首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An EM-autoradiographic technique was used to identify the ultrastructural features and synaptic sites of nigral afferents to the ventral anterior nucleus pars magnocellularis (VAmc) of the rhesus monkey thalamus. The findings demonstrate that the nigral boutons are of medium-sized to large, with the majority being of the en passant type. These boutons form symmetric synaptic contacts, and contain pleomorphic or entirely flat vesicles and numerous mitochondria. The nigral input is heavily biased towards thalamocortical projection neurons (PN), whose somata and dendrites represent about 82% of the postsynaptic sites of labeled boutons. The distal dendrites of local circuit neurons (LCN) comprise 13% of the postsynaptic sites. Nigral terminals appear to represent a single extrinsic afferent input to the somata and primary dendrites of thalamocortical projection neurons. A nigral input to LCN somata was not demonstrated but the possibility could not be excluded. Although the basic ultrastructural features of nigral boutons in the monkey are similar to those described earlier in the cat (Kultas-Ilinsky et al.: J. Comp. Neurol. 216:390-405, '83), essential species differences exist in the intensity of the nigral input and its distribution on thalamic neurons.  相似文献   

2.
Ultrastructural characteristics and distribution of nigral and pallidal axon terminals on thalamic neurons were studied after injections of tritiated leucine into substantia nigra and entopeduncular nucleus respectively. Adult cats received 0.1–0.2-μl injections of 2, 3, 4, 5, 3H-leucine in a concentration 60 μCi/μl and were allowed to survive for 4–5 days. The brain tissue was processed for electron (EM) and light microscopic (LM) autoradiography. EM samples were obtained from the ventral medial and ventral anterior thalamic nuclei. Ultrastructural features of labelled nigral and pallidal boutons were analyzed both qualitatively and quantitatively. Ultrastructural characteristics of nigral and pallidal boutons appeared similar. Their length along postsynaptic membrane ranged from 0.8 to 10 μm, with average length of apposition around 2 μm. Both types of bouton contained small clear vesicles of extremely variable shape and formed symmetrical type contacts. Mean diameter of synaptic vesicles profiles (n = 500) was 32.5 nm and 33.3 nm in nigral and pallidal terminal respectively, and mean vesicle profile areas were 846 nm2 in nigral terminals and 878m2 in pallidal. Both parameters showed normal distribution in percentage distribution histograms. The mean ratios of longest and shortest diameters was 1.6 for synaptic vesicles in both types of boutons. Thus, no significant differences in morphological parameters of nigral and pallidal axon terminals were discovered except that pallidal afferents often formed “en passant”-type synapses while nigral did not. However, this feature alone is not sufficient for distinction between the two types of termi-nals in unlabelled tissue. Analysis of distribution of synaptic sites showed that only pallidal bou-tons formed axosomatic synapses on thalamocortical projection neurons (TCPN), which comprised 21% of total number of pallidal terminals studied. On primary dendritic trunks of TCPN the proportion of nigral boutons was larger (28.8%) as compared to pallidal (19%). The percentage of both types of bouton contacting secondary TCPN dendrites was similar (36% pallidal, 30.6% nigral), while the proportion of nigral terminals on tertiary TCPN den-drites was larger (23.6% versus 13%). Both afferents revealed a tendency to synapse preferentially at the branching points of TCPN dendrites with sev-eral boutons often found along the perimeter of the branching site. Small but equal proportions (8%) of both types of axon terminal were found to synapse on vesicle-containing dendrites of local circuit neurons. Nigral boutons were also found in complex synaptic arrangements in glomeruli. It is concluded that the organizations of pallidal and nigral afferent in-puts in the thalamus are rather similar. Both occupy strategic positions which would allow them to exert strong influence on the firing pattern of TCPN.  相似文献   

