首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor tissue oxygenation is an important parameter that is positively correlated to the chemo- or radiation treatment outcome of certain tumors. Hence, methods to accurately and noninvasively determine the concentration of oxygen (pO2) in tumors will be valuable. In this study, electron paramagnetic resonance (EPR) spectroscopy, utilizing microcrystalline particulates of lithium phthalocyanine (LiPc), was used to perform repeated measurements of pO2 as a function of tumor growth. We permanently embedded the particulates in the tumor by coimplanting them with RIF-1 tumor cells during inoculation in mice. This procedure enabled repeated measurements of oxygen concentration in the tumor to be obtained for >2 weeks during its growth phase. The particulates were stable and nontoxic to the tumor cells. Both an in vitro clonogenic assay and an in vivo tumor growth rate examination in C3H mice showed no apparent effect on cell proliferation or tumor growth rate. The measurements indicated that the pO2 of the tumor decreased exponentially with tumor growth and reached hypoxic levels ( approximately 4 mmHg) within 4 days after inoculation of the tumor cells. Spatial EPR imaging revealed a nonuniform distribution of the embedded particulates, which were localized mainly in the middle of the tumor volume. Oxygen mapping of the tumor, obtained by spectroscopic EPR imaging, showed significant variation of pO2 within the tumor. In summary, EPR spectroscopy and imaging with an embedded oximetry probe enabled accurate and repeated measurements of pO2 to be obtained in growing tumors under nonperturbing conditions.  相似文献   

2.
The purpose of this study was to noninvasively monitor tumor oxygenation and redox status during hyperoxygenation treatment, such as carbogen-breathing, in a murine tumor model using in vivo electron paramagnetic resonance (EPR) spectroscopy and imaging techniques. The study was performed using implanted lithium phthalocyanine (LiPc) microcrystals as the oximetry probe and 3-carbamoylproxyl (3-CP) as the redox probe in RIF-1 tumors implanted in the upper hind leg of C3H mice. Repetitive measurements of pO(2) from the same tumors as a function of tumor growth (8-24 mm in size) showed that the tumors were hypoxic and that the tumor pO(2) values were decreasing with tumor growth. Carbogen-breathing mostly showed an increase in the tumor oxygenation, although there were considerable variations in the magnitude of change among the tumors. The pharmacokinetic studies with 3-CP showed a significant decrease in the overall tumor reduction status in the carbogen-breathing mice. Spatially resolved (imaging) pharmacokinetic data over the tumor volume were obtained to visualize the distribution of the redox status within the tumor. The redox images of the tumor in the air-breathing mice showed significant heterogeneity in the magnitude and spatial distribution of reducing equivalents. On carbogen-breathing the tissue reduction status decreased considerably, with a concomitant decrease in the heterogeneity of distribution of the redox status. The results suggest that 1) carbogen-breathing considerably enhances tissue oxygenation and significantly decreases the redox status in RIF-1 tumor, and 2) changes in the magnitude and distribution of the redox status within the tumor volume during carbogen-breathing are correlated with the increased tissue oxygenation.  相似文献   

3.
PURPOSE: To examine, using blood oxygen level dependent (BOLD) MRI and EPR oximetry, the changes in oxygenation of intracranial tumors induced by carbogen breathing. MATERIALS AND METHODS: The 9L and CNS-1 intracranial rat tumor models were imaged at 7T, before and during carbogen breathing, using a multi-echo gradient-echo (GE) sequence to map R(2)*. On a different group of 9L tumors, tissue pO(2) was measured using EPR oximetry with lithium phthalocyanine as the oxygen-sensitive material. RESULTS: The average decline in R(2)* with carbogen breathing was 13 +/- 1 s(-1) in the CNS-1 tumors and 29 +/- 4 s(-1) in the 9L tumor. The SI vs. TE decay curves indicate the presence of multiple components in the tumor. Tissue pO(2) in the two 9L tumors measured was 8.6 +/- 0.5 and 3.6 +/- 0.6 mmHg during air breathing, and rose to 20 +/- 7 and 16 +/- 4 mmHg (mean +/- SE) with carbogen breathing. Significant changes were observed by 10 minutes, but changes in pO(2) and R(2)* continued in some subjects over the entire 40 minutes. CONCLUSION: EPR results indicate that glial sarcomas may be radiobiologically hypoxic. Both EPR and BOLD data indicate that carbogen breathing increases brain tumor oxygenation. These data support the use of BOLD imaging to monitor changes in oxygenation in brain tumors.  相似文献   

