首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous study suggested that hetero-oligomer formation of guinea pig liver UDP-glucuronosyltransferases (UGTs) 2B21 and 2B22 enhances UGT2B21-catalyzed morphine-6-glucuronidation. In this work, further evidence for a functional hetero-oligomer between UGT2B21 and UGT2B22 was provided by studies of the glucuronidation of chloramphenicol with dual expression in COS-7 cells. UGT2B21 expressed in COS cells was capable of glucuronidating the 3-hydroxyl group of morphine, 4-hydroxybiphenyl, borneol, testosterone, androsterone, and estriol, whereas it had some effect on chloramphenicol. On the contrary, UGT2B22 does not exhibit any significant activity toward these typical substrates tested in this study. When UGT2B21 and UGT2B22 were expressed simultaneously, the chloramphenicol glucuronidation was enhanced to 4.5-fold, whereas the activities toward other substrates were little affected except that for the 6-hydroxyl group of morphine. The protein expression level of UGT2B21 was comparable when UGT2B21 was expressed with or without UGT2B22. These results suggest that simultaneous expression of UGT2B21 and UGT2B22 enhances UGT2B21-catalyzed chloramphenicol glucuronidation. Hetero-oligomer formation of UGT2B21 and UGT2B22 may act by fine-tuning the catalytic glucuronidation of chloramphenicol.  相似文献   

2.
(R,S)-Oxazepam is a 1,4-benzodiazepine anxiolytic drug that is metabolized primarily by hepatic glucuronidation. In previous studies, S-oxazepam (but not R-oxazepam) was shown to be polymorphically glucuronidated in humans. The aim of the present study was to identify UDP-glucuronosyltransferase (UGT) isoforms mediating R- and S-oxazepam glucuronidation in human liver, with the long term objective of elucidating the molecular genetic basis for this drug metabolism polymorphism. All available recombinant UGT isoforms were screened for R- and S-oxazepam glucuronidation activities. Enzyme kinetic parameters were then determined in representative human liver microsomes (HLMs) and in UGTs that showed significant activity. Of 12 different UGTs evaluated, only UGT2B15 showed significant S-oxazepam glucuronidation. Furthermore, the apparent K(m) for UGT2B15 (29-35 microM) was similar to values determined for HLMs (43-60 microM). In contrast, R-oxazepam was glucuronidated by UGT1A9 and UGT2B7. Although apparent K(m) values for HLMs (256-303 microM) were most similar to UGT2B7 (333 microM) rather than UGT1A9 (12 microM), intrinsic clearance values for UGT1A9 were 10 times higher than for UGT2B7. A common genetic variation results in aspartate (UGT2B15*1) or tyrosine (UGT2B15*2) at position 85 of the UGT2B15 protein. Microsomes from human embryonic kidney (HEK)-293 cells overexpressing UGT2B15*1 showed 5 times higher S-oxazepam glucuronidation activity than did UGT2B15*2 microsomes. Similar results were obtained for other substrates, including eugenol, naringenin, 4-methylumbelliferone, and androstane-3alpha-diol. In conclusion, S-oxazepam is stereoselectively glucuronidated by UGT2B15, whereas R-oxazepam is glucuronidated by multiple UGT isoforms. Allelic variation associated with the UGT2B15 gene may explain polymorphic S-oxazepam glucuronidation in humans.  相似文献   

3.
The aims of this study were to quantify absolute protein levels of uridine 5'-diphosphate-glucuronosyltransferases (UGTs) 1A1 and 2B7 in human liver microsomes (HLMs) and to investigate their correlation with marker activities. A quantification method for UGT1A1 and UGT2B7 in HLMs was developed. Unique tryptic peptides of UGT1A1 and UGT2B7 in tryptically digested HLMs were simultaneously quantified by liquid chromatography (LC) equipped with tandem mass spectrometry (MS) using corresponding stable isotope-labelled peptides as internal standards. Bovine serum albumin was used as a blank matrix for calibration curve samples. Our procedure had good digestion efficiency, sensitivity, calibration curve linearity, and reproducibility of digestion to quantification. In 16 individual HLMs, the protein levels of UGT1A1 and UGT2B7 ranged from 6.50 to 44.6 pmol/mg and 4.45 to 18.2 pmol/mg, respectively. Estradiol 3β-glucuronidation correlated strongly with the UGT1A1 level, indicating its high reliability as a reaction marker. Both morphine 3-O- and 6-O-glucuronidation significantly correlated with UGT2B7 level. However, the intercept of the linear regression clearly indicates that morphine glucuronidation was mediated by other UGT isoforms in addition to UGT2B7.  相似文献   

