首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional consequences of the six mutations (R145G, R145Q, R162W, DeltaK183, G203S, K206Q) in cardiac troponin I (cTnI) that cause familial hypertrophic cardiomyopathy (HCM) were studied using purified recombinant human cTnI. The missense mutations R145G and R145Q in the inhibitory region of cTnI reduced the intrinsic inhibitory activity of cTnI without changing the apparent affinity for actin. On the other hand, the missense mutation R162W in the second troponin C binding region and the deletion mutation DeltaK183 near the second actin-tropomyosin region reduced the apparent affinity of cTnI for actin without changing the intrinsic inhibitory activity. Ca(2+) titration of a fluorescent probe-labeled human cardiac troponin C (cTnC) showed that only R162W mutation impaired the cTnC-cTnI interaction determining the Ca(2+) affinity of the N-terminal regulatory domain of cTnC. Exchanging the human cardiac troponin into isolated cardiac myofibrils or skinned cardiac muscle fibers showed that the mutations R145G, R145Q, R162W, DeltaK183 and K206Q induced a definite increase in the Ca(2+)-sensitivity of myofibrillar ATPase activity and force generation in skinned muscle fibers. Although the mutation G203S also showed a tendency to increase the Ca(2+) sensitivity in both myofibrils and skinned muscle fibers, no statistically significant difference compared with wild-type cTnI could be detected. These results demonstrated that most of the HCM-linked cTnI mutations did affect the regulatory processes involving the cTnI molecule, and that at least five mutations (R145G, R145Q, R162W, DeltaK183, K206Q) increased the Ca(2+) sensitivity of cardiac muscle contraction.  相似文献   

2.
A deletion mutation Delta K210 in cardiac troponin T (cTnT) was recently found to cause familial dilated cardiomyopathy (DCM). To explore the effect of this mutation on cardiac muscle contraction under physiological conditions, we determined the Ca(2+)-activated force generation in permeabilized rabbit cardiac muscle fibers into which the mutant and wild-type cTnTs were incorporated by using our TnT exchange technique. The free Ca(2+) concentrations required for the force generation were higher in the mutant cTnT-exchanged fibers than in the wild-type cTnT-exchanged ones, with no statistically significant differences in maximal force-generating capability and cooperativity. Exchanging the mutant cTnT into isolated cardiac myofibrils also increased the free Ca(2+) concentrations required for the activation of ATPase. In contrast, a deletion mutation Delta E160 in cTnT that causes familial hypertrophic cardiomyopathy (HCM) decreased the free Ca(2+) concentrations required for force generation, just as in the case of the other HCM-causing mutations in cTnT. The results indicate that cTnT mutations found in the two distinct forms of cardiomyopathy (i.e., HCM and DCM) change the Ca(2+) sensitivity of cardiac muscle contraction in opposite directions. The present study strongly suggests that Ca(2+) desensitization of force generation in sarcomere is a primary mechanism for the pathogenesis of DCM associated with the deletion mutation Delta K210 in cTnT.  相似文献   

3.
A region of interaction between the near N-terminal of cardiac troponin I (cTnI) and the C-lobe of troponin C (cTnC), where troponin T (cTnT) binds, appears to be critical in regulation of myofilament Ca(2+)-activation. We probed whether functional consequences of modulation of this interface influence the function of tropomyosin (Tm) in thin filament activation. We modified the C-lobe of cTnC directly by addition of the Ca(2+)-sensitizer, EMD 57033, and indirectly by replacing native cTnI with cTnI-containing Glu residues at Ser-43 and Ser-45 (cTnI-S43E/S45E) in myofilaments from hearts of non-transgenic (NTG) and transgenic (TG) mice expressing a point mutation on alpha-Tm (E180G) linked to familial hypertrophic cardiomyopathy. Introduction of cTnI-S43E/S45E induced a significantly greater reduction in tension in TG myofilaments compared to NTG controls. Furthermore, the effect of EMD 57033 to restore Ca(2+)-sensitivity was higher in TG compared to NTG fiber bundles containing cTnI-S43E/S45E and compared to TG or NTG fiber bundles containing native TnI. Our results indicate that alterations in regions of interaction among the N-terminal of cTnI, the C-lobe of cTnC, and the C-terminus of cTnT are important in the regulation of myofilament activity. Although levels of phosphorylation at protein kinase C-dependent sites were the same in TG and NTG myofilaments, our data indicate that the effects of phosphorylation were more depressive in TG hearts.  相似文献   

4.
Biology of the troponin complex in cardiac myocytes   总被引:5,自引:0,他引:5  
  相似文献   

5.
Wu HF  Chen XJ  Yang D 《中华心血管病杂志》2007,35(11):1000-1004
目的探讨国人新的致肥厚型心肌病(HCM)心肌肌钙蛋白Ⅰ基因突变(cTnⅠ R145W)引起HCM发病的可能机制。方法采用定点突变技术在大鼠cTnⅠ cDNA引入R146W(相当于人R145W)突变,增强型绿色荧光蛋白(EGFP)做报告基因,构建含野生型和突变型大鼠cTnⅠ cDNA的重组腺病毒载体。Langendoff逆流灌注系统分离成年大鼠心肌细胞,无血清法培养后重组腺病毒转染。Western blot检测重组蛋白的表达,全膜片钳技术记录心肌细胞膜L型钙电流,Fura-2/AