首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dean HJ  Leyh R 《Vaccine》1999,17(9-10):1117-1124
A new genotype of bovine viral diarrhea virus (BVDV), designated BVDV type 2 (BVDV 2), has become prevalent in the field. BVDV 2 strains are antigenically distinct from currently available vaccine strains of the BVDV 1 genotype, raising concerns about cross-protection of these vaccines against BVDV 2 challenge. To determine cross-protective efficacy of a modified-live virus (MLV) vaccine containing BVDV 1 strain WRL (BVDV 1(WRL)), two studies were conducted in which the relative magnitude and duration of BVDV 1- and BVDV 2-specific serologic responses and protection against BVDV 2 challenge were determined. For the first study, 27 heifers were vaccinated (13 i.m. and 14 s.c.), while 13 heifers received negative control vaccine. Serum from the vaccinated heifers neutralized both BVDV 1 and BVDV 2 strains. The evolution and duration of BVDV 1 and BVDV 2 serologic responses were comparable, and antibody titers to BVDV 2 persisted through at least 105 days post-single vaccination. In a second, separate study, 17 calves were vaccinated (9 i.m. and 8 s.c.), and 11 calves were held as unvaccinated controls. Approximately seven months following vaccination, the calves were challenged intranasally with the 890 isolate of BVDV 2. Clinical signs of disease and fever were significantly reduced in vaccinates in comparison with controls. Vaccination eliminated nasal virus shedding in 87% of cattle and completely prevented viremia and leukopenia. These data indicate utility of BVDV 1(WRL) MLV vaccine in stimulation of long-term BVDV 2-specific serologic responses, protection against BVDV 2 challenge and reduction or elimination of virus shedding which can contribute to spread of BVDV 2 in herds.  相似文献   

2.
Alvarez M  Bielsa JM  Santos L  Makoschey B 《Vaccine》2007,25(36):6613-6617
The target animals and vaccination regimes for vaccines against the bovine rhinotracheitis (IBR) and the bovine viral diarrhoea virus (BVDV) are very similar. Therefore, we have compared different schedules for the combined use of a live IBR marker vaccine and an inactivated BVD vaccine. The neutralizing antibody response against BVDV did not reveal any differences between the group vaccinated only with the BVD vaccine and the groups that were vaccinated simultaneously (together in the same syringe) or concurrently (two separate injections) with the IBR marker vaccine at the first or second dose and the third dose of the BVD vaccine. Likewise, the bovine herpesvirus 1 (BHV-1) neutralizing antibody titres did not exhibit any negative effect by the simultaneous or concurrent use of the two products as compared to the single IBR marker vaccination. These results indicate that the two vaccines can be applied at the same day for the first or second dose of the BVD basic vaccination and then at the booster vaccinations (third dose onwards).  相似文献   

3.
Fifteen pregnant ewes were vaccinated twice with an experimental immunostimulating complex (ISCOM) subunit vaccine designed to contain the envelope proteins of a Danish cytopathic bovine virus diarrhoea virus (BVDV). The serological responses were measured in ELISA and virus neutralization (VN) tests. All ISCOM-vaccinated ewes developed high VN antibody titres to BVDV in contrast to the 14 non-vaccinated ewes. Both groups of ewes were challenged parenterally when 48-65 days pregnant with a Swedish cytopathic BVDV isolate. In the vaccinated group 26 fetuses out of 29 detected by ultrasound were liveborn, whereas only six out of 26 were liveborn in the non-vaccinated group. It is concluded that the ISCOM vaccine had the potential of eliciting high VN titres as well as protecting fetuses against transplacental infection after challenge with a virulent BVDV isolate.  相似文献   

