首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
1. Human neocortical neurons fire repetitively in response to long depolarizing current injections. The slope of the relationship between average firing frequency and injected current (f-I slope) was linear or bilinear in these cells. The mean steady-state f-I slope (average of the last 500 ms of a 1-s firing episode) was 57.8 Hz/nA. The instantaneous firing rate decreased with time during a 1-s constant-current injection (spike frequency adaptation). Also, human neurons exhibited habituation in response to a 1-s current stimulus repeated every 2 s. 2. Afterhyperpolarizations (AHPs) reflect the active ionic conductances after action potentials. We studied AHPs with the use of intracellular recordings and pharmacological manipulations in the in vitro slice preparation to 1) gain insight into the ionic mechanisms underlying the AHPs and 2) elucidate the role that the underlying currents play in the functional behavior of human cortical neurons. 3. We have classified three AHPs in human neocortical neurons on the basis of their time courses: fast, medium, and slow. The amplitude of the AHPs was dependent on stimulus intensity and duration, number and frequency of spikes, and membrane potential. 4. The fast AHP had a reversal potential of -65 mV and was eliminated in extracellular Co2+, tetraethylammonium (TEA) or 4-aminopyridine, and intracellular TEA or CsCl. These manipulations also caused an increase in spike width. 5. The medium AHP had a reversal potential of -90 to -93 mV (22-24 mV hyperpolarized from mean resting potential). This AHP was reduced by Co2+, apamin, tubocurare, muscarine, norepinephrine (NE), and serotonin (5-HT). Pharmacological manipulations suggest that the medium AHP is produced in part by 1) a Ca-dependent K+ current and 2) a time-dependent anomalous rectifier (IH). 6. The slow AHP reversed at -83 to -87 mV (14-18 mV hyperpolarized from mean resting potential). This AHP was diminished by Co2+, muscarine, NE, and 5-HT. The pharmacology of the slow AHP suggests that a Ca-dependent K+ current with slow kinetics contributes to this AHP. 7. The currents involved in the fast AHP are important in spike repolarization, control of interspike interval during repetitive firing, and prevention of burst firing. Currents underlying the medium and slow AHPs influence the interspike interval during repetitive firing and produce spike frequency adaptation and habituation.  相似文献   

2.
 The electrophysiological properties of neurons of the medial septal nucleus and the nucleus of the diagnonal band of Broca (MS/DB) were studied using intracellular methods in urethane-anesthetized rats. Three types of rhythmically bursting neurons were identified in vivo on the basis of their action potential shapes and durations, afterhyperpolarizations (AHPs), membrane characteristics, firing rates and sensitivities to the action of muscarinic antagonist: (1) Cells with short-duration action potentials and no AHPs (2 of 34 rhythmic cells, 6%) had high firing rates and extremely reliable bursts with 6–16 spikes per theta cycle, which were highly resistant to scopolamine action. (2) Cells with short-duration action potentials and short-duration AHPs (8 of 34 rhythmic cells, 24%) also had high firing rates and reliable bursts with 4–13 spikes per theta cycle, phase-locked to the negative peak of the dentate theta wave. Hyperpolarizing current injection revealed a brief membrane time constant, time-dependent membrane rectification and a burst of firing at the break. Depolarizing current steps produced high-frequency repetitive trains of action potentials without spike frequency adaptation. The action potential and membrane and characteristics of this cell type are consistent with those described for GABAergic septal neurons. Many of these neurons retained their theta-bursting pattern in the presence of muscarinic antagonist. (3) Cells with long-duration action potentials and long-duration AHPs (24 of 34 rhythmic cells, 70%) had low firing rates, and usually only 1–3 spikes per theta cycle, locked mainly to the positive peak of the dentate theta rhythm. Hyperpolarizing current injection revealed a long membrane time constant and a break potential; a depolarizing pulse caused a train of action potentials with pronounced spike frequency adaptation. The action potential and membrane properties of this cell type are consistent with those reported for cholinergic septal neurons. The theta-related rhythmicity of this cell type was abolished by muscarinic antagonists. The phasic inhibition of ”cholinergic” MS/DB neurons by ”GABAergic” MS/DB neurons, followed by a rebound of their firing, is proposed as a mechanism contributing to recruitment of the whole MS/DB neuronal population into the synchronized rhythmic bursting pattern of activity that underlies the occurrence of the hippocampal theta rhythm. Received: 5 February 1996 / Accepted: 6 November 1996  相似文献   

3.
Using whole cell recordings from acute slices of the rat amygdala, we have examined the physiological properties of and synaptic connectivity to neurons in the lateral sector of the central amygdala (CeA). Based on their response to depolarizing current injections, CeA neurons could be divided into three types. Adapting neurons fired action potentials at the start of the current injections at high frequency and then showed complete spike-frequency adaptation with only six to seven action potentials evoked with suprathreshold current injections. Late-firing neurons fired action potentials with a prolonged delay at threshold but then discharged continuously with larger current injections. Repetitive firers discharged at the start of the current injection at threshold and then discharged continuously with larger current injections. All three cells showed prolonged afterhyperpolarizations (AHPs) that followed trains of action potentials. The AHP was longer lasting with a larger slow component in adapting neurons. The AHP in all cell types contained a fast component that was inhibited by the SK channel blocker UCL1848. The slow component, not blocked by UCL1848, was blocked by isoprenaline and was significantly larger in adapting neurons. Blockade of SK channels increased the discharge frequency in late firers and regular-spiking neurons but had no effect on adapting neurons. Blockade of the slow AHP with isoprenaline had no effect on any cell type. All cells received a mixed glutamatergic and GABAergic input from a medial pathway. Electrical stimulation of the lateral (LA) and basolateral (BLA) nuclei evoked a large monosynaptic glutamatergic response followed by a disynaptic inhibitory postsynaptic potential. Activation of neurons in the LA and BLA by puffer application of glutamate evoked a small monosynaptic response in 13 of 55 CeA neurons. Local application of glutamate to the CeL evoked a GABAergic response in all cells. These results show that at least three types of neurons are present in the CeA that can be distinguished on their firing properties. The firing frequency of two of these cell types is determined by activation of SK channels. Cells receive a small input from the LA and BLA but may receive inputs that course through these nuclei en route to the CeA.  相似文献   

4.
In vitro studies performed in mammalian brain slices have shown that cortical neurons differ in their intrinsic membrane properties. In the rodent cortex these properties are related to a specific cell morphology and synaptic connectivity in some cells but not in others. Due to their small size, little is known about the intrinsic membrane properties of layer 6 cells, however, and it is not clear whether cell morphology is related to electrophysiological properties in this layer. We used a combination of intracellular recording and dye-filling to study the electrophysiological and morphological characteristics of layer 6 cells of the rat sensorimotor cortex in vitro and compared their properties to those of large layer 5B pyramidal cells. Our sample of 24 filled and anatomically reconstructed cells in layer 6 confirms previous Golgi studies that showed them to be a morphologically diverse group consisting of regularly and irregularly oriented pyramidal cells and spiny nonpyramidal cells. Regular layer 6 pyramidal cells differed with respect to the length of their apical dendrites and extent of their axonal arborizations, while irregularly oriented pyramidal cells consisted of sideways or inverted pyramidal cells of variable size and morphology. Spiny nonpyramidal cells included bi-tufted and multi-polar cell types that differed in size and extent of dendritic trees. Many layer 6 cells showed long horizontal axon collaterals in layer 6, and an oblique or vertical projection to layer 4. Stimulation with intracellular constant current pulses revealed that the morphological diversity was mirrored by a similar electrophysiological diversity. Most layer 6 cells were capable of firing trains of action potentials characterized by an initial doublet or triplet followed by a train of single spikes (phasic-tonic mode). The majority of layer 6 cells could fire in either a tonic (single spikes only) mode with low strength current input and a phasic-tonic pattern with higher current strengths. A minority fired either always phasic-tonic or tonic-only spike trains. The size and sequence of spike afterpotentials during low-rate repetitive firing was highly variable in layer 6 cells suggesting that the relative importance of ionic currents responsible for spike repolarization and afterpotentials varied from cell to cell. Subthreshold responses showed prominent inward rectification, while hyperpolarizing "sag" was present in most cells tested. In comparison, large layer 5B pyramidal cells fired either phasic-tonic only or both phasic-tonic and tonic patterns. A minority of cells were capable of firing repetitive bursts, while the remainder fired repetitive single spikes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
1. Large aspiny neurons (20-60 microns diam) in the neostriatum were studied in an in vitro rat slice preparation by whole-cell recording to reveal physiological identification from medium-sized spiny projection cells (10-20 microns diam), relation to the patch and matrix compartments, and excitatory synaptic inputs. Recorded cells were identified by intracellular biocytin staining. Compartmental identification was made by calbindinD28K immunohistochemistry in fixed slices. 2. Large stained neurons were morphologically heterogeneous and had aspiny or sparsely spiny dendrites and dense local axonal branches. They were located in the matrix or on the patch-matrix border. Axonal branches of the large aspiny cells were preferentially distributed in the matrix and gave off terminal boutons there. Some of the secondary dendrites arising from stem dendrites running along the border, however, crossed compartment boundaries and made fine branches in a patch. 3. Large aspiny cells had less negative resting membrane potentials and lower thresholds for spike generation than medium spiny cells. They showed longer-duration and larger-amplitude afterhyperpolarizations (AHPs) than medium spiny cells. During hyperpolarizing current pulses, apparent resistance slowly reduced, and a prominent sag was observed in the voltage record, which was absent in medium spiny cells. The large aspiny cells showed no spontaneous firing but had a tendency to fire repetitive spikes in response to depolarizing current pulses, although spike interval tended to increase in later spikes. Spike frequency of large aspiny cells increased less with current intensity than that of medium spiny cells. 4. Most large aspiny cells were considered to belong to a single physiological class, although one large aspiny cells showed shorter-duration AHPs than both most other large aspiny cells and medium spiny cells, and little spike-frequency adaptation. 5. Excitatory postsynaptic currents (EPSCs) of large aspiny cells induced by intrastriatal stimulation had two components. An early, linear component was blocked by 10 microM 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), a selective antagonist of non-N-methyl-D-aspartate (NMDA) receptors. A later component with a nonlinear current-voltage (I-V) relationship was blocked by 50 microM DL-2-amino-5-phosphonovaleric acid (DL-APV), a selective antagonist of NMDA receptors. 6. From these results, four conclusions can be drawn. 1) Most large aspiny neostriatal cells in the matrix, although they take heterogeneous shapes, belong to one physiological class with long-duration AHPs and a strong time-dependent component of anomalous rectification.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Conventional intracellular recordings were made from 26 lateral spinal nucleus (LSN) neurons in slices of L6-S1 spinal cord from 10- to 15-day-old rats. At rest, LSN neurons did not fire spontaneous action potentials. With injection of a positive current pulse, action potentials had an amplitude of 72 +/- 7 (SD) mV and duration at half-peak height of 0.75 +/- 0.22 ms. Action potentials were followed by an afterpotential. Most LSN neurons (13/17) exhibited only an afterhyperpolarization (AHP); four neurons exhibited both a fast and a slow AHP separated by an afterdepolarization (ADP). For LSN neurons that exhibited only an AHP, a slow ADP could be identified during bath application of apamin (100 nM). Four of 11 LSN neurons showed a postinhibitory rebound (PIR). Two types of PIR were noted, one with high threshold and low amplitude and the other with low threshold and high amplitude. The PIR with high amplitude was partially blocked in 0 mM Ca2+/high Mg2+ (10 mM) recording solution. Repetitive firing properties were examined in 17 LSN neurons. On the basis of the ratio of the slopes between initial instantaneous firing and steady-state firing frequencies, neurons with low spike frequency adaptation (SFA, 8/17) and high SFA (4/17) were identified. In addition, 2/17 LSN neurons exhibited biphasic repetitive firing patterns, which were composed of a fast SFA, delayed excitation, and low SFA; another two neurons showed only delayed excitation. Plateau potentials also were found in two LSN neurons. Dorsal root stimulation revealed that most LSN neurons (12/13) had polysynaptic postsynaptic potentials (PSP); only one neuron exhibited a monosynaptic PSP. Electrical stimulation of the dorsal root evoked prolonged discharges in low SFA neurons and a short discharge in high SFA neurons. Intrinsic properties were modulated by bath application of substance P (SP). Membrane potentials were depolarized in all eight LSN neurons tested, and membrane resistance was either increased (n = 3) or decreased (n = 2). Both instantaneous firing and steady-state firing were facilitated by SP. In addition, oscillation of membrane potentials were induced in three LSN neurons. These results demonstrate that LSN neurons exhibit a variety of intrinsic properties, which may significantly contribute to sensory processing, including nociceptive processing.  相似文献   

7.
To facilitate the characterization of cortical neuronal function, the responses of cells in cat area 17 to intracellular injection of current pulses were quantitatively analyzed. A variety of response variables were used to separate the cells into subtypes using cluster analysis. Four main classes of neurons could be clearly distinguished: regular spiking (RS), fast spiking (FS), intrinsic bursting (IB), and chattering (CH). Each of these contained significant subclasses. RS neurons were characterized by trains of action potentials that exhibited spike frequency adaptation. Morphologically, these cells were spiny stellate cells in layer 4 and pyramidal cells in layers 2, 3, 5, and 6. FS neurons had short-duration action potentials (<0.5 ms at half height), little or no spike frequency adaptation, and a steep relationship between injected current intensity and spike discharge frequency. Morphologically, these cells were sparsely spiny or aspiny nonpyramidal cells. IB neurons typically generated a low frequency (<425 Hz) burst of spikes at the beginning of a depolarizing current pulse followed by a tonic train of action potentials for the remainder of the pulse. These cells were observed in all cortical layers, but were most abundant in layer 5. Finally, CH neurons generated repetitive, high-frequency (350-700 Hz) bursts of short-duration (<0.55 ms) action potentials. Morphologically, these cells were layer 2-4 (mainly layer 3) pyramidal or spiny stellate neurons. These results indicate that firing properties do not form a continuum and that cortical neurons are members of distinct electrophysiological classes and subclasses.  相似文献   

8.
1. Intracellular recordings were made from 43 spinothalamic (STT) neurons in the lumbosacral region of the spinal cord in anesthetized macaque monkeys. The antidromic responses of these neurons to electrical stimulation of the ventral posterior lateral (VPL) nucleus of the thalamus were examined, and orthodromic responses to electrical stimulation of the sural nerve or to mechanical stimulation of hindlimb skin were recorded to study the electrophysiological features of these neurons and their responses to afferent inputs. 2. The resting membrane potential of the neurons ranged from -26 to -70 mV and the antidromic latency from 2.3 to 9.1 ms. Three of the neurons were located in lamina 1 and were recorded so briefly that only antidromic and spontaneous activity could be studied. The rest of the neurons were located in laminae III-V and were of the wide-dynamic-range (WDR) type. 3. The antidromic action potentials recorded in the somas of STT neurons typically showed a fast rising phase and a short initial segment-somadendritic (IS-SD) delay. After repetitive antidromic stimulation, a progressive elongation of the IS-SD delay, widening of the spike, and failure of the SD spike were observed. 4. The afterpotential of the antidromic action potential consisted of a fast afterhyperpolarization (AHPf) and sometimes a delayed depolarization (DD) and a slow afterhyperpolarization (AHPs). The amplitude and the duration of the AHPs were progressively increased when longer trains of stimuli were used. When the membrane potential was hyperpolarized, the amplitude of the AHPs decreased, suggesting an involvement of K+ and/or Cl- ions. However, the AHPs completely disappeared when the strength of stimulation was adjusted to a level just below the threshold for the axon, suggesting that it was unlikely that recurrent inhibition contributed to the AHPs. 5. The background activity of 32 STT neurons was analyzed. The membrane potential at which spikes were triggered in these neurons was around -42 mV. The width and the rise time of the spontaneous spikes were shorter than those of antidromic action potentials, although the maximum rate of rise was similar. The heights of the spontaneous spikes were slightly shorter than those of antidromic action potentials. 6. Three types of background activity have been observed. One type had a very low average spontaneous rate with a bursting firing pattern, consisting of a few spikes superimposed on a depolarization. This type of activity was seen mostly in lamina I neurons. The second type of activity had a moderate to high spontaneous rate with a fairly constant interval between spikes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
This report describes the variability of spontaneous firing characteristics of sensory neurons, electrosensory lateral line lobe (ELL) pyramidal cells, within the electrosensory lateral line lobe of weakly electric fish in vivo. We show that these cells' spontaneous firing frequency, measures of spike train regularity (interspike interval coefficient of variation), and the tendency of these cells to produce bursts of action potentials are correlated with the size of the cell's apical dendritic arbor. We also show that bursting behavior may be influenced or controlled by descending inputs from higher centers that provide excitatory and inhibitory inputs to the pyramidal cells' apical dendrites. Pyramidal cells were classified as "bursty" or "nonbursty" according to whether or not spike trains deviated significantly from the expected properties of random (Poisson) spike trains of the same average firing frequency, and, in the case of bursty cells, the maximum within-burst interspike interval characteristic of bursts was determined. Each cell's probability of producing bursts above the level expected for a Poisson spike train was determined and related to spontaneous firing frequency and dendritic morphology. Pyramidal cells with large apical dendritic arbors have lower rates of spontaneous activity and higher probabilities of producing bursts above the expected level, while cells with smaller apical dendrites fire at higher frequencies and are less bursty. The effect of blocking non-N-methyl-D-aspartate (non-NMDA) glutamatergic synaptic inputs to the apical dendrites of these cells, and to local inhibitory interneurons, significantly reduced the spontaneous occurrence of spike bursts and intracellular injection of hyperpolarizing current mimicked this effect. The results suggest that bursty firing of ELL pyramidal cells may be under descending control allowing activity in electrosensory feedback pathways to influence the firing properties of sensory neurons early in the processing hierarchy.  相似文献   

10.
Neurons in posterior parietal cortex (PPC) may serve both proprioceptive and exteroceptive functions during prehension, signaling hand actions and object properties. To assess these roles, we used digital video recordings to analyze responses of 83 hand-manipulation neurons in area 5 as monkeys grasped and lifted objects that differed in shape (round and rectangular), size (large and small spheres), and location (identical rectangular blocks placed lateral and medial to the shoulder). The task contained seven stages -- approach, contact, grasp, lift, hold, lower, relax -- plus a pretrial interval. The four test objects evoked similar spike trains and mean rate profiles that rose significantly above baseline from approach through lift, with peak activity at contact. Although representation by the spike train of specific hand actions was stronger than distinctions between grasped objects, 34% of these neurons showed statistically significant effects of object properties or hand postures on firing rates. Somatosensory input from the hand played an important role as firing rates diverged most prominently on contact as grasp was secured. The small sphere -- grasped with the most flexed hand posture -- evoked the highest firing rates in 43% of the population. Twenty-one percent distinguished spheres that differed in size and weight, and 14% discriminated spheres from rectangular blocks. Location in the workspace modulated response amplitude as objects placed across the midline evoked higher firing rates than positions lateral to the shoulder. We conclude that area 5 neurons, like those in area AIP, integrate object features, hand actions, and grasp postures during prehension.  相似文献   

11.
To begin characterizing the neural elements underlying the dynamic properties of local circuits in the mammalian superior colliculus (SC), electrophysiological and morphological properties of individual neurons in the intermediate layer [stratum griseum intermediale (SGI)] were investigated using whole cell patch-clamp recording and intracellular staining with biocytin in slice preparations from young (17-22 days old) and adult rats (7-8 wk old). Voltage responses to depolarizing current pulses of 223 neurons recorded in young rats were classified into six subclasses: regular-spiking neurons (n = 113), interspike intervals during depolarizing current pulses were constant; late-spiking neurons (n = 48), initiation of repetitive firing was delayed markedly from the onset of depolarizing pulses because of a transient hyperpolarization caused by A-like currents; burst-spiking neurons (n = 29), transient burst firing due to low-threshold Ca(2+) channels were observed at the firing threshold level; fast-spiking neurons (n = 19), constant repetitive firings at frequencies >100 Hz were observed for the duration of the depolarizing pulse; neurons with marked spike frequency adaptation (n = 11), interspike intervals more than doubled due to spike frequency adaptation during depolarizing pulses; and neurons with rapid spike inactivation (n = 3), spike amplitude rapidly reduced, width increased during depolarizing pulses, and spiking was terminated after generating a few spikes. In response to hyperpolarizing current pulses, two different types of inward rectification were observed; time-dependent inward rectification by hyperpolarization-activated current (I(h); n = 29) and time-independent inward rectification (n = 111). Morphological analysis showed that neurons expressing time-dependent inward rectification by I(h) had large somata, extended divergent dendrites dorsally into the superficial layers, and projected axons ventrally and sometimes dorsally, all characteristic features of wide-field vertical cells. Other neurons exhibited heterogeneous morphological properties, such as multipolar, fusiform, horizontal, or pyramidal-shaped cells. In adult rats, a total of 44 neurons showed similar electrophysiological properties except for the last type. These results indicate that the local circuits of the SC include neurons with at least five different firing properties and two different rectification properties; each with distinct electrophysiological and morphological characteristics that may be correlated with the functional output of the SC.  相似文献   

12.
We investigated the electrophysiology of morphologically identified human granule cells with conventional current-clamp recordings. Slices were prepared from 14 human epileptic sclerotic hippocampi. Granule cells appeared to have a diverse electrophysiology. Each cell was distinguished by the shape of the afterhyperpolarization following single action potentials. Two types could be discerned: type I afterhyperpolarizations were monophasic and brief (typically 10–40 ms), whilst type II afterhyperpolarizations were biphasic and long (typically 50–100 ms). The two types also differed in their repetitive firing behaviour and action potential morphology: type I cells had significantly weaker spike frequency adaptation, lower action potential amplitude and smaller action potential upstroke/downstroke ratio. Thus, the firing pattern of type I cells resembled that of rodent dentate interneurons. In contrast, the corresponding parameters of type II cells were comparable to rodent dentate granule cells. Despite the distinct firing patterns, membrane properties were not different. The two types of cells also differed in their synaptic responses to stimulation of the perforant path. At strong suprathreshold stimulation intensity, type I cells always generated multiple action potentials, whereas type II cells usually spiked once only. Slow inhibitory postsynaptic potentials were not detected in type I neurons, but were easily identified in type II neurons. Extracellular recordings of perforant path-evoked field potentials in the cell layer confirmed that the majority of granule cells showed multiple discharges even when we recorded simultaneously from a type II cell that generated one action potential only. The morphology of both types of cells was characteristic of what has been described for primate dentate granule cells.

Based on comparisons with previous studies on rodent and human granule cells, we tentatively hypothesize that: (i) the majority of granule cells from sclerotic hippocampus display an hyperexcitable epileptogenic electrophysiology; (ii) there is a subset of granule cells whose electrophysiology is preserved and is more comparable to granule cells from non-epileptic hippocampus.  相似文献   


13.
J Zhu  F Feng  K Ni  Y Zheng  J Zhang 《Neuroscience letters》2012,525(2):163-167
Motor neurons (MNs) communications are thought to occur primarily through spike bursts and regularly firing action potential trains. Reports of both burst and nonburst firing MNs suggest that these neurons may regularly fire in a variety of controlled output patterns with unique characteristics. Based on the cellular response to somatic current injection in these neurons, four distinct MN subtypes are identified from the spinal ventral horn. Approximately 42% of MNs exhibited regular firing, with minimal current injection (rheobase) exhibited a short latency, and with stronger current intensities exhibited significant spike frequency adaptation (SFA). Another 30% of MNs exhibited delayed onset at rheobase with a weakly-adapting firing pattern as stimulation increased. The remaining 18% and 10% of MNs exhibited transient firing patterns or exhibited irregular firing patterns when strongly depolarized, respectively. Our results provide a basis for improvement in the classification and study of MNs.  相似文献   

14.
Dual whole cell patch-clamp recordings in rat nucleus accumbens, the main component of the ventral striatum, were made to assess the presence of synaptic interconnections between medium-sized spiny neurons, a group of GABAergic and peptidergic neurons that constitute the principal cells of the striatum. Neurons were stained with biocytin for subsequent morphological analysis. Electrical activity of cells was recorded in current- and voltage-clamp mode; the characteristics of medium-sized spiny neurons were confirmed by electrophysiological and morphological properties. Thirteen of 38 medium-sized spiny neuron pairs (34%) showed a synaptic connection. In these pairs, suprathreshold stimulation with current injection evoked a train of action potentials in the presynaptic cell, which in turn elicited depolarizing postsynaptic potentials (dPSPs) in the postsynaptic cell. Twelve of these 13 pairs were connected unilaterally. The onset latency of the postsynaptic response was 1.7 +/- 0.7 ms. dPSPs were blocked by 12.5 microM bicuculline, suggesting they were mediated by GABA(A) receptors. A linear fit of the current-voltage relationship of GABAergic currents crossed the voltage axis near the value of -20 mV, in agreement with the Cl(-) equilibrium potential predicted from the composition of the artificial cerebrospinal fluid and pipette medium. No evidence for electrotonic coupling was found. Paired-pulse facilitation and depression were induced when the amplitude of the first IPSC of a pair was relatively small and large, respectively. No clear dependence of paired-pulse facilitation or depression was found on the width of the spike interval, which ranged between 100 and 380 ms. Conversely, 1- to 2-s trains of dPSPs showed marked frequency facilitation at low presynaptic frequencies, but frequency depression at high firing rates. These data show that intra-accumbens synaptic communication between medium-sized spiny neurons exists, is mediated by GABA(A) receptors, and exhibits spike train-dependent short-term dynamics.  相似文献   

15.
1. We examined whether the three physiologically defined neuron types described for rodent neocortex were also evident in human association cortex studied in an in vitro brain slice preparation. We also examined the relationship between physiological and morphological cell type in human neocortical neurons. In particular, we tested whether burst-firing neurons were numerous in regions of human cortex that are susceptible to seizures. 2. Although we sampled regular-spiking and fast-spiking neurons, we observed no true burst-firing neurons, as defined for rodent cortex. We did find neurons that displayed a voltage-dependent shift in firing behavior. Because this behavior was due, in large part, to a low-threshold calcium conductance, we called these cells low-threshold spike (LTS) neurons. 3. Regular-spiking neurons and LTS neurons only differed in the voltage dependence of firing behavior and the first few interspike intervals (ISIs) of repetitive firing in response to small current injections (from hyperpolarized membrane potentials). Because of the general similarities between the two types, we consider the LTS cells to be a subgroup of regular-spiking cells. 4. All biocytin-filled regular-spiking neurons were spiny and pyramidal and found in layers II-VI. The lone filled fast-spiking cell was aspiny and nonpyramidal (layer V). The LTS neurons were morphologically heterogeneous. We found 80% of LTS neurons to be spiny and pyramidal, but 20% were aspiny nonpyramidal cells. LTS neurons were located in layers II-VI. 5. In conclusion, human association cortex contains two of three physiological cell types described in rodent cortex: regular spiking and fast spiking. These physiological types corresponded to spiny, pyramidal, and aspiny, nonpyramidal cells, respectively. We sampled no intrinsic burst-firing neurons in human association cortex. LTS neurons exhibited voltage-dependent changes in firing behavior and were morphologically heterogeneous: most LTS cells were spiny and pyramidal, but two cells were found to be aspiny and nonpyramidal. It is not clear whether the absence of burst-firing neurons or the morphological heterogeneity of LTS neurons are due to species differences or differences in cortical areas.  相似文献   

16.
1. The electrophysiological properties of the tuberomammillary and lateral mammillary neurons in the guinea pig mammillary body were studied using an in vitro brain slice preparation. 2. Tuberomammillary (n = 79) neurons were recorded mainly ventral to the lateral mammillary body as well as ventromedially to the fornix within the rostral part of the medial mammillary nucleus. Intracellular staining with horseradish peroxidase (n = 9) and Lucifer yellow (n = 3) revealed that these cells have several thick, long, spiny dendrites emerging from large (20-35 microns) fusiform somata. 3. Most tuberomammillary neurons (66%) fired spontaneously at a relatively low frequency (0.5-10 Hz) at the resting membrane potential. The action potentials were broad (2.3 ms) with a prominent Ca(2+)-dependent shoulder on the falling phase. Deep (17.8 mV), long-lasting spike afterhyperpolarizations were largely Ca(2+)-independent. 4. All tuberomammillary neurons recorded displayed pronounced delayed firing when the cells were activated from a potential negative to the resting level. The cells also displayed a delayed return to the baseline at the break of hyperpolarizing pulses applied from a membrane potential level close to firing threshold. Analysis of the voltage- and time dependence of this delayed rectification suggested the presence of a transient outward current similar to the A current (IA). These were not completely blocked by high concentrations of 4-aminopyridine, whereas the delayed onset of firing was always abolished when voltage-dependent Ca2+ conductances were blocked by superfusion with Cd2+. 5. Tuberomammillary neurons also displayed inward rectification in the hyperpolarizing and, primarily, depolarizing range. Block of voltage-gated Na(+)-dependent conductances with tetrodotoxin (TTX) selectively abolished inward rectification in the depolarizing range, indicating the presence of a persistent low-threshold sodium-dependent conductance (gNap). In fact, persistent TTX-sensitive, plateau potentials were always elicited following Ca2+ block with Cd2+ when K+ currents were reduced by superfusion with tetraethylammonium. 6. The gNap in tuberomammillary neurons may subserve the pacemaker current underlying the spontaneous firing of these cells. The large-amplitude spike afterhyperpolarization of these neurons sets the availability of the transient outward rectifier, which, in conjunction with the pacemaker current, establishes the rate at which membrane potential approaches spike threshold. 7. Repetitive firing elicited by direct depolarization enhanced the spike shoulder of tuberomammillary neurons. Spike trains were followed by a Ca(2+)-dependent, apamine-sensitive, slow afterhyperpolarization. 8. Lateral mammillary neurons were morphologically and electrophysiologically different from tuberomammillary neurons. All lateral mammillary neurons neurons recorded (n = 44) were silent at rest (-60 mV).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
In the mammalian olfactory bulb, glomeruli are surrounded by a heterogeneous population of interneurons called juxtaglomerular neurons. As they receive direct input from olfactory receptor neurons and connect with mitral cells, they are involved in the initial stages of olfactory information processing, but little is known about their detailed physiological properties. Using whole cell patch-clamp techniques, we recorded from juxtaglomerular neurons in rat olfactory bulb slices. Based on their response to depolarizing pulses, juxtaglomerular neurons could be divided into two physiological classes: bursting and standard firing. When depolarized, the standard firing neurons exhibited a range of responses: accommodating, nonaccommodating, irregular firing, and delayed to firing patterns of action potentials. Although the firing pattern was not rigorously predictive of a particular neuronal morphology, most short axon cells fired accommodating trains of action potentials, while most delayed to firing cells were external tufted cells. In contrast to the standard firing neurons, bursting neurons produced a calcium-channel-dependent low-threshold spike when depolarized either by current injection or by spontaneous or evoked postsynaptic potentials. Bursting neurons also could oscillate spontaneously. Most bursting cells were either periglomerular cells or external tufted cells. Based on their mode of firing and placement in the bulb circuit, these bursting cells are well situated to drive synchronous oscillations in the olfactory bulb.  相似文献   

18.
In vitro whole cell recording revealed intrinsic firing properties and single-cell morphology in the cochlear nucleus angularis (NA) of the chick. We classified three major classes of neurons: one-spike, damped, and tonic. A delayed inward rectifying current was observed in all classes during hyperpolarization injections. One-spike neurons responded with a single spike to depolarizing current injection and had small (stubby) radiate dendritic trees. Damped neurons responded with only a few spikes at the onset of positive current injection. More positive current inputs led to a damped response. Damped cell dendrites had a planar orientation parallel to the isofrequency axis in NA. Tonic cells produced trains of action potentials in response to a depolarizing current injection. Three variations of the tonic type had multipolar morphology, with dendrites oriented either radially (I and III) or perpendicular to the tonotopic axis (II; vertical). Tonics I and III differed in the shape of their action potential undershoot. Thus NA is both physiologically and morphologically heterogeneous.  相似文献   

19.
Irregularity of firing in spike trains has been associated with coding processes and information transfer or alternatively treated as noise. Previous studies of irregularity have mainly used the coefficient of variation (CV) of the interspike interval distribution. Proper estimation of CV requires a constant underlying firing rate, a condition that most experimental situations do not fulfill either within or across trials. Here we introduce a novel irregularity metric based on the ratio of adjacent intervals in the spike train. The new metric is not affected by firing rate and is very localized in time so that it can be used to examine the time course of irregularity relative to an alignment marker. We characterized properties of the new metric with simulated spike trains of known characteristics and then applied it to data recorded from 108 single neurons in the motor cortex of two monkeys during performance of a precision grip task. Fifty-six cells were antidromically identified as pyramidal tract neurons (PTNs). Sixty-one cells (30 PTNs) exhibited significant temporal modulation of their irregularity during task performance with the contralateral hand. The irregularity modulations generally differed in sign and latency from the modulations of firing rate. High irregularity tended to occur during the task phases requiring the most detailed control of movement, whereas neural firing became more regular during the steady hold phase. Such irregularity modulation could have important consequences for the response of downstream neurons and may provide insight into the nature of the cortical code.  相似文献   

20.
1. The morphology, electrical membrane properties, and corticostriatal excitatory postsynaptic potentials (EPSPs) of two groups of neostriatal projection cells, patch cells, and matrix spiny cells were compared in the rat by the use of an in vitro slice preparation that preserves inputs from medial agranular cortex. Spiny cells were stained intracellularly with biocytin and identified as belonging to the patch (striosomal) compartment or to the matrix by immunohistochemistry for the 28 kD calcium-binding protein calbindin on the same sections. 2. Patch and matrix neurons had very similar axonal and dendritic morphology. Both patch and matrix cells extended their dendrites and local axon collaterals almost exclusively in their respective compartments. Patch cells and most matrix cells had local axon collaterals within or near the parent dendritic domain. However there was a class of matrix cells that extended axon collaterals over a much wider portion of the neostriatum but still restricted to the matrix compartment. 3. Input resistance and membrane time constant were estimated from the membrane response to intracellularly applied current pulses. The average values of matrix cells were and 8.41 ms. The values of patch cells were 31.8 M omega and 8.19 ms and were within the range of those of matrix cells. Both types of cells showed the same kinds of membrane nonlinearities when tested with the use of current pulses. Input resistance and time constant were both strongly affected by a fast anomalous rectification and were thus voltage-dependent, decreasing with membrane polarization. Slow ramplike depolarizing responses were observed in response to depolarizing current steps. 4. Repetitive firing was examined with the use of depolarizing current pulses. In both types of spiny cells, trains of action potentials showed little adaptation of spike frequency and linearly increased with current intensities less than 1 nA. The slopes frequency, calculated from the first and second intervals, were 115.0 and 107.2 Hz/nA, respectively, for matrix cells and 86.0 and 82.8 Hz/nA for patch cells. 5. Stimulation of the medial agranular cortex induced EPSPs in some striatal cells in both compartments. EPSP in matrix cells often showed both short-latency and long-latency components, corresponding to two early components of the response observed in vivo. Some matrix cells, and all patch cells, showed only the longer latency EPSP component. The average latency was 6.3 ms in matrix cells and 9.1 ms in patch cells. The relationship between EPSP amplitude and membrane potential was nonlinear, with EPSP amplitude and duration increasing with decreasing membrane polarization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号