为空白对照组、单纯照射组、金纳米链照射组和anti-EGFR/Au照射组,加入不同培养液后,各照射组进行近红外激光照射。观察照射后细胞凋亡情况和凋亡程度。结果与结论:倒置显微镜下观察显示空白对照组和单纯照射组Hep-2细胞仍具有活性,金纳米链照射组有明显的损伤,但anti-EGFR/Au照射组损伤程度更重。流式细胞分析显示金纳米链照射组及anti-EGFR/Au靶向照射组均有不同程度的Hep-2细胞凋亡,且照射时间越长,凋亡细胞越多。说明金纳米链近红外照射可以杀伤人喉鳞癌Hep-2细胞,anti-EGFR/Au靶向照射比金纳米链照射效果更好,并呈现一定照射时间的依赖性。  相似文献   

20.
背景:采用静电纺丝技术将功能性无机纳米微粒复合高分子超细纤维,形成类细胞外基质结构和功能的复合支架材料是骨组织工程支架领域一个新的研究方向。目的:通过静电纺丝法构建纳米羟基磷灰石/脂肪族聚酯酰胺复合纤维支架材料,并初步考察其细胞相容性。方法:以静电纺丝法制备纳米羟基磷灰石/脂肪族聚酯酰胺超细纤维支架材料,通过扫描电镜、原子能谱等表面形貌的物相分析,进行细胞在复合材料上的形态学观察。结果与结论:通过静电纺丝法成功制备出纳米羟基磷灰石/脂肪族聚酯酰胺超细纤维复合材料,成骨细胞直接培养于材料上呈现良好生长行为,初步证实了复合支架材料的细胞相容性。说明静电纺丝技术在构建类骨细胞外基质结构和功能的仿生复合材料方面具有独特优势,电纺超细纤维复合材料有望成为新型的骨组织工程支架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号