4.
Xue W  Mattick D  Smith L  Umbaugh J  Trigo E 《Vaccine》2010,29(1):70-4662
Vaccination plays a significant role in the control of bovine viral diarrhea virus (BVDV) infection and spread. Recent studies revealed that type 1b is the predominant BVDV type 1 subgenotype, representing more than 75% of field isolates of BVDV-1. However, nearly all current, commercially available BVDV type 1 vaccines contain BVDV-1a strains. Previous studies have indicated that anti-BVDV sera, induced by BVDV-1a viruses, show less neutralization activity to BVDV-1b isolates than type 1a. Therefore, it is critically important to evaluate BVDV-1a vaccines in their ability to prevent BVDV-1b infection in calves. In current studies, calves were vaccinated subcutaneously, intradermally or intranasally with a single dose of a multivalent, modified-live viral vaccine containing a BVDV-1a strain, and were challenged with differing BVDV-1b strains to determine the efficacy and duration of immunity of the vaccine against these heterologous virus strains. Vaccinated calves, in all administration routes, were protected from respiratory disease caused by the BVDV-1b viruses, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding and greater white blood cell counts than non-vaccinated control animals. The BVDV-1a vaccine elicited efficacious protection in calves against each BVDV-1b challenge strain, with a duration of immunity of at least 6 months.  相似文献   

5.
The preparation and preliminary testing of a subunit ISCOM (immunostimulating complex) vaccine against bovine virus diarrhoea virus (BVDV) is described. Vaccination of calves with this vaccine yields high neutralising titres against a panel of Danish BVDV field isolates. The serological difference between virus isolates and vaccine strain selection is discussed.  相似文献   

6.
Xue W  Mattick D  Smith L 《Vaccine》2011,29(29-30):4657-4662
Recent studies showed that BVDV-1b subgenotype is dominant in North and South American field BVDV isolates. However, nearly all commercially available BVDV-1 vaccines contain BVDV-1a strains. In order to study the efficacy of BVDV-1a vaccine against BVDV-1b infection, this study was designed to evaluate a modified-live vaccine (MLV) containing BVDV-1a and BVDV-2 strains for its efficacy in prevention of persistent infection of fetuses against BVDV-1b strain, when the heifers were vaccinated prior to breeding. Heifers were vaccinated subcutaneously with a single dose of the MLV and bred four weeks after vaccination. The pregnant heifers were challenged with a non-cytopathic BVDV-1b strain at approximately 80 days of gestation. Vaccinated heifers were protected from clinical disease and viremia caused by the BVDV-1b virus. At approximately 155 days of gestation, the fetuses were harvested and tissue samples of thymus, lungs, spleen, kidney and intestines were collected for virus isolation. BVDV was isolated from 100% of the fetuses in the non-vaccinated control group, and from only one fetus (4.3%) from the vaccinated group. Results demonstrated that the MLV containing BVDV-1a and BVDV-2 strains provided 96% protection from fetal persistent infection caused by the BVDV-1b strain.  相似文献   

7.
Bruschke CJ  van Oirschot JT  van Rijn PA 《Vaccine》1999,17(15-16):1983-1991
The primary aim of a bovine virus diarrhea virus (BVDV) vaccine is to prevent transplacental transmission of virus. We studied the efficacy of two experimental conventionally inactivated vaccines, based on BVDV strain Singer and containing a different antigen amount, against three antigenically different BVDV strains in a vaccination-challenge experiment in sheep. We also studied the efficacy of an experimental multivalent E2 subunit vaccine against four antigenically different BVDV strains. The vaccine contained the glycoproteins E2 of BVDV strains that belong to antigenic groups IA, IB and II. All three vaccines induced neutralizing antibodies against all challenge strains. Only the conventional vaccine that contained the highest antigen amount induced complete protection against homologous challenge. Neither of the conventional vaccines provided complete protection against heterologous challenge. The multivalent subunit vaccine induced partial protection against the homologous challenge strains. However, the immune response did inhibit virus replication in ewes, as shown by the results of the virus titrations.  相似文献   