4.
A novel method, called relaxo-oximetry, for rapid spatially resolved in vivo measurements of oxygen concentration using time-domain radiofrequency (RF) electron paramagnetic resonance (EPR) is described. Time-domain data from triaryl methyl (TAM)-based single-electron contrast agents were processed by systematic deletion of the initial time points to arrive at T2*-weighted discrimination of signal amplitudes. In experiments involving phantoms, the line widths [ approximately (T2*)(-1)] increased as a function of oxygen, and the slope (line width/pO(2)) was the same for both absorption- and magnitude-mode line shapes. Line widths derived from T2* weighting and the computed pO(2) values agreed favorably with the measured ones from phantoms of known oxygen tension. In vivo relaxo-oximetry was performed on C3H mice, and it was found that the liver was more hypoxic than the kidneys. For tumors, 2D oxygen maps were generated while the animal breathed room air or Carbogen(R) (95% O(2)/5% CO(2)). Carbogen(R) enhanced oxygen concentration within the tumor, and the pO(2) histograms showed considerable heterogeneity. Clark electrode oxygen measurements on organs and tumors were in good agreement with tissue oxygen measurements done by relaxo-oximetry. Thus, from a single spatial image data set, pO(2) measurements can be done noninvasively by relaxo-oximetry, and 3D imaging can be performed in less than 3 min.  相似文献   

5.
The in vivo measurement of oxygen in tissues is of great interest because of oxygen's fundamental role in life. Many methods have been developed for such measurement, but all have been limited, especially with regard to repeated measurement, degree of invasiveness, and sensitivity. We describe electron spin resonance (ESR) oximetry with paramagnetic oxygen-sensing probe for in vivo measurement of oxygen in brain tissues by home-made ESR/MR dual imaging spectroscopy. Lithium 5, 9, 14, 18, 23, 27, 32, 36-octa-n-butoxy-2,3-naphthlocyanine (LiNc-BuO) radical was employed as the solid oxygen-sensing probe, and we confirmed its ability to report partial pressure of oxygen (pO(2)) in brain tissues of live animals under normal and pathological conditions for more than a month. pO(2) measurements could also be made repeatedly on the same animal and at the same location. The implantation site of LiNc-BuO in examined rats was verified by 0.5 T magnetic resonance (MR) imaging. Septic-shock rats were used to monitor tissue oxygenation during pathological state. A decline in pO(2) levels from severe hypotension during sepsis was detected, and generation of nitric oxide (NO) in brain tissues was confirmed by NO spin trapping. ESR oximetry using oxygen-sensing probe and NO spin-trapping can be used to monitor pO(2) change and NO production simultaneously and repeatedly at the same site in examined animals.  相似文献   

6.
BACKGROUND AND PURPOSE: Tumor oxygenation is well recognized as a major factor of tumor response to radiotherapy. In this respect, a number of studies have examined the response of primary tumors, whereas little is known about the oxygenation of tumor recurrences after radiotherapy. It was the aim of this study to investigate the oxygenation of tumor recurrences after preceding irradiation of the primary tumor. MATERIAL AND METHODS: Tumor oxygenation in primary tumors and recurrences of rat rhabdomyosarcomas R1H was measured by using pO(2) probes and Eppendorf pO(2) histography. Primary tumors were irradiated at a (60)Co radiotherapy facility with a total dose of 75 Gy, given in 30 fractions over 6 weeks. Oxygenation was measured in R1H tumors before and directly after completion of irradiation. In R1H recurrences oxygenation was determined, when they reached the same size as the previously treated primary tumors (V(o) = 3.1 +/- 0.5 cm(3)). Additionally, tumor microvessel density and the intercapillary distance of tumor blood vessels were determined on histological sections using a counting grid. RESULTS: Tumor oxygenation in R1H recurrences was significantly lower when compared to primary R1H tumors. In primary tumors a median pO(2) of 17 +/- 7 mmHg was measured. By contrast, the median pO(2) in R1H recurrences was only 5 +/- 5 mmHg (p < 0.05). The high frequency of pO(2) values < 5 mmHg indicated that R1H recurrences were significantly more hypoxic (58 +/- 5%) in comparison to primary tumors (22 +/- 4%). The histological sections of the R1H recurrences showed a higher heterogeneity in their tissue structure than primary nonirradiated tumors. The morphometric studies demonstrated a reduced microvessel density (91 +/- 21/9.04 mm(2) in the tumor periphery; p = 0.0001) compared with recurrent tumors (68 +/- 26) and an enhanced mean distance of tumor blood vessels, especially in the center of the R1H recurrences (184 +/- 20 vs. 243 +/- 70 mm; p = 0.0001). CONCLUSION: In R1H rhabdomyosarcomas tumor oxygenation in recurrent tumors following radiation therapy is significantly lower than in primary tumors. This observation has to be taken into account in cases of tumor recurrences where repeated radiotherapy, chemotherapy or combined treatment modalities are used.  相似文献   