3.
Ultrastructure of the major cerebellar territory of the monkey thalamus, or VL as delineated in sagittal maps by Ilinsky and Kultas-Ilinsky (J. Comp. Neurol. 262:331-364, '87), was analyzed by using neuroanatomical tracing, immunocytochemical, and quantitative morphometric techniques. The VL nucleus contains nerve cells of two types. Multipolar neurons (PN) retrogradely labeled with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from the precentral gyrus display a tufted branching pattern of the proximal dendrites and have a range of soma areas from 200 to 1,000 microns2 (mean 535.2 microns2, SD = 159.5). Small glutamic acid decarboxylase (GAD) immunoreactive cells (LCN) exhibit sizes from 65 to 210 microns2 (mean 122.5 microns2, SD = 32.8) and remain unlabeled after cortical injections. The two cell types can be further distinguished by ultrastructural features. Unlike PN, LCN display little perikaryal cytoplasm, a small irregularly shaped nucleolus, and synaptic vesicles in proximal dendrites. The ratio of PN to LCN is 3:1. The LCN dendrites establish synaptic contacts on PN somata and all levels of dendritic arbor either singly or as a part of complex synaptic arrangements. They are also presynaptic to other LCN dendrites. Terminals known as LR type, i.e., large boutons containing round vesicles, are the most conspicuous in the neuropil. They form asymmetric contacts on somata and proximal dendrites of PN as well as on distal dendrites of LCN. The areas of these boutons range from 0.7 to 12 microns2 and the appositional length on PN dendrites ranges from 1.1 to 14 microns. All LR boutons except the largest ones become anterogradely labeled from large WGA-HRP injections in the deep cerebellar nuclei. These boutons are also encountered as part of triads and glomeruli, but very infrequently since the latter complex synaptic arrangements are rare. The most numerous axon terminals in the neuropil are the SR type, i.e., small terminals (mean area 0.42 micron2) containing round vesicles. The SR boutons become anterogradely labeled after WGA-HRP injections in the precentral gyrus. They form distinct asymmetric contacts predominantly on distal PN and LCN dendrites; however, their domain partially overlaps that of LR boutons at intermediate levels of PN dendrites. The SR boutons are components of serial synapses with LCN dendrites which, in turn, contact somata and all levels of dendritic arbors of PN. They also participate in complex arrangements that consist of sequences of LCN dendrites, serial synapses, and occasional boutons with symmetric contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The ultrastructure of the lateroventral subcomponent of the visual dorsolateral anterior thalamic nucleus of the pigeon (DLLv) was analyzed using hodological techniques and GABA-immunocytochemistry. Two types of GABA-immunonegative hyperpalliopetal neurons and a single type of strongly GABA-immunoreactive (-ir) interneuron were identified, the latter displaying long dendrites with some containing synaptic vesicles (DCSV). Ten types of axon terminal were identified and divided into two categories. The first, GABA-immunonegative and making asymmetrical synaptic contact, contain round (RT1, RT2, RT3) or pleiomorphic synaptic and many dense-core vesicles (DCT). RT1 terminals are retinothalamic and RT2 terminals hyperpalliothalamic; both mainly contact dendrites of projection neurons (72% and 78% respectively), less frequently dendrites of interneurons and sometimes DCSV; RT1 terminals are rarely involved in synaptic triads. The second category are consistently GABA-immunopositive. Four types (PT1-4), distinguished by their pleiomorphic synaptic vesicles, make symmetrical synaptic contact essentially with dendrites of projection neurons, more rarely on dendrites of interneurons (PT2). PT1 terminals are very probably those of interneurons, whereas the rare PT4 terminals are of retinal origin. A fifth type (RgT) contains round synaptic vesicles and makes asymmetrical synaptic contact with dendrites of projection neurons and interneurons. PT2 and RgT terminals occasionally contact DCSV of interneurons, which are sometimes involved in synaptic triads. Two final subcategories (DCgT1-2) contain many dense-core vesicles. Our findings are compared with those of previous studies concerning the fine structure and neurochemical properties of the GLd of reptiles and mammals, with special reference to the origin of the extraretinal and extracortical projections to this structure.  相似文献   

5.
The ultrastructural organization of association nuclei in the primate thalamus is largely unexplored. In the present study we have combined electron microscopy with immunocytochemistry for the acetylcholine synthesizing enzyme choline acetyltransferase (ChAT) to assess the cholinergic synaptic organization of the mediodorsal (MD) nucleus in macaque monkeys. The cholinergic innervation of the MD nucleus showed striking regional variations with the greatest density of immunoreactive axons and varicosities found within the parvicellular division. Electron microscopic examination revealed that these ChAT immunoreactive (ChAT-IR) axons were primarily small and unmyelinated. The majority of immunoreactive synaptic profiles were found within the extraglomerular neuropil (80.5%), with the remainder present in glomerular regions. Within the glomerular and extra-glomerular neuropil ChAT-IR profiles made contact with both conventional, presumably relay cell dendrites (CD), as well as with synaptic vesicle containing dendrites (SVCD) of local circuit neurons. In the glomeruli the frequency of synapses was approximately equal for CDs and SVCDs while in the extraglomerular areas 75% of the synaptic contacts were with CDs. ChAT-IR synaptic profiles had a diversity of junctional complex morphologies. Within glomeruli they made symmetric synapses with CDs and predominantly asymmetric with SVCDs. The majority of extraglomerular contacts (60%) were classified as asymmetric and these as well as the smaller number of symmetric synapses contacted both CDs and SVCDs. In accord with results of physiological studies, these anatomical data indicate that cholinergic input to thalamic nuclei influences relay cell activity both directly and indirectly via local circuit neurons. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Wheat germ agglutinin conjugated horseradish peroxidese (WGA-HRP) and biotinylated dextran amine (BDA) were used as tracers to study nucleus reticularis (NRT) connections with the mediodorsal nucleus (MD). Injections of WGA-HRP in the MO resulted in retrograde labeling of cells in the anteromedial segment of the NRT, the so-called rostral NRT pole. Injections of WGA-HRP and BDA in this NRT region resulted in dense anterograde labeling in the MD. Labeled NRT fibers gave off several collaterals to different MD regions ending with terminal plexuses of thin varicose fibers. In the neuropil, the varicosities were distributed at random, and no tendency to form pericellular baskets was noted. Postembedding immunocytochemistry for GABA was performed on the tissue containing anterograde WGA-HRP label for identification of NRT boutons under electron microscope. The double-labeled boutons were of small to medium size, contained a large number of pleomorphic vesicles, few mitochondria, and formed multiple symmetric synaptic contacts. The number of contacts established by one bouton ranged from 1 to 4 with an average of 1.8 per bouton. About 60% of these boutons made synapses on distal dendrites of GABAergic local circuit neurons; 33% of synaptic contacts were on distal dendrites of thalamocortical neurons, and the rest on their proximal dendrites and soma. NRT boutons were also found in serial synapses and triads. The results demonstrate that the NRT input to the MD is organized so that a single fiber innervates different MD regions and its terminals form numerous synaptic contacts mostly on the distal dendrites of a large number of local circuit neurons and projection neurons.  相似文献   

7.
The organization of the accessory optic system (AOS) has been studied in the macaque monkey following intravitreal injections of tritiated amino acids in one eye. Retinal projections to the dorsal (DTN) and the lateral (LTN) terminal nuclei are identical to those previously described in other primate species. We observed an additional group of retinorecipient cells of the AOS, located between the cerebral peduncle and the substantia nigra, which we define as the interstitial nucleus of the superior fasiculus, medial fibers. In this report, we focus our attention on the medial terminal nucleus (MTN). Although a ventral division of this nucleus (MTNv) was not observed in the macaque, the retina projects to a group of cells in the midbrain reticular formation (MRF), which we argue to be homologous to the dorsal division of the MTN (MTNd). To provide evidence in support of this homology, the retinal projection to the MTNv and MTNd was also examined in 21 additional species from 11 orders of mammals including carnivores, marsupials, lagomorphs, rodents, bats, insectivores, tree shrews, hyraxes, pholidotes, edentates, and five additional species of primates. Whereas the retina projects to both ventral and dorsal divisions in all species studied, in haplorhine primates only the projection to the MTNd is conserved. The relative topological position of the MTNd in the MRF, dorsomedial to the substantia nigra and ventrolateral to the red nucleus, remains constant throughout the mammals. The trajectory of fiber paths innervating the MTNd is also similar in all species. In addition, the MTNd has comparable afferent and efferent connections with retina, pretectum, and vestibular nuclei in all species thus far studied. These results support the unequivocal conclusion that the MTNd is an unvarying feature of the mammalian AOS.  相似文献   

8.
The distribution and dendritic domain of neurons in each segment of the mediodorsal thalamic nucleus (MD) have been studied in the rat with the Golgi technique. In addition, a combined Golgi method-electron microscopic (Golgi-EM) study was undertaken to determine the distribution of morphologically distinct synapse types along the dendrites of individual identified neurons in MD. All the subdivisions or "segments" of MD (medial, central, lateral) contained both stellate and fusiform cells. The dendritic domain of both types of cells was predominantly restricted to the same segment of MD that contained the cell body of the neuron. Typical stellate neurons were found near the center of each segment, with radiating dendrites that extended to but not across the boundaries of the segment. Fusiform cells were usually located close to the segmental or nuclear boundaries and tended to have dendrites oriented parallel to those borders; again, the dendrites tended not to extend across borders between segments or at the outer edge of MD. In the medial segment of MD many fusiform cells had especially bipolar dendritic configurations, generally with a dorsoventral orientation. Because no small neurons were identified that might correspond to thalamic interneurons, all the impregnated cells in MD are presumed to be thalamocortical projection neurons. These results indicate that cells and their major dendrites are confined to a single segment of MD, with little dendritic overlap across segmental or nuclear borders. The segments of MD may therefore be considered to be relatively independent subnuclei. The distribution of the four types of synapses previously identified in MD (Kuroda and Price, J. Comp. Neurol., 303:513-533, 1991) was determined along several identified dendrites studied with the Golgi-EM method. Primary dendrites were contacted mostly by large axon terminals, including both large, round vesicle (LR) terminals and large, pleomorphic vesicle (LP) terminals, as well as a few small to medium sized terminals with pleomorphic vesicles (SMP). No small terminals with round vesicles (SR terminals) were observed to make synapses with primary dendrites. Secondary and tertiary dendrites received synapses from all types of axon terminals. Higher order dendrites were contracted predominantly by SR boutons, but they also carried some LR and SMP terminals. In addition, SMP boutons were often found to form symmetric contacts with cell somata.  相似文献   

9.
The sonic motor nucleus of the plainfin midshipman, Porichthys notatus, is a midline nucleus located at the junction of the caudal medulla and rostral spinal cord. Its motoneurons innervate sonic "drumming" muscles that are attached to the lateral walls of the swimbladder. There are two classes of sexually mature males referred to as Type I and Type II. The Type I males are larger and generate sounds during the breeding season. The Type II males are smaller and, like adult females, have not yet been shown to generate sounds. This study examined possible sex differences in the size of sonic motoneurons, and the type and distribution of their afferent terminal boutons. The average soma diameter of motoneurons of Type I males is about 50% larger than that of Type II males and females. There is also a small but significant difference in soma diameter between Type II males and females; they are smaller in the former class. There were no sex differences in the presence or distribution of different classes of axosomatic and axodendritic terminal boutons, which included: (1) active zones with either clear, round, or pleomorphic vesicles, (2) active zones with both clear, round vesicles, and larger dense core vesicles, (3) "mixed synapses" with gap junctions and active zones usually associated with pleomorphic vesicles. The results are discussed within the context of sexual differentiation of vertebrate motor systems and the functional organization of the sonic motor system in fishes. Sex differences in soma diameter correlate with a number of sex differences in the gross and ultrastructural features that distinguish the sonic muscles of Type I males from those of Type II males and females, which are similar to each other. The absence of qualitative sex differences in synaptic morphology suggest that the central neuronal circuitry of the sonic motor system is similar among all three adult morphs.  相似文献   

10.
Structural and morphological changes were examined in the inferior olivary complex of 25 rhesus monkeys that were 60 days gestation to three months after parturition. At different ages, one-half brain stem was sectioned sagittaly, and when possible the symmetrical half was sectioned in either the coronal or the horizontal plane. Serial sections were stained by the silver reduction method of Stotler ('51). The olivary complex undergoes its major development between 60 and 129 days gestation when its length, cellular morphology, and afferent patterns resemble those of the adult organ. Structurally, the three major divisions—the principal nucleus, the dorsal accessory nucleus, and the medial accessory nucleus—can be identified at 60 days gestation. At that time, the medial accessory nucleus, the largest of the three, can be subdivided into a ventrolateral and a dorsomedial section; as it develops, it extends caudally and acquires a small cap of cells on its dorsomedial part. By 80 days, the dorsal lamella of the principal nucleus, initially smaller than the ventral, equals the ventral lamella in size and continues to enlarge until by 100 days it has developed two large sulci. The dorsal accessory nucleus, the smallest of the three divisions, initially has a distinct connection with the caudal part of the dorsal lamella of the principal nucleus but it is lost by 92 days. Major afferents to the inferior olive could easily be identified in the early fetal tissue—before the development of the dense neuropil. Afferents first arise from the lateral funiculus of the spinal cord at 60 days and project primarily onto the ventrolateral part of the medial accessory. As they develop, they gradually project more rostrally along the ventrolateral section, onto the dorsomedial section of the medial accessory, onto the caudal part of the ventral lamella, and along the caudomedial part of the dorsal accessory. At 92 days gestation the central tegmental fasciculus, most of which originates from the red nucleus projects into the rostral and later into the middle section of the dorsal lamella, into the rostral ventral lamella, and a few into the rostrolateral part of the dorsal accessory and to the rostral third of the medial accessory. A few fibers arising from the corticospinal tract enter the caudal section of medial accessory, and a few fibers project vertically from the dorsomedial tegmental region of the medulla into the medial section of the dorsal accessory.  相似文献   

11.
Experiments have been performed on adult albino rats in order to study the cellular organization of the thalamic reticular nucleus. For this purpose four approaches have been used: Nissl stain, Golgi impregnation, retrograde transport of horseradish peroxidase after injection in different thalamic nuclei, and immunocytochemistry with antibodies against GABA and glutamic acid decarboxylase. In sections through the horizontal plane, three morphologically different neurons have been observed. Cells with round perikarya and with multipolar dendrites were found predominantly in the rostral pole of the nucleus. Neurons with large fusiform cell body and with dendrites arborizing mainly on the horizontal plane were detected through the whole extent of the nucleus. Small fusiform neurons were observed almost exclusively in the medial third of the dorso-ventral extent of the nucleus. The Golgi impregnation method demonstrated that dendrites of small fusiform neurons develop in the vertical plane perpendicular to the dendritic arborization of large fusiform neurons. In coronal sections neurons with round perikarya and with large fusiform cell bodies are detectable while small fusiform neurons are only rarely visible. These data have been confirmed by statistical form factor analysis. Moreover, by means of the horseradish peroxidase and the immunocytochemical study, it has been confirmed that all three groups of neurons project within the thalamus and that they are GABAergic. The data concerning the distribution within the nucleus of the three morphologically different neurons are discussed in relation to the topographic distribution of cortical sensory afferents and to the topographic maps within different sectors of the reticular nucleus.  相似文献   

12.
The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach. In addition, we investigated the left MD in four cynomolgus monkeys chronically exposed to haloperidol and in four control monkeys in order to assess the possible effects of antipsychotic medications. The three human subject groups did not differ in any of the measures. In addition, no differences were observed between the two groups of monkeys. Thus, these findings do not support the hypothesis that the MD is a locus of pathology in schizophrenia, although they cannot rule out important functional or structural changes in parameters not measured. Like other studies, this investigation is subject to the limitations involved in sampling from a heterogeneous population emphasizing the need to continue to improve the application of robust, unbiased techniques to quantitative studies of this complex brain disorder.  相似文献   

13.
The mode of termination of individual pallidothalamic fibers in the densicellular subdivision of the ventral anterior thalamic nucleus (VAdc) of Macaca mulatta was analyzed with light and electron microscopy after injections of anterograde tracers in the medial globus pallidus. Three tracers were utilized: tritiated leucine, biotinylated dextran amine, and wheat germ agglutinin conjugated to horseradish peroxidase in combination with postembedding immunocytochemsitry for gamma-aminobutyric acid (GABA). Pallidothalamic fibers, upon entering the VAdc, gave off several collaterals that formed plexuses of varicose terminal branches within different cell clusters. The varicosities were aligned along somata and proximal dendrites of projection neurons providing dense input to each individual cell. At the electron microscopic level, labeled boutons displayed a predominantly flat and elongated shape. They contained a moderate number of pleomorphic synaptic vesicles and very large amounts of mitochondria, displayed symmetric synaptic contacts, and were immunoreactive for GABA. In the total sample of 128 autoradiographically labeled terminals, 64% were in synaptic contact with somata and primary dendrites of projection neurons, 14% formed synapses on proximal dendrites of undefined order, and only 7% established synaptic contacts on distal dendrites. Fifteen percent of the labeled boutons established synapses on distal dendrites of GABAergic local circuit neurons (LCN). Pallidal boutons were also found in complex synaptic arrangements: triads with three GABAergic synapses, and serial synapses with LCN dendrites that in turn established synaptic contacts on projection neuron somata or dendrites. These anatomical results suggest a dual effect of pallidal afferents to projection neurons: direct inhibition and disinhibition mediated by LCN. The findings indicate that the fine structure of pallidothalamic terminals in the monkey is similar to that described earlier in the cat. There are, however, interspecies differences in the distribution of pallidal input on postsynaptic targets and its participation in complex synaptic arrangements. J. Comp. Neurol. 386:601–612, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
As part of an ultrastructural analysis of the normal rat fascia dentata and intracerebral and intraocular dentate transplants the synapses in the dentate molecular layer were quantified. Hippocampal and dentate tissue from 21-day-old rat embryos were grafted into the brain of developing and adult rats and to the anterior eye chamber of adult rats. After 100 or 200 days of survival the recipient rat brains and the recipient eyes were processed for electron microscopy, and the graft dentate molecular layer with the adjacent granule cell layer selected for ultrastructural analysis. Tissue from the dentate molecular layer of normal adult rats served as controls. The dentate synapses were classified as asymmetric (Gray's type 1) or symmetric (Gray's type 2), and according to the postsynaptic element (cell body, dendritic shaft, dendritic spine). The spine synapses were further classified into simple and complex types according to the spine-terminal configuration. Also, the length of synaptic contacts of the individual synaptic types was measured in some grafts, just as the percentage of the cross sectional area of the neuropil covered by blood vessels. The results showed that the synaptic density, expressed as number per unit area of neuropil, to a large extent was the same within the different parts of the normal dentate molecular layer. Compared with this the synaptic density was reduced with 16.4% in dentate molecular layer of the intracerebral graft, primarily because of a 17.6% reduction of simple synapses on dendritic spines and almost halving of the symmetric synapses on dendritic shafts. The synaptic density was independent of the age of the recipient, the intracerebral location of the graft, and the survival time. Although the synaptic length of some of the individual synaptic types increased, this did not compensate for the loss of synapses. In the intraocular grafts the synaptic density was lower than in the intracerebral grafts. Despite the reduced synaptic density, which mainly involved two synaptic types, we conclude that grafted dentate granule cells can develop a remarkably normal, ultrastructural synaptic organization even in the absence of major afferent inputs. This outcome must accordingly be achieved by reorganization of the available intrinsic afferents.  相似文献   

15.
To address the question of segregated projections from the internal segment of the globus pallidus (GPi) and the cerebellar nuclei (Cb) to the thalamus in the monkey, we employed a double anterograde labeling strategy combining the anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) with biotinylated dextran amine (BDA) transport. The tissue was processed sequentially for WGA-HRP, and then BDA immunohistochemistry using two different chromogens. Since the two labels were easily distinguishable on the same histological section, the interrelationship between the cerebellar and pallidal projection systems could be directly evaluated. We found that both the cerebellothalamic and pallidothalamic label consisted of dense plexuses of labeled fibers and swellings in a patch-like configuration. The patches or foci of labeling were distributed either as dense single label or as interdigitating patches of double label. We found dense single label in the central portion of the ventral anterior nucleus pars principalis (VApc) and the ventral lateral nucleus pars oralis (VLo) following the GPi injections or in the central portion of the ventral posterior lateral nucleus pars oralis (VPLo) and nucleus X (X) following the cerebellar nuclei injections. Complementary interdigitating patches of WGA-HRP and BDA labeling were found primarily in transitional border regions between thalamic nuclei. On occasion, we found overlap of both labels. We observed a gradient pattern in the density of the pallidothalamic and cerebellothalamic projections. The pallidothalamic territory included VApc, VLo, and the ventral lateral nucleus pars caudalis (VLc), with the density of these projections decreasing along an anterior to posterior gradient in the thalamus. Occasional patches of pallidal label were found in VPLo and nucleus X. Conversely, the density of cerebellothalamic projections increased along the same gradient, with the cerebellothalamic territory extending anteriorly beyond the cell-sparse zones of VPLo, X, and VLc to include VLo and VApc also. These data suggest that although the cerebellar and pallidal projections primarily occupy separate thalamic territories, individual thalamic nuclei receive differentially weighted inputs from these sources. © 1996 Wiley-Liss, Inc.  相似文献   

16.
The mammalian pulvinar nucleus (PUL) establishes heavy interconnections with the parietal lobe, but the precise nature of these connections is only partially understood. To examine the distribution of corticopulvinar cells in the cat, we injected the PUL with retrograde tracers. Corticopulvinar cells were located in layers V and VI of a wide variety of cortical areas, with a major concentration of cells in area 7. To examine the morphology and distribution of corticopulvinar terminals, we injected cortical areas 5 or 7 with anterograde tracers. The majority of corticopulvinar axons were thin fibers (type I) with numerous diffuse small boutons. Thicker (type II) axons with fewer, larger boutons were also present. Boutons of type II axons formed clusters within restricted regions of the PUL. We examined corticopulvinar terminals labeled from area 7 at the ultrastructural level in tissue stained for gamma-aminobutyric acid (GABA). By correlating the size of the presynaptic and postsynaptic profiles, we were able to quantitatively divide the labeled terminals into two categories: small and large (RS and RL, respectively). The RS terminals predominantly innervated small-caliber non-GABAergic (thalamocortical cell) dendrites, whereas the RL terminals established complex synaptic arrangements with dendrites of both GABAergic interneurons and non-GABAergic cells. Interpretation of these results using Sherman and Guillery's recent theories of thalamic organization (Sherman and Guillery [1998] Proc Natl Acad Sci U S A 95:7121-7126) suggests that area 7 may both drive and modulate PUL activity.  相似文献   

17.
The thalamic projection to the ventral striatum was examined in the rat by immunohistochemistry after iontophoretic injections ofPhaseolus vulgaris-leucoagglutinin (PHA-L) into the parataenial thalamic nucleus. A continuous dense terminal field was observed in the nucleus accumbens and the striatal cell bridges, as well as in the adjoining striatal parts of the olfactory tubercle. These observations provide further evidence of the relevance of the ventral striatal concept.  相似文献   

18.
The detailed morphology of thalamocortical (TC) and corticothalamic (CT) pathways connecting the ventral posterolateral nucleus (VPLc) with the primary somatosensory cortex (areas 3b and 1) and the thalamic pulvinar with the posterior parietal cortex (primarily area 7a), was compared. Each pathway processes information relevant to directed reaching tasks, but whereas VPLc receives its major input from the spinal cord and external environment, the primary afferent to the pulvinar is cortical. Using combined tracer and thick fixed slice procedures, the soma/dendritic morphology of TC neuron populations (with known destination) was shown to be quantitatively similar within VPLc and the pulvinar. This implies that differences in information processing in VPLc (a primary relay) and the pulvinar (an integrative thalamic nucleus) are not defined by a distinctive TC morphology, but rather by the connections of these neuron populations. Two morphologically distinct types of CT axon were observed within the medial pulvinar and VPLc. The more common "Type E" were fine, had boutons en passant and diffuse terminal bifurcations ending in masses of tiny boutons. "Type R" axons were thicker, smooth, and terminated in localised clusters of large terminal boutons. Each type had a unique pattern of termination reflecting a distinct action on target neuron populations. The spatial relationship between TC distribution territories and CT terminal fields was examined within the medial pulvinar and VPLc by using anterograde and retrograde tracers injected together within cortical areas 7a, and 3b/1, respectively. Spatial overlap was incomplete within both thalamic nuclei. Our findings show a more complex relationship between TC and CT neuron populations than previously demonstrated.  相似文献   

19.
Fluoro-ruby injections in the rat locus coeruleus result in scattered chain-like arrays of varicose anterogradely labeled axons within the thalamic reticular nucleus of rats. An abundant meshwork of axons giving rise to en passant boutons is detected immunohistochemically within this thalamic nucleus by means of an antibody to dopamine-beta-hydroxylase (DBH). The density of DBH-positive axonal boutons within the reticular nucleus neuropil is greater than that found in the relay nuclei of the dorsal thalamus (with the exception of the anterior group nuclei). Single DBH-positive axons appear to contact both proximal and distal dendrites and occasionally the somata of reticular nucleus neurons. Labeled axons are seen closely juxtaposed not only to the swollen segments of the beaded reticular neuron dendrites, but to the constricted segments as well. Electron microscopic examination of DBH-positive axon terminals within the reticular nucleus neuropil indicates that many of the axonal boutons detected light microscopically participate in asymmetric synaptic contacts. The postsynaptic densities of these synapses are thicker than those of nearby symmetric synapses, but often subtend a shorter length of the postsynaptic membrane than the densities associated with other nearby asymmetric synapses. These observations indicate that the ascending noradrenergic system, in addition to influencing the dorsal thalamus and the cerebral cortex directly, is well situated to influence signal transmission through the nuclei of the dorsal thalamus indirectly via a moderately dense terminal projection upon the thalamic reticular nucleus.  相似文献   

20.
Kisspeptin neurones in the arcuate nucleus play a pivotal role in the regulation of hypothalamic gonadotrophin‐releasing hormone (GnRH) secretion in higher primates. To examine whether kisspeptin also influences the function of the primate pituitary directly, two experiments were performed in adult male rhesus monkeys. First, the distribution of kisspeptin‐containing cells in the pituitary was described using fluorescence immunohistochemistry. Second, the secretion of non‐gonadotrophin adenohypophysial hormones [growth hormone (GH), prolactin and thyroid‐stimulating hormone (TSH)] and cortisol in response to i.v. kisspeptin administration was examined. Eight animals were deeply anaesthetised and transcardially perfused with 4% paraformaldehyde. Fluorescence immunohistochemistry was performed on 25‐μm thick free‐floating pituitary sections to localise immunopositive kisspeptin cells and to examine their relationship with immunostaining for luteinising hormone (LH), follicle‐stimulating hormone, GH, prolactin, α‐melanocyte‐stimulating hormone (MSH), adrenocorticotrophic hormone (ACTH) and GnRH. Kisspeptin cells were found in the intermediate lobe of all animals and, in four monkeys, this neuropeptide was also observed in cells scattered in the periphery of the anterior lobe. Kisspeptin colocalised with α‐MSH‐immunopositive cells in the intermediate lobe and, in 50% of the monkeys, with ACTH‐immuunopositive cells in the periphery of the adenohypophysis. There was no evidence for colocalisation of kisspeptin with gonadotrophs, somatotrophs or lactotrophs. Beaded kisspeptin axons were observed in the neural lobe. In addition, assay of plasma samples that had been collected for a previous study documenting kisspeptin‐10‐induced LH release in male monkeys revealed that kisspeptin administration failed to influence circulating concentrations of GH, prolactin, TSH and cortisol. Release of all four of these non‐gonadotrophic hormones, however, was stimulated markedly by NMDA, which is considered to act centrally. Although the morphological findings obtained in the present study are consistent with the notion that kisspeptin may act directly at the level of the pituitary, the nature of such an action remains to be defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号