8.
《Vaccine》2015,33(32):4004-4012
DNA vaccination is effective in inducing potent immunity in mice; however it appears to be less so in large animals. Increasing the dose of DNA plasmid to activate innate immunity has been shown to improve DNA vaccine adaptive immunity. Retinoic acid-inducible gene I (RIG-I) is a critical cytoplasmic double-stranded RNA pattern receptor required for innate immune activation in response to viral infection. RIG-I recognise viral RNA and trigger antiviral response, resulting in type I interferon (IFN) and inflammatory cytokine production. In an attempt to enhance the antibody response induced by BVDV DNA in cattle, we expressed BVDV truncated E2 (E2t) and NS3 codon optimised antigens from antibiotic free-plasmid vectors expressing a RIG-I agonist and designated either NTC E2t(co) and NTC NS3(co). To evaluate vaccine efficacy, groups of five BVDV-free calves were intramuscularly injected three times with NTC E2t(co) and NTC NS3(co) vaccine plasmids individually or in combination. Animals vaccinated with our (previously published) conventional DNA vaccines pSecTag/E2 and pTriExNS3 and plasmids expressing RIG-I agonist only presented both the positive and mock-vaccine groups. Our results showed that vaccines coexpressing E2t with a RIG-I agonist induced significantly higher E2 antigen specific antibody response (p < 0.05). Additionally, E2t augmented the immune response to NS3 when the two vaccines were delivered in combination. Despite the lack of complete protection, on challenge day 4/5 calves vaccinated with NTC E2t(co) alone or NTC E2t(co) plus NTC NS3(co) had neutralising antibody titres exceeding 1/240 compared to 1/5 in the mock vaccine control group. Based on our results we conclude that co-expression of a RIG-I agonist with viral antigen could enhance DNA vaccine potency in cattle.  相似文献   

9.
《Vaccine》2018,36(26):3853-3860
Bovine viral diarrhea virus (BVDV) is an important viral cause of reproductive disease, immune suppression and clinical disease in cattle. The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. BVDV negative beef heifers and cows (n = 122) were randomly assigned to one of four groups. Groups A-C (n = 34/group) received two pre-breeding doses of one of three commercially available multivalent vaccines containing inactivated fractions of BVDV 1 and BVDV 2, and Group D (n = 20) served as negative control and received two doses of saline prior to breeding. Animals were bred, and following pregnancy diagnosis, 110 cattle [Group A (n = 31); Group B (n = 32); Group C (n = 31); Group D (n = 16)] were subjected to a 28-day exposure to cattle persistently infected (PI) with BVDV (1a, 1b and 2a). Of the 110 pregnancies, 6 pregnancies resulted in fetal resorption with no material for testing. From the resultant 104 pregnancies, BVDV transplacental infections were demonstrated in 73 pregnancies. The BVDV fetal infection rate (FI) was calculated at 13/30 (43%) for Group A cows, 27/29 (93%) for Group B cows, 18/30 (60%) for Group C cows, and 15/15 (100%) for Group D cows. Statistical differences were observed between groups with respect to post-vaccination antibody titers, presence and duration of viremia in pregnant cattle, and fetal infection rates in offspring from BVDV-exposed cows. Group A vaccination resulted in significant protection against BVDV infection as compared to all other groups based upon outcome measurements, while Group B vaccination did not differ in protection against BVDV infection from control Group D. Ability of inactivated BVDV vaccines to provide protection against BVDV fetal infection varies significantly among commercially available products; however, in this challenge model, the inactivated vaccines provided unacceptable levels of BVDV FI protection.  相似文献   

10.
We sought to determine susceptibility to highly pathogenic avian influenza (HPAI) H5N1 virus and to explore immune protection of inactivated H5N1 vaccine in streptozotocin-induced type 1 diabetic mice. Susceptibility of diabetic mice to an H5N1 virus was evaluated by comparing the median lethal dose (LD50) and the lung virus titers with those of the healthy after the viral infection. To evaluate the influence of diabetes on vaccination, diabetic and healthy mice were immunized once with an inactivated H5N1 vaccine and then challenged with a lethal dose of H5N1 virus. The antibody responses, survival rates, lung virus titers and body weight changes were tested. Mice with type 1 diabetes had higher lung virus titers and lower survival rates than healthy mice after H5N1 virus infection. Inactivated H5N1 vaccine induced protective antibody in diabetic mice, but the antibody responses were postponed and weakened. In spite of this, diabetic mice could be protected against the lethal virus challenge by a single dose of immunization when the amount of the antigen increased. These results indicated that type 1 diabetic mice were more susceptible to H5N1 influenza virus infection than healthy mice, and can be effectively protected by inactivated H5N1 vaccine with increased antigen.  相似文献   

11.
Jadi RS  Sudeep AB  Barde PV  Arankalle VA  Mishra AC 《Vaccine》2011,29(28):4613-4617
A Vero cell based vaccine candidate against Chandipura (CHP) virus (Rhabdoviridae: Vesiculovirus), was developed and evaluated for immunogenicity in mice. Virus was purified by ultracentrifugation on 30% glycerol cushion followed by differential centrifugation on 10-60% sucrose gradient and inactivated with β-propio lactone at a concentration of 1:3500. The inactivated product was blended with aluminium phosphate (3%) and immunized 4-week-old Swiss albino mice. Neutralizing antibodies in the range of 1:10 to 160 and 1:80 to 1:320 was detected with 85% and 100% sero-conversion after 2nd and 3rd dose, respectively. All the immunized mice with antibody titer above 1:20 survived live virus challenge. The vaccine candidate has potential to be an efficient vaccine against CHP virus.  相似文献   

12.
《Vaccine》2020,38(24):4032-4037
Bovine viral diarrhea virus (BVDV) represents a major cattle disease with multiple forms including fetal infections resulting in persistently infected (PI) cattle. The objectives of this study were to investigate the immune response to six vaccines, five modified live viral (MLV) and one killed vaccine containing BVDV immunogens as measured by antibodies to BVDV1a, BVDV1b, BVDV2a, and BVDV2c. The predominant BVDV subgenotype in the U.S. is BVDV1b compared to BVDV1a and BVDV2a. There are MLV and killed BVDV vaccines containing BVDV1a and BVDV2a marketed in the U.S. A prior study evaluated immune response to vaccination with BVDV1a and BVDV2a inducing virus neutralizing antibody titers. BVDV1b titers 128 or higher at time of exposure to BVDV1b PI cattle protected heifers against fetal infection. Calves received two doses and postweaning serums were collected and assayed for BVDV antibodies. Antibody titers were expressed as geometric mean averages. Percentages were expressed as proportions of animals within three antibody levels, including targeted level 128 or greater. There were statistical differences among vaccines in each study, particularly to BVDV1a, BVDV1b, and BVDV2a. MLV vaccines containing Singer strain induced higher levels to BVDV1a and BVDV1b than NADL vaccine in all three studies. Two vaccines, both MLV, Vaccine 1 and Vaccine 6 containing Singer strain induced higher proportion of 128 or higher BVDV1b titers than vaccine with NADL. Antibody levels to BVDV2a and BVDV2c were dependent on BVDV2a vaccine strain. This study indicates strain in BVDV vaccines reflects differences in immune response to different BVDV subgenotypes, particularly BVDV1b and BVDV2c.  相似文献   

13.
Eight goats were inoculated with an inactivated caprine herpesvirus 1 (CpHV-1) vaccine. Four unvaccinated goats were kept as controls. After 30 days, four of the eight goats were revaccinated. Fifty days after the first vaccination the animals were divided into two groups (A and B) of six goats each (two goats vaccinated twice, two goats vaccinated once and two goats unvaccinated). The two groups were challenged with CpHV-1 intranasally (group A) or intravaginally (group B). After CpHV-1 challenge, the four control goats showed the typical genital lesions, whereas all the vaccinated goats were fully protected against clinical signs. Protection against infection depended on the number of injections of vaccine and the route of challenge.  相似文献   

14.
15.
Costa SM  Freire MS  Alves AM 《Vaccine》2006,24(21):4562-4564
Dengue is one of the most important mosquito-borne viral disease causing dengue fever and/or dengue shock syndrome/haemorrhagic fever. In some reports, the non-structural protein 1 (NS1) has been identified as a promising antigen for the development of vaccines against dengue virus (DENV). Apparently, it can elicit a protective antibody response with complement-fixing activities. In order to investigate the potential of a DNA vaccine based on the NS1 protein against DENV, we used the plasmid pcTPANS1, which contains the secretory signal sequence derived from human tissue plasminogen activator (t-PA) fused to the full length of the DENV-2 NS1 gene. All Balb/c mice intramuscularly inoculated with the pcTPANS1 presented high levels of NS1-specifc antibodies. Vaccinated animals were challenged with intracerebral DENV-2 virus inoculations and a 100% survival was observed. In general, results demonstrate that the pcTPANS1 plasmid is able to induce protection in mice, and then may be used as a vaccination approach against DENV in further assays.  相似文献   

16.
The passive immunity transferred to calves from their dams was investigated in a beef herd to determine half-life of antibody, estimated time to seronegative status and effect on immunization. One hundred two beef calves in a commercial ranch under standard management conditions were utilized. Samples were collected at branding (day 0). This was the first possible date to collect samples postcalving. This was approximately 2 months postcalving, and days 95 and 116. The calves were divided into two groups: vaccinates (51) and nonvaccinates (51). The calves were vaccinated with a commercial inactivated viral vaccine containing bovine viral diarrhea virus (BVDV)1a, BVDV2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV) on days 0 and 95. Half of the vaccinated and unvaccinated calves also received one dose of an experimental Mannheimia haemolytica and Pasteurella multocida vaccine at day 95. Serums were tested for neutralizing antibody titers to BVDV1a, BVDV1b, BVDV2, BHV-1, PI-3V, and BRSV. Antibodies were detected by ELISA to M. haemolytica whole cell, M. haemolytica leukotoxin, and P. multocida outer membrane protein (OMP). The mean half-life of viral antibodies in nonvaccinated calves to each virus was: BVDV1a, 23.1 days (d); BVDV1b, 22.8 d; BVDV2, 22.9 d; BHV-1, 21.2 d; PI-3V, 30.3 d; and BRSV, 35.9 d. The mean half-life of viral antibodies was greater for vaccinates than for nonvaccinates for all viruses except BRSV. The calculated mean time to seronegative status for nonvaccinates based on titers at day 0 was: BVDV1a, 192.2 d; BVDV1b, 179.1 d; BVDV2, 157.8 d; BHV-1, 122.9 d; PI-3V, 190.6 d; and BRSV, 186.7 d. There was an active immune response after vaccination with two doses to all the viruses, except BRSV. Mean antibody titers of vaccinates at day 116 were statistically higher than nonvaccinates for all viruses except BRSV. However on an individual calf basis there were few seroconversions (four-fold rise or greater to BVDV1a, BVDV1b, BVDV2, PI-3V, or BRSV; or two-fold rise for BHV-1) in the presence of viral antibodies. The predicted time of seronegative status for a group of calves for vaccination programs may not be appropriate as there may be a range of titers for all calves at day 0. In this study the range for BVDV1a was 16-16,384; BVDV1b, 8-8192; BVDV2, 0-8192; BHV-1, 0-935; PI-3V, 8-2048; and BRSV, 8-4096. Using the half-life of 23 d for BVDV1a, the time thereafter for seronegative status would be 46 and 299 d compared to the calculated date of 192.2 d using the mean of estimated time to seronegative status for all the calves. There was an active humoral response in the vaccinated calves to M. haemolytica and P. multocida. Cowherd humoral immunity based on serum antibodies should be monitored as it may relate to transfer of maternal antibodies to calves. Exceptionally high levels of viral antibodies transferred to calves could interfere with the antibody response to vaccination.  相似文献   

17.

Background

Antigenic drift of H9N2 low pathogenic avian influenza viruses (AIV) may result in vaccination failure in the poultry industry and thus a cross-protective vaccine against H9N2 AIV is highly desirable.

Methods

A series of H9N2 recombinant viruses with the internal genes of A/Puerto Rico/8/34 (H1N1, PR8) were generated, based on the compatibility between HA and NA, the effect of HA deglycosylation, and protective antigenic epitopes in HA. After evaluation of their biological and immunological characteristics, three recombinant AIVs with the internal genes of the Y280-like strain SN were selected for protective efficacy studies.

Results

The recombinant viruses rHASNNA3, rHASN-△200, rHASN-△287, and rHASN-R92G-E93K displayed good cross reactivity and induced higher neutralization antibody titers against both SN and the F98-like strain YZ4. Furthermore, those recombinant viruses had a higher EID50 in chicken embryos after the replacement of internal-gene backbone from PR8 to SN. The rSNHA-△200 induced better protection in immunized chickens against challenge of homologous and heterologous H9N2 avian influenza viruses when compared with the wild type strain.