4.
Flurbiprofen is a nonsteroidal anti-inflammatory drug used as a racemic mixture. Although glucuronidation is one of its elimination pathways, the role of UDP-glucuronosyltransferase (UGT) in this process remains to be investigated. Thus, the kinetics of the stereoselective glucuronidation of racemic (R,S)-flurbiprofen by recombinant UGT isozymes and human liver microsomes (HLMs) were investigated, and the major human UGT isozymes involved were identified. UGT1A1, 1A3, 1A9, 2B4, and 2B7 showed glucuronidation activity for both (R)- and (S)-glucuronide, with UGT2B7 possessing the highest activity. UGT2B7 formed the (R)-glucuronide at a rate 2.8-fold higher than that for (S)-glucuronide, whereas the other UGTs had similar formation rates. The glucuronidation of racemic flurbiprofen by HLMs also resulted in the formation of (R)-glucuronide as the dominant form, which occurred to a degree similar to that by recombinant UGT2B7 (2.1 versus 2.8). The formation of (R)-glucuronide correlated significantly with morphine 3-OH glucuronidation (r = 0.96, p < 0.0001), morphine 6-OH glucuronidation (r = 0.91, p < 0.0001), and 3'-azido-3'-deoxythymidine glucuronidation (r = 0.85, p < 0.0001), a reaction catalyzed mainly by UGT2B7, in individual HLMs. In addition, the formation of both glucuronides correlated significantly (r = 0.99, p < 0.0001). Mefenamic acid inhibited the formation of both (R)- and (S)-glucuronide in HLMs with similar IC(50) values (2.0 and 1.7 muM, respectively), which are close to those in recombinant UGT2B7. In conclusion, these findings suggest that the formation of (R)- and (S)-glucuronide from racemic flurbiprofen is catalyzed by the same UGT isozyme, namely UGT2B7.  相似文献   

5.
Modulation of UDP-glucuronosyltransferase 2B7 (UGT2B7)-catalyzed morphine glucuronidation by cytochrome P450 (P450) was studied. The effects of P450 isozymes on the kinetic parameters of UGT2B7-catalyzed glucuronidation of the morphine 3-hydroxyl group were examined by simultaneous expression of UGT2B7 and either CYP3A4, -1A2, or -2C9 in COS-1 cells. Although coexpression of CYP3A4 with UGT2B7 had little effect on Vmax, the Km was increased by about 9.8-fold compared with the UGT2B7 single expression system. The other P450 isozymes (CYP1A2 and CYP2C9) had some effects on Km and Vmax values. Immunoprecipitation of UGT from solubilized human liver microsomes resulted in coprecipitation of CYP3A4 with UGT2B7. The protein-protein interaction between CYP3A4 and UGT2B7 was further confirmed by overlay assay using glutathione S-transferase-CYP3A4 fusion protein. Addition of CYP3A4 to untreated COS microsomes expressing UGT2B7 had no or minor effects on morphine glucuronidation. In contrast, the formation of morphine-3-glucuronide by detergent-treated microsomes from COS-1 cells expressing UGT2B7 was reduced by CYP3A4, whereas the formation of the 6-glucuronide was enhanced. These results strongly suggest that 1) the glucuronidation activity of UGT2B7 toward morphine is specifically modulated by interaction with CYP3A4 in microsomal membranes and that 2) CYP3A4 alters UGT2B7 regioselectivity so that the ratio of morphine activation/detoxication is increased. This study provides the first evidence that P450 is not only involved in oxidation of drugs but also modulates the function of UGTs.  相似文献   

6.