7.
Increased knowledge of the physiological basis behind the signal enhancement in tumors during dynamic contrast-enhanced magnetic resonance (MR) imaging may be useful in development of predictive assays based on this technique. In the present work, the relative signal intensity (RSI) increase in gadopentetate dimeglumine (Gd-DTPA)-enhanced MR images of patients with cervical carcinoma was related to tumor perfusion, vascular density, cell density, and oxygen tension (pO(2)). The patients were subjected to MR imaging before the start of treatment (N = 12) and after two weeks of radiotherapy (N = 8). Perfusion was determined from the kinetics of contrast agent in tumors and arteries, vascular density and cell density were determined from tumor biopsies, and pO(2) was determined by polarographic needle electrodes. The maximal RSI was correlated to perfusion (P = 0.002) and cell density (P = 0.004), but was not related to vascular density. There was also a correlation between pO(2) and perfusion (P < 0.001). Moreover, pO(2) tended to be correlated to cell density (P = 0.1), but was not related to vascular density. There was a significant correlation between RSI and pO(2), regardless of whether the median pO(2) (P < 0.001) or the fraction of pO(2) readings below 2.5 mmHg (P < 0.001), 5 mmHg (P < 0.0001), or 10 mmHg (P < 0.001) was considered. Our results suggest that the Gd-DTPA-induced signal enhancement in MR images of cervical tumors is influenced by both perfusion and cell density. These parameters are also of major importance for tumor oxygenation, leading to a correlation between signal enhancement and oxygenation. Dynamic contrast-enhanced MR imaging may therefore possibly be useful in prediction of treatment outcome.  相似文献   

8.
19F NMR spin-lattice relaxometry of hexafluorobenzene (HFB) has been shown to be a highly sensitive indicator of tumor oxygenation. In this study hexamethyldisiloxane (HMDSO) was identified as a proton NMR analog, and its potential as a probe for investigating dynamic changes in tissue oxygen tension (pO2) was evaluated. HMDSO has a single proton resonance (delta= -0.3 ppm) and the spin-lattice relaxation rate, Rl (= 1/T1) exhibits a linear dependence on pO2: R1 (s(-1)) = 0.1126 + 0.0013* pO2 (torr) at 37 degrees C. To demonstrate application in vivo, HMDSO was administered into healthy rat thigh muscle (100 microl) and tumors (50 microl). Local pO2 was determined by using pulse-burst saturation recovery (PBSR) 1H NMR spectroscopy to assess R1. Water and fat signals were effectively suppressed by frequency-selective excitation of the HMDSO resonance. Rat thigh muscle had a mean baseline pO2 of 35 +/- 11 torr, with a typical stability of +/-3 torr over 20 min, when the rats breathed air. Altering the inhaled gas to oxygen produced a significant increase in pO2 to 100-200 torr. In tumors, altering the inspired gas also produced significant (albeit generally smaller) changes. This new pO2 reporter molecule offers a potentially valuable new tool for investigating pO2 in vivo.  相似文献   

9.
The time-domain (TD) mode of electron paramagnetic resonance (EPR) data collection offers a means of estimating the concentration of a paramagnetic probe and the oxygen-dependent linewidth (LW) to generate pO2 maps with minimal errors. A methodology for noninvasive pO2 imaging based on the application of TD-EPR using oxygen-induced LW broadening of a triarylmethyl (TAM)-based radical is presented. The decay of pixel intensities in an image is used to estimate T2*, which is inversely proportional to pO2. Factors affecting T2* in each pixel are critically analyzed to extract the contribution of dissolved oxygen to EPR line-broadening. Suitable experimental and image-processing parameters were obtained to produce pO2 maps with minimal artifacts. Image artifacts were also minimized with the use of a novel data collection strategy using multiple gradients. Results from a phantom and in vivo imaging of tumor-bearing mice validated this novel method of noninvasive oximetry. The current imaging protocols achieve a spatial resolution of approximately 1.0 mm and a temporal resolution of approximately 9 s for 2D pO2 mapping, with a reliable oxygen resolution of approximately 1 mmHg (0.12% oxygen in gas phase). This work demonstrates that in vivo oximetry can be performed with good sensitivity, accuracy, and high spatial and temporal resolution.  相似文献   

10.
Blood oxygen level-dependent (BOLD) contrast-based functional MRI (fMRI) has been reported as a method to assess the evolution of tumor oxygenation after hyperoxic treatments, because of its sensitivity to changes in blood flow and deoxyhemoglobin content. However a number of questions remain: 1) In view of tumor heterogeneity, how good is the correlation between the MR parameters in gradient-echo imaging (signal intensity (SI) or effective transverse relaxation time (T(*)(2))) and local tumor oxygen partial pressure (pO(2))? 2) Is the magnitude of the change in SI or T(*)(2) a quantitative marker for variation in pO(2)? 3) Is initial T(*)(2) a good marker for initial pO(2)? To address these questions, murine tumors were imaged during respiratory challenges at 4.7 Tesla, using fiber-optic microprobes to simultaneously acquire tumor pO(2) and erythrocyte flux. The BOLD signal response (SI and T(*)(2)) was temporally correlated with changes in pO(2). However, the magnitude of the signal bore no absolute relation to pO(2) across tumors, i.e., a given change in SI corresponded to a 25 mmHg pO(2) change in one tumor, but to a 100 mmHg change in another. The initial T(*)(2) value did not reliably predict tumor oxygenation at the beginning of the experiment. In conclusion, the major advantages of the technique include noninvasiveness, high spatial resolution, and real-time detection of pO(2) fluctuations. Information afforded by the BOLD imaging technique is qualitative in nature and may be combined with other techniques capable of providing an absolute measure of pO(2).  相似文献   

11.
New electron paramagnetic resonance (EPR) oximetry probes were identified in the class of carbon black materials. These compounds exhibit very high oxygen sensitivity and favorable EPR characteristics for biological applications. At low pO(2), the linewidth is particularly sensitive to changes in oxygen tension (sensitivity of 750 mG/mmHg). The application of the probes for oximetry was demonstrated in vivo: the pO(2) was measured in muscle in which the blood flow was temporarily restricted as well as in tumor-bearing mice during a carbogen breathing challenge. The responsiveness to pO(2) was stable in muscle for at least 3 months. No toxicity was observed using these materials in cellular experiments and in histological studies performed 2, 7, and 28 days after implantation. In view of their EPR characteristics (high sensitivity) as well as the well-characterized production procedure that make them available on a large scale, these probes can be considered as very promising tools for future developments in EPR oximetry.  相似文献   