Conclusion

The recombinant virus rSNHA-△200 can be used as a potential broad-spectrum vaccine against H9N2 avian influenza.  相似文献   

18.
In the present study, cross-protection to bovine herpesvirus type 5 (BHV-5) induced by bovine herpesvirus type 1 (BHV-1) vaccination was examined following inoculation of rabbits and calves with a glycoprotein E (gE)-negative BHV-1 vaccine and subsequent challenge with BHV-5. Rabbits (n=5) and calves (n=8) were vaccinated [five rabbits intranasally (IN), four calves IN and four intramuscularly (IM)] with 7.1 log(10)median tissue culture infective dose (TCID(50)) of the BHV-1 vaccine. Rabbits and calves were challenged IN [rabbits 2 weeks post-vaccination (pv); calves 5 weeks pv] with 9.1log(10)TCID(50) of BHV-5. Two out of five vaccinated rabbits died after challenge with typical BHV-5 disease, as did 3/5 non-vaccinated controls. In calves, 4/8 vaccinated animals displayed mild signs of disease, whereas 6/6 non-vaccinated controls developed signs of disease, so severe that 2/6 had to be killed. Besides, nasal virus shedding post-challenge was not reduced by vaccination. At necropsy, on day 21 post-challenge, typical BHV-5 lesions were evident in brain tissues of both vaccinated and non-vaccinated calves. Dexametasone administration at 180 days post-infection did not reactivate clinical signs despite BHV-5 shedding in nasal secretions of both vaccinated and non-vaccinated calves. These results show that the BHV-1 vaccine evaluated here did not confer protection to BHV-5 in rabbits. In calves, BHV-1 vaccination did confer some protection to BHV-5 induced clinical disease, but it did not prevent infection and had no effect on nasal virus shedding or on the development of encephalitic lesions.  相似文献   

19.
Nobiron I  Thompson I  Brownlie J  Collins ME 《Vaccine》2003,21(17-18):2082-2092
The immune response induced by a DNA construct expressing the E2 envelope glycoprotein of bovine viral diarrhoea virus (BVDV) was studied in cattle. Four groups of five calves, were immunised by intradermal injection with a total of 1mg of plasmid DNA on each of two occasions, with a 3-week dose interval. Group 1 received non-coding plasmid DNA only (control), group 2 received the E2 coding plasmid (0.5mg) plus non-coding plasmid DNA (0.5mg) and groups 3 and 4 received the E2 coding plasmid plus plasmid encoding either bovine interleukin 2 (IL-2) or granulocyte macrophage colony stimulating factor (GM-CSF) respectively. Two weeks after the final immunisation, all calves were challenged by intranasal inoculation with 5 x 10(6) TCID(50) of homologous virus. On the day of challenge, neutralising antibodies were detectable in 13 of 15 vaccinated calves (one animal in each of groups 3 and 4 remained seronegative at this point). Thereafter, a strong anamnestic serological response was evident in all vaccinated animals. Furthermore, T-cell proliferation following in vitro re-stimulation with BVDV antigen was significantly elevated in the cytokine adjuvanted groups. This enhancement of BVDV specific immune responses in vaccinated animals was reflected in the clinical responses observed post-challenge. In particular, reduced febrile responses provided evidence of a disease sparing effect of vaccination. Significantly, whilst a transient viraemia was detected in all control animals following challenge, no virus was isolated from the leucocytes from 8 out of the 15 vaccinated animals. In groups 2 and 4, three animals remained virus free, although virus was isolated from two animals in each group at a single time point, while in group 3, three out of five animals had detectable viraemia.In summary, the administration of a DNA vaccine encoding only the E2 glycoprotein of BVDV induced a disease sparing effect in vaccinated calves following challenge and protected more than half of the vaccinated animals from detectable viraemia.  相似文献   

20.
《Vaccine》2023,41(32):4700-4709
Pseudomonas aeruginosa (P. aeruginosa) is one of the most prevalent pathogens of bacterial keratitis. Bacterial keratitis is a major cause of blindness worldwide. The rising incidence of multidrug resistance of P. aeruginosa precludes treatment with conventional antibiotics. Herein, we evaluated the protective efficiency and explored the possible underlying mechanism of an X-ray inactivated vaccine (XPa) using a murine P. aeruginosa keratitis model. Mice immunized with XPa exhibit reduced corneal bacterial loads and pathology scores. XPa vaccination induced corneal macrophage polarization toward M2, averting an excessive inflammatory reaction. Furthermore, histological observations indicated that XPa vaccination suppressed corneal fibroblast activation and prevented irreversible visual impairment. The potency of XPa against keratitis highlights its potential utility as an effective and promising vaccine candidate for P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号