AIMS

To compare the O-demethylation (CYP2D6-mediated), N-demethylation (CYP3A4-mediated) and 6-glucuronidation (UGT2B4/7-mediated) metabolism of codeine between methadone- and buprenorphine-maintained CYP2D6 extensive metabolizer subjects.

METHODS

Ten methadone- and eight buprenorphine-maintained subjects received a single 60 mg dose of codeine phosphate. Blood was collected at 3 h and urine over 6 h and assayed for codeine, norcodeine, morphine, morphine-3- and -6-glucuronides and codeine-6-glucuronide.

RESULTS

The urinary metabolic ratio for O-demethylation was significantly higher (P = 0.0044) in the subjects taking methadone (mean ± SD, 2.8 ± 3.1) compared with those taking buprenorphine (0.60 ± 0.43), likewise for 6-glucuronide formation (0.31 ± 0.24 vs. 0.053 ± 0.027; P < 0.0002), but there was no significant difference (P = 0.36) in N-demethylation. Similar changes in plasma metabolic ratios were also found. In plasma, compared with those maintained on buprenorphine, the methadone-maintained subjects had increased codeine and norcodeine concentrations (P < 0.004), similar morphine (P = 0.72) and lower morphine-3- and -6- and codeine-6-glucuronide concentrations (P < 0.008).

CONCLUSION

Methadone is associated with inhibition of CYP2D6 and UGTs 2B4 and 2B7 reactions in vivo, even though it is not a substrate for these enzymes. Plasma morphine was not altered, owing to the opposing effects of inhibition of both formation and elimination; however, morphine-6-glucuronide (analgesically active) concentrations were substantially reduced. Drug interactions with methadone are likely to include drugs metabolized by various UGTs and CYP2D6.  相似文献   

7.
Morphine elimination involves UDP-glucuronosyltransferase (UGT) catalyzed conjugation with glucuronic acid to form morphine 3- and 6-glucuronides (M3G and M6G, respectively). It has been proposed that UGT2B7 is the major enzyme involved in these reactions, but there is evidence to suggest that other isoforms also catalyze morphine glucuronidation in man. Thus, we have characterized the selectivity and kinetics of M3G and M6G formation by recombinant human UGTs. UGT 1A1, 1A3, 1A6, 1A8, 1A9, 1A10, and 2B7 all catalyzed M3G formation, but only UGT2B7 formed M6G. The kinetics of M3G formation by the UGT1A family isoforms was consistent with a single enzyme Michaelis-Menten model, with apparent Km values ranging from 2.6 to 37.4 mM. In contrast, M3G and M6G formation by UGT2B7 exhibited atypical kinetics. The atypical kinetics may be described by a model with high- and low-affinity Km values (0.42 and 8.3 mM for M3G, and 0.97 and 7.4 mM for M6G) from fitting to a biphasic Michaelis-Menten model. However, a multisite model with an interaction between two identical binding sites in a negative cooperative manner provides a more realistic approach to modeling these data. According to this model, the respective binding affinities (Ks) for M3G and M6G were 1.76 and 1.41 mM, respectively. These data suggest that M6G formation may be used as a selective probe for UGT2B7 activity, and morphine glucuronidation by UGT2B7 appears to involve the simultaneous binding of two substrate molecules, highlighting the need for careful analysis of morphine glucuronidation kinetics in vitro.  相似文献   

8.
Wu B  Zhang S  Hu M 《Molecular pharmaceutics》2011,8(6):2379-2389
Identifying uridine 5'-diphospho-(UDP)-glucuronosyltransferase (UGT)-selective probes (substrates that are primarily glucuronidated by a single isoform) is complicated by the enzymes' large overlapping substrate specificity. Here, regioselective glucuronidation of two flavonoids, 3,3',4'-trihydroxyflavone (3,3',4'-THF) and 3,6,4'-trihydroxyflavone (3,6,4'-THF), is used to probe the activity of hepatic UGT1A1. The glucuronidation kinetics of 3,3',4'-THF and 3,6,4'-THF was determined using 12 recombinant human UGT isoforms and pooled human liver microsomes (pHLM). The individual contribution of main UGT isoforms to the metabolism of the two flavonoids in pHLM was estimated using the relative activity factor approach. UGT1A1 activity correlation analyses using flavonoids-4'-O-glucuronidation vs β-estradiol-3-glucuronidation (a well-recognized marker for UGT1A1) or vs SN-38 glucuronidation were performed using a bank of HLMs (n = 12) including three UGT1A1-genotyped HLMs (i.e., UGT1A1*1*1, UGT1A1*1*28, and UGT1A1*28*28). The results showed that UGT1A1 and 1A9, followed by 1A7, were the main isoforms for glucuronidating the two flavonoids, where UGT1A1 accounted for 92 ± 7% and 91 ± 10% of 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF, respectively, and UGT1A9 accounted for most of the 3-O-glucuronidation. Highly significant correlations (R(2) > 0.944, p < 0.0001) between the rates of flavonoids 4'-O-glucuronidation and that of estradiol-3-glucuronidation or SN-38 glucuronidation were observed across 12 HLMs. In conclusion, UGT1A1-mediated 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF was highly correlated with the glucuronidation of estradiol (3-OH) and SN-38. This study demonstrated for the first time that regioselective glucuronidation of flavonoids can be applied to probe hepatic UGT1A1 activity in vitro.  相似文献   

9.
Epirubicin is one of the most active agents for breast cancer. The formation of epirubicin glucuronide by liver UDP-glucuronosyltransferase (UGT) is its main inactivating pathway. This study aimed to investigate epirubicin glucuronidation in human liver microsomes, to identify the specific UGT isoform for this reaction, and to correlate epirubicin glucuronidation with other UGT substrates. Microsomes from human livers were used. UGTs specifically expressed in cellular systems, as well as two UGT2B7 variants, were screened for epirubicin glucuronidation. Epirubicin, morphine, and SN-38 glucuronides were measured by high-pressure liquid chromatography. The mean +/- S.D. formation rate of epirubicin glucuronide in human liver microsomes (n = 47) was 138 +/- 37 pmol/min/mg (coefficient of variation, 24%). This phenotype was normally distributed. We screened commercially available UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, and UGT2B15 for epirubicin glucuronidation. Only UGT2B7 converted epirubicin to its glucuronide. No differences in epirubicin glucuronidation were found in HK293 cells expressing the two UGT2B7 variants at position 268. Catalytic efficiency (V(max)/K(m)) of epirubicin glucuronidation was 1.4 microl/min/mg, a value higher than that observed for morphine, a substrate of UGT2B7. Formation of epirubicin glucuronide was significantly related to that of morphine-3-glucuronide (r = 0.76, p < 0.001) and morphine-6-glucuronide (r = 0.73, p < 0.001). No correlation was found with SN-38, a substrate of UGT1A1 (r = 0.04). UGT2B7 is the major human UGT catalyzing epirubicin glucuronidation, and UGT2B7 is the candidate gene for this phenotype. The reported tyrosine to histidine polymorphism in UGT2B7 does not alter the formation rate of epirubicin glucuronide, and undiscovered genetic polymorphisms in UGT2B7 might change the metabolic fate of this important anticancer agent.  相似文献   

10.
Clopidogrel is predominantly hydrolyzed to clopidogrel carboxylic acid (CCA) by carboxylesterase 1, and subsequently CCA is glucuronidated to clopidogrel acyl glucuronide (CAG) by uridine diphosphate‐glucuronosyltransferases (UGTs); however, the UGT isoenzymes glucuronidating CCA remain unidentified to date. In this study, the glucuronidation of CCA was screened with pooled human liver microsomes (HLMs) and 7 human recombinant UGT (rUGT) isoforms. Results indicated that rUGT2B7 exhibited the highest catalytical activity for the CCA glucuronidation as measured with a mean Vmax value of 120.9 pmol/min/mg protein, 3‐ to 12‐fold higher than that of the other rUGT isoforms tested. According to relative activity factor approach, the relative contribution of rUGT2B7 to CCA glucuronidation was estimated to be 58.6%, with the minor contributions (3%) from rUGT1A9. Moreover, the glucuronidation of CCA followed Michaelis‐Menten kinetics with a mean Km value of 372.9 μM and 296.4 μM for pooled HLMs and rUGT2B7, respectively, showing similar affinity for both. The formation of CAG was significantly inhibited by azidothymidine and gemfibrozil (well‐characterized UGT2B7 substrates) in a concentration‐dependent manner, or by fluconazole (a typical UGT2B7‐selective inhibitor) in a time‐dependent manner, for both HLMs and rUGT2B7, respectively. In addition, CCA inhibited azidothymidine glucuronidation (catalyzed almost exclusively by UGT2B7) by HLMs and rUGT2B7 in a concentration‐dependent manner, indicating that CCA is a substrate of UGT2B7. These results reveal that UGT2B7 is the major enzyme catalyzing clopidogrel glucuronidation in the human liver, and that there is the potential for drug‐drug interactions between clopidogrel and the other substrate drugs of UGT2B7.  相似文献   

11.
The stereo- and regioselective glucuronidation of 10 Delta(4)-3-keto monohydroxylated androgens and pregnanes was investigated to identify UDP-glucuronosyltransferase (UGT) enzyme-selective substrates. Kinetic studies were performed using human liver microsomes (HLMs) and a panel of 12 recombinant human UGTs as the enzyme sources. Five of the steroids, which were hydroxylated in the 6beta-, 7alpha-, 11beta- or 17alpha-positions, were not glucuronidated by HLMs. Of the remaining compounds, comparative kinetic and inhibition studies indicated that 6alpha- and 21-hydroxyprogesterone (OHP) were glucuronidated selectively by human liver microsomal UGT2B7. 6alpha-OHP glucuronidation by HLMs and UGT2B7 followed Michaelis-Menten kinetics, whereas 21-OHP glucuronidation by these enzyme sources exhibited positive cooperativity. UGT2B7 was also identified as the enzyme responsible for the high-affinity component of human liver microsomal 11alpha-OHP glucuronidation. In contrast, UGT2B15 and UGT2B17 were the major forms involved in human liver microsomal testosterone 17beta-glucuronidation and the high-affinity component of 16alpha-OHP glucuronidation. Activity of UGT1A subfamily enzymes toward the hepatically glucuronidated substrates was generally low, although UGT1A4 and UGT1A9 contribute to the low-affinity components of microsomal 16alpha- and 11alpha-OHP glucuronidation, respectively. Interestingly, UGT1A10, which is expressed only in the gastrointestinal tract, exhibited activity toward most of the glucuronidated substrates. The results indicate that 6alpha- and 21-OHP may be used as selective "probes" for human liver microsomal UGT2B7 activity and, taken together, provide insights into the regio- and stereoselectivity of hydroxysteroid glucuronidation by human UGTs.  相似文献   

12.
AIMS: UGT1A1 and UGT2B7 are enzymes that commonly contribute to drug glucuronidation. Since genetic factors have been suggested to contribute to variability in activities and expression levels of these enzymes, a quantitative assessment of the influence of the major genotypes (UGT1A1*28 or UGT2B7*2) on enzyme activities was conducted. METHODS: Using a bank of microsomal samples from 59 human livers, the effect of UGT1A1*28 or UGT2B7*2 polymorphisms were investigated on rates of estradiol 3-glucuronidation (a marker of UGT1A1 enzyme activity) or zidovudine glucuronidation (a marker of UGT2B7 enzyme activity) and levels of immunoreactive protein for each enzyme. Glucuronidation rates for both enzymes were measured at K(m)/S(50) and 10 times K(m)/S(50) concentrations. RESULTS: UGT1A1 and UGT2B7 enzyme activities varied up to 16-fold and sixfold, respectively. Rates at K(m)/S(50) concentration closely correlated with rates at 10 times K(m)/S(50) concentration for both enzymes (but not at 1/10th K(m) for UGT2B7). Enzyme activities correlated with relative levels of immunoreactive protein for UGT1A1 and UGT2B7. Furthermore, rates of zidovudine glucuronidation correlated well with rates of glucuronidation of the UGT2B7 substrate gemcabene, but did not correlate with UGT1A1 enzyme activities. For the UGT1A1*28 polymorphism, consistent with levels of UGT1A1 immunoreactive protein, mean UGT1A1 activity was 2.5- and 3.2-fold lower for TA(6)/TA(7) (P < 0.05) and TA(7)/TA(7) (P < 0.001) genotypes in comparison with the TA(6)/TA(6) genotype. CONCLUSIONS: Relative to the observed 16-fold variability in UGT1A1 activity, these data indicate only a partial (approximately 40%) contribution of the UGT1A1*28 polymorphism to variability of interindividual differences in UGT1A1 enzyme activity. For the UGT2B7*2 polymorphism, genotype had no influence on immunoreactive UGT2B7 protein or the rate of 3'-azido-3'-deoxythymidine glucuronidation.  相似文献   

13.
Although UDP-glucuronosyltransferases (UGTs) act as an important detoxification system for many endogenous and exogenous compounds, they are also involved in the metabolic activation of morphine to form morphine-6-glucuronide (M-6-G). The cDNAs encoding guinea pig liver UGT2B21 and UGT2B22, which are intimately involved in M-6-G formation, have been cloned and characterized. Although some evidence suggests that UGTs may function as oligomers, it is not known whether hetero-oligomer formation leads to differences in substrate specificity. In this work, evidence for a functional hetero-oligomer between UGT2B21 and UGT2B22 is provided by studies on the glucuronidation of morphine in transfected COS-7 cells. Cells transfected with UGT2B21 cDNA catalyzed mainly morphine-3-glucuronide formation although M-6-G was also formed to some extent. In contrast, cells transfected with UGT2B22 cDNA did not show any significant activity toward morphine. When UGT2B21 and UGT2B22 were expressed simultaneously in different ratios in COS-7 cells, extensive M-6-G formation was observed. This stimulation of M-6-G formation was not observed, however, when microsomes containing UGT2B21were mixed with those containing UGT2B22 in the presence of detergent. Furthermore, this effect was not very marked when human UGT1A1 and UGT2B21 were coexpressed in COS-7 cells. This is the first report suggesting that UGT hetero-oligomer formation leads to altered substrate specificity.  相似文献   

14.
Gemfibrozil, a fibrate hypolipidemic agent, is eliminated in humans by glucuronidation. A gemfibrozil glucuronide has been reported to show time-dependent inhibition of cytochrome P450 2C8. Comprehensive assessment of the drug interaction between gemfibrozil and cytochrome P450 2C8 substrates requires a clear understanding of gemfibrozil glucuronidation. However, the primary UDP-glucuronosyltransferase (UGT) isozymes responsible for gemfibrozil glucuronidation remain to be determined. Here, we identified the main UGT isozymes involved in gemfibrozil glucuronidation. Evaluation of 12 recombinant human UGT isozymes shows gemfibrozil glucuronidation activity in UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17, with UGT2B7 showing the highest activity. The kinetics of gemfibrozil glucuronidation in pooled human liver microsomes (HLMs) follows Michaelis-Menten kinetics with high and low affinity components. The high affinity K(m) value was 2.5 microM, which is similar to the K(m) value of gemfibrozil glucuronidation in recombinant UGT2B7 (2.2 microM). In 16 HLMs, a significant correlation was observed between gemfibrozil glucuronidation and both morphine 3-OH glucuronidation (r = 0.966, p < 0.0001) and flurbiprofen glucuronidation (r = 0.937, p < 0.0001), two reactions mainly catalyzed by UGT2B7, whereas no significant correlation was observed between gemfibrozil glucuronidation and either estradiol 3beta-glucuronidation and propofol glucuronidation, two reactions catalyzed by UGT1A1 and UGT1A9, respectively. Flurbiprofen and mefenamic acid inhibited gemfibrozil glucuronidation in HLMs with similar IC(50) values to those reported in recombinant UGT2B7. These results suggest that UGT2B7 is the main isozyme responsible for gemfibrozil glucuronidation in humans.  相似文献   

15.
1.?Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation.

2.?Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms.

3.?UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r?=?0.787, p?=?0.002), propofol glucuronidation (r?=?0.661, p?=?0.019) and Zidovudine (AZT) glucuronidation (r?=?0.805, p?=?0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r?=?0.640, p?=?0.025), propofol glucuronidation (r?=?0.592, p?=?0.043) and AZT glucuronidation (r?=?0.661, p?=?0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively.

4.?Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.  相似文献   

16.
Glucuronidation of morphine in humans is predominantly catalyzed by UDP-glucuronosyltransferase 2B7 (UGT2B7). Since our recent research suggested that cytochrome P450s (P450s) interact with UGT2B7 to affect its function [Takeda S et al. (2005) Mol Pharmacol 67:665-672], P450 inhibitors are expected to modulate UGT2B7-catalyzed activity. To address this issue, we investigated the effects of P450 inhibitors (cimetidine, sulfaphenazole, erythromycin, nifedipine, and ketoconazole) on the UGT2B7-catalyzed formation of morphine-3-glucuronide (M-3-G) and morphine-6-glucuronide (M-6-G). Among the inhibitors tested, ketoconazole was the most potent inhibitor of both M-3-G and M-6-G formation by human liver microsomes. The others were less effective except that nifedipine exhibited an inhibitory effect on M-6-G formation comparable to that by ketoconazole. Neither addition of NADPH nor solubilization of liver microsomes affected the ability of ketoconazole to inhibit morphine glucuronidation. In addition, ketoconazole had an ability to inhibit morphine UGT activity of recombinant UGT2B7 freed from P450. Kinetic analysis suggested that the ketoconazole-produced inhibition of morphine glucuronidation involves a mixed-type mechanism. Codeine potentiated inhibition of morphine glucuronidation by ketoconazole. In contrast, addition of another substrate, testosterone, showed no or a minor effect on ketoconazole-produced inhibition of morphine UGT. These results suggest that 1) metabolism of ketoconazole by P450 is not required for inhibition of UGT2B7-catalyzed morphine glucuronidation; and 2) this drug exerts its inhibitory effect on morphine UGT by novel mechanisms involving competitive and noncompetitive inhibition.  相似文献   

17.
1. Almokalant, a class III antiarrythmic drug, is metabolized to form isomeric glucuronides identified in human urine. Synthesis of the total glucuronide was studied in human liver and kidney microsomes. Recombinant UDP-glucuronosyltransferases (UGTs) were screened for activity and kinetic analysis was performed to identify the isoform(s) responsible for the formation of almokalant glucuronide in man. 2. From a panel of recombinant isoforms used, both UGT1A9 and 2B7 catalysed the glucuronidation of almokalant. The Km values in both instances were similar with 1.06 mM for the 1A9 and 0.97 mM for the 2B7. Vmax for 1A9 was fourfold higher than that measured for UGT2B7, 92 compared with 21 pmol min(-1) mg(-1), respectively, but UGT1A9 was expressed at approximately twofold higher level than the UGT2B7 in the recombinant cell lines. Therefore, the contribution of UGT2B7 to almokalant glucuronidation could be as significant as that of UGT1A9 in man. 3. Liver and kidney microsomes displayed similar Km values to the cloned expressed UGTs, with the liver and kidney microsomes at 1.68 and 1.06 mM almost identical to the 1A9. 4. The results suggest a significant role for UGT1A9 and 2B7 in the catalysis of almokalant glucuronidation.  相似文献   

18.
Carvedilol ((+/-)-1-carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol) is metabolized primarily into glucuronide conjugates. In the present study, we identified the human UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of carvedilol by thin-layer chromatography using microsomes from human liver or insect cells expressing recombinant UGT isoforms. We observed two forms of carvedilol glucuronides, namely G1 and G2, in hepatic microsomes. The glucuronidation of carvedilol was catalyzed by at least three recombinant UGT isoforms: UGT1A1, UGT2B4, and UGT2B7. UGT2B4 formed both G1 and G2, whereas UGT1A1 and UGT2B7 were responsible for the formation of glucuronide G2 and G1, respectively. The enzyme kinetics for carvedilol glucuronidation by UGT1A1, UGT2B4, and UGT2B7 in addition to human liver microsomes were examined by Lineweaver-Burk analysis. The values of Km and Vmax for human liver microsomes were 26.6 microM and 106 pmol/min/mg protein for G1, and 46.0 microM and 44.5 pmol/min/mg protein for G2, respectively. The Km values for UGT1A1, UGT2B4, and UGT2B7 for G1 and G2 (22.1-55.1 microM) were comparable to those of the liver microsomes, whereas the Vmax values were in the range of 3.33 to 7.88 pmol/min/mg protein. The Km and Vmax/Km values for UGT2B4 and UGT2B7 for G1 were similar, whereas UGT2B4 had lower Km and higher Vmax/Km values for G2 compared with those of UGT1A1. These results suggest that G1 formation is catalyzed by UGT2B4 and UGT2B7, whereas G2 is formed by UGT2B4 and UGT1A1. These three hepatic UGT isoforms may have important roles in carvedilol metabolism.  相似文献   

19.
Estragole (4-allyl-1-methoxybenzene) is a naturally occurring food flavoring agent found in basil, fennel, bay leaves, and other spices. Estragole and its metabolite, 1'-hydroxyestragole (1'-HE), are hepatocarcinogens in rodent models. Recent studies from our laboratory have shown that glucuronidation of 1'-HE is a major detoxification pathway for estragole and 1'-HE, accounting for as much as 30% of urinary metabolites of estragole in rodents. Therefore, this study was designed to investigate the glucuronidation of 1'-HE in human liver microsomes in vitro and identify the specific uridine diphosphate glucuronosyltransferase (UGT) isoforms responsible for 1'-HE glucuronidation. The formation of the glucuronide of 1'-HE (1'-HEG) followed atypical kinetics, and the data best fit to a Hill equation, resulting in apparent kinetic parameters of Km = 1.45 mM, Vmax = 164.5 pmoles/min/mg protein, and n = 1.4. There was a significant intersubject variation in 1'-HE glucuronidation in 27 human liver samples, with a CV of 42%. A screen of cDNA expressed UGT isoforms indicated that UGT2B7 (83.94 +/- 0.188 pmols/min/mg), UGT1A9 (51.36 +/- 0.72 pmoles/min/mg), and UGT2B15 (8.18 +/- 0.037 pmoles/min/mg) were responsible for 1'-HEG formation. Glucuronidation of 1'-HE was not detected in cells expressing UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, and UGT1A10. 1'-HE glucuronidation in 27 individual human liver samples significantly (p < 0.05) correlated with the glucuronidation of other UGT2B7 substrates (morphine and ibuprofen). These results imply that concomitant chronic intake of therapeutic drugs and dietary components that are UGT2B7 and/or UGT1A9 substrates may interfere with estragole metabolism. Our results also have toxicogenetic significance, as UGT2B7 is polymorphic and could potentially result in genetic differences in glucuronidation of 1'-HE and, hence, toxicity of estragole.  相似文献   

20.
UGT2B7 catalyses the glucuronidation of a diverse range of drugs, environmental chemicals and endogenous compounds. Hence, coding region polymorphisms of UGT2B7 are potentially of pharmacological, toxicological and physiological significance. Two variant UGT2B7 cDNAs encoding enzymes with either His or Tyr at residue 268 have been isolated. The variants, referred to as UGT2B7*1 and UGT2B7*2, respectively, arise from a C to T transversion at nucleotide 802 of the UGT2B7 coding region. Analysis of genomic DNA from 91 unrelated Caucasians and 84 unrelated Japanese demonstrated the presence of the variant alleles encoding UGT2B7*1 and UGT2B7*2 in both populations. However, while there was an approximately equal distribution of subjects homozygous for each allele in the Caucasian population, subjects homozygous for the UGT2B7*1 allele were over 10-fold more prevalent than UGT2B7*2 homozygotes in Japanese. The frequencies of the UGT2B7*1 and UGT2B7*2 alleles were 0.511 and 0.489, respectively, in Caucasians, and 0.732 and 0.268, respectively, in Japanese. The 95% confidence intervals for the two alleles did not overlap between Caucasians and Japanese. Rates of microsomal androsterone, menthol and morphine (3-position) glucuronidation were determined for genotyped livers from Caucasian donors. Statistically significant inter-genotypic differences were not apparent for any of the three substrates. Although the UGT2B7 polymorphism characterized here is probably not associated with altered enzyme activity, the results highlight the need to consider ethnic variability in assessing the consequences of UGT polymorphisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号