12.
PURPOSE: To examine the influence of the hemorrheologic agent pentoxifylline (PTX) on tumor oxygenation and radiosensitivity. MATERIAL AND METHODS: Tumor oxygenation in rat rhabdomyosarcomas R1H after PTX administration (50 mg/kg body weight) was measured using interstitial pO(2) probes (Licox CMP system and Eppendorf pO(2)-Histograph). Tumors were irradiated with (60)Co gamma-irradiation using single doses (15 and 30 Gy), conventional fractionation (60 Gy/30 fractions/6 weeks), and continuous hyperfractionation (54 Gy/36 fractions/18 days) in combination with PTX or an equivalent volume of physiological saline. Radiation effects were determined by tumor growth delay (2V(o)), and by partial and complete tumor remission. RESULTS: PTX increased tumor oxygenation for up to 45 min after administration of the drug. Single doses of 15 and 30 Gy of irradiation, when combined with PTX, produced little radiosensitization of the R1H tumors as indicated by dose-modifying factors (DMFs) of 1.11 and 1.04, respectively. In conventional fractionated irradiation with PTX, a DMF of 1.10 was obtained only. However, in continuous hyperfractionated irradiation with 18 x 50 mg/kg of PTX, the DMF with respect to tumor growth delay was found to be 1.37. Local tumor control was not influenced by PTX. In vitro studies identified R1H cells as p53 wildtype and showed a G1 arrest in response to irradiation. When 2 mM PTX was given prior to irradiation, it did not improve radiosensitivity of R1H cells as measured by clonogenic survival assays. CONCLUSION: PTX effectively enhances tumor oxygenation and radiosensitivity of R1H rhabdomyosarcomas, especially during continuous hyperfractionated irradiation. Given to rats as an adjuvant to fractionated irradiation, PTX does not enhance acute or late skin reactions or tumor metastasis. No radiosensitization was observed in vitro, when oxygen was not limiting. The observed radiosensitization by PTX is caused mainly by improved tumor oxygenation.  相似文献   

13.
Technetium-99m labeled cyclam N-2'-methoxyethyl-2-(3'-nitro-1'-triazole) acetamide (cyclam AK 2123) has been synthesized, radiolabeled and characterized as a hypoxic tumor imaging agent. Radiochemical purity was greater than 95%. Marker biodistribution was measured in normal Wistar strain rats at different time intervals after intra venous (i.v.) administration. In vivo distribution and scintigraphic imaging studies were performed after i.v. injection into mammary tumor-bearing rats using a gamma camera and associated computer. Intratumor partial oxygen pressure (pO2) and oxygen saturation measurements were performed to estimate the oxygenation status of the tumors. Tumor to muscle ratio (T/M) of 99mTc-cyclam AK 2123 was 8.5 which was compared with other tumor seeking radiopharmaceuticals, viz. 99mTc-(V) DMSA (3.07), 99mTc-citrate (5.29) and 201T1C1 (3.29). T/M ratios were also evaluated in comparison with radioiodinated iodoazomycin galactopyronoside (125I-IAZG). The ratio obtained was 18 for 99mTc-cyclam AK 2123 and 20 for 125I-IAZG, respectively. The increased concentration of radioactivity in these tumors suggests that this agent could be labelling hypoxic cells and have utility as an imaging agent.  相似文献   

14.
The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia‐sensitive drug. The small molecule 3‐bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3‐bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3‐bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2 < 10 mmHg) in vivo using squamous cell carcinoma (SCCVII)‐bearing mouse model. Metabolic MRI studies using hyperpolarized 13C‐labeled pyruvate showed that monocarboxylate transporter‐1 is the major transporter for pyruvate and the analog 3‐bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter‐1 in vivo. Expression of monocarboxylate transporter‐1 was enhanced in moderately hypoxic (8–15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia‐activated drugs. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Oxygenation status is a key determinant in both tumor growth and responses to therapeutic interventions. The oxygen partial pressure (pO2) was assessed using a novel pulsed electron paramagnetic resonance (EPR) spectroscopy at 750 MHz. Crystals of lithium phthalocyanine (LiPc) implanted into either squamous cell carcinoma (SCC) tumor or femoral muscle on opposing legs of mice were tested by pulsed EPR. The results showed pO2 of SCC tumor was 2.7 +/- 0.4 mmHg, while in the femoral muscle it was 6.1 +/- 0.9 mmHg. A major advantage of pulsed EPR oximetry over conventional continuous-wave (CW) EPR oximetry is the lack of influence from subject motion, while avoiding artifacts associated with modulation or power saturation. Resonators in pulsed EPR are overcoupled to minimize recovery time. This makes changes in coupling associated with object motion minimal without influencing spectral quality. Consequently, pulsed EPR oximetry enables approximately a temporal resolution of approximately one second in pO2 monitoring in conscious subjects, avoiding significant influence of anesthetics on the physiology being studied. The pO2 in SCC tumor and muscle was found to be higher without anesthesia (3.9 +/- 0.5 mmHg for tumor, 8.8 +/- 1.2 mmHg for muscle). These results support the advantage of pulsed EPR in examining pO2 in conscious animals with LiPc chronically implanted in predetermined regions.  相似文献   

16.
The paramagnetic spin probe Oxo63 is used in oximetric imaging studies based on electron paramagnetic resonance (EPR) methods by monitoring the oxygen-dependent linewidth while minimizing the contributions from self-broadening seen at high probe concentrations. Therefore, it is necessary to determine a suitable dose of Oxo63 for EPR-based oxygen mapping where the self-broadening effects are minimized while signal intensity adequate for imaging can be realized. A constant tissue concentration of spin probe would be useful to image a subject and assess changes in pO2 over time; accumulation or elimination of the compound in specific anatomical regions could translate to and be mistaken for changes in local pO2, especially in OMRI-based oximetry. The in vivo pharmacokinetics of the spin probe, Oxo63, after bolus and/or continuous intravenous infusion was investigated in mice using a novel approach with X-band EPR spectroscopy. The results show that the half-life in blood was 17-21 min and the clearance by excretion was 0.033-0.040 min(-1). Continuous infusion following a bolus injection of the probe was found to be effective to obtain stable plasma concentration as well as image intensity to permit reliable pO2 estimates.  相似文献   

17.
RATIONALE AND OBJECTIVES: The oxygen partial pressure (pO2) of human body fluids reflects the oxygenation status of surrounding tissues. All existing fluid pO2 measurements are invasive, requiring either microelectrode/optode placement or fluid removal. The purpose of this study is to develop a noninvasive magnetic resonance imaging method to measure the pO2 of human body fluids. MATERIALS AND METHODS: We developed an imaging paradigm that exploits the paramagnetism of molecular oxygen to create quantitative images of fluid oxygenation. A single-shot fast spin echo pulse sequence was modified to minimize artifacts from motion, fluid flow, and partial volume. Longitudinal relaxation rate (R1 = 1/T1) was measured with a time-efficient nonequilibrium saturation recovery method and correlated with pO2 measured in phantoms. RESULTS: pO2 images of human and fetal cerebrospinal fluid, bladder urine, and vitreous humor are presented and quantitative oxygenation levels are compared with prior literature estimates, where available. Significant pO2 increases are shown in cerebrospinal fluid and vitreous following 100% oxygen inhalation. Potential errors due to temperature, fluid flow, and partial volume are discussed. CONCLUSIONS: Noninvasive measurements of human body fluid pO2 in vivo are presented, which yield reasonable values based on prior literature estimates. This rapid imaging-based measurement of fluid oxygenation may provide insight into normal physiology as well as changes due to disease or during treatment.  相似文献   

18.
We showed previously that, in vitro, copper-diacetyl-bis(N(4)-methylthiosemicarbazone) (Cu-ATSM) uptake is dependent on the oxygen concentration (pO2). We also showed that, in vivo, Cu-ATSM uptake is heterogeneous in animal tumors known to contain hypoxic fractions. This study was undertaken to confirm the pO2 dependence of this selective uptake in vivo by correlating Cu-ATSM uptake with measured tumor pO2. METHODS: Experiments were performed with the 9L gliosarcoma rat model using a needle oxygen electrode to measure tissue pO2. Using PET and electronic autoradiography, Cu-ATSM uptake was measured in tumor tissue under various pO2 levels. The oxygen concentration within implanted tumors was manipulated by chemical means or by altering the inhaled oxygen content. RESULTS: A good correlation between low pO2 and high Cu-ATSM accumulation was observed. Hydralazine administration in animals caused a decrease in the average tumor pO2 from 28.61 +/- 8.74 mm Hg to 20.81 +/- 7.54 mm Hg in untreated control animals breathing atmospheric oxygen. It also caused the tumor uptake of Cu-ATSM to increase by 35%. Conversely, in animals breathing 100% oxygen, the average tumor pO2 increased to 45.88 +/-15.9 mm Hg, and the tumor uptake of Cu-ATSM decreased to 48% of that of the control animals. PET of animals treated in a similar fashion yielded time-activity curves showing significantly higher retention of the tracer in hypoxic tissues than in oxygenated tissues. CONCLUSION: These data confirm that Cu-ATSM uptake in tissues in vivo is dependent on the tissue pO2, and that significantly greater uptake and retention occur in hypoxic tumor tissue. Therefore, the possible use of Cu-ATSM PET as a prognostic indicator in the management of cancer is further validated.  相似文献   

19.
BACKGROUND AND PURPOSE: Tumor hypoxia has been linked to tumor progression, the development of treatment resistance, and thus poor prognosis. Since anemia is a major factor causing tumor hypoxia, the association between blood hemoglobin concentration (cHb) and tumor oxygenation status has been examined. PATIENTS AND METHODS: Published data on the relationship between pretreatment cHb values and tumor oxygenation (in terms of median pO(2) values, hypoxic fractions) have been summarized. Pretreatment O(2) tension measurements were performed in histologically proven experimental tumors, human breast cancers, squamous cell carcinomas of the head and neck, and cancers of the uterine cervix and of the vulva. In order to allow for a comparison between solid tumors and normal tissues, pO(2) measurements were also performed in healthy tissue in anemic and nonanemic patients. cHb was determined at the time of the pO(2) measurements. RESULTS: Based on current information from experimental and clinical studies there is increasing evidence that anemia is associated with a detrimental tumor oxygenation status. Increasing cHb values are correlated with significantly higher pO(2) values and lower hypoxic fractions. Maximum tumor oxygenation in squamous cell carcinomas is observed at normal (gender-specific) cHb values (approximately 14 g/dl in women and approximately 15 g/dl in men). Above this "optimal" Hb range, the oxygenation status tends to worsen again. In anemic patients, tumor oxygenation is compromised due to a decreased O(2) transport capacity of the blood. At the upper edge of the Hb scale, a substantial increase in the blood's viscous resistance to flow in "chaotic" tumor microvessels is thought to be mainly responsible for the observed restriction of O(2) supply. CONCLUSION: Review of relevant clinical data suggests that a maximum oxygenation status in solid tumors is to be expected in the range 12 g/dl < cHb < 14 g/dl for women and 13 g/dl < cHb < 15 g/dl for men. Considering the "optimal" cHb range with regard to tumor oxygenation, the concept of "the higher, the better" is therefore no longer valid. This finding has potentially far-reaching implications in the clinical setting (e. g., inappropriate erythropoietin treatment of nonanemic tumor patients).  相似文献   

20.
BACKGROUND AND PURPOSE: The aim of the present study was to validate ([(18)F] fluoromisonidazole (FMISO) and [(18)F]-2-fluoro-2'-deoxyglucose (FDG) positron emission tomography (PET) for determination of radiotherapeutically relevant hypoxia by the gold standard for measuring tissue oxygenation in human tumors, the computerized polarographic needle electrode system (pO(2) histography). PATIENTS AND METHODS: Up to now, a total of 16 patients with a metastatic neck lymph node from a primary squamous carcinoma of the head and neck underwent pO(2) and PET measurements. Tumor tissue pO(2) was measured with polarographic needle electrodes using a pO(2) histograph (Eppendorf). Under CT control, the needle electrode was placed in the tumor without general or local anesthesia. To assess the biological and clinical relevance of oxygenation measurement, the relative frequency of pO(2) readings, with values < or = 2.5, < or = 5.0, and < or = 10.0 mmHg, as well as mean and median pO(2) were recorded. All PET studies were carried out using an ECAT EXACT 922/47 scanner with an axial field of view of 16.2 cm. FMISO PET consisted of one static scan of the relevant region, performed 120 min after intravenous administration. The acquisition and reconstruction parameters were as follows: 15-min emission scanning and 4-min transmission scanning with (68)Ge rod sources. FDG PET of the lymph node metastasis was performed 68 +/- 11 min after intravenous administration, applying the whole-body tool with 8-min emission scanning and 4-min transmission scanning per bed position. RESULTS: In order to detect possible relations between the different relevant polarographically measured parameters of tumor hypoxia and FMISO PET data-based oxygenation values, the Pearson correlation coefficient was calculated. Average (r > 0.5) to high correlation (r > 0.7) was found between tumor-to-muscle ratio of FMISO after 2 h and parameters of hypoxic fraction (pO(2) readings with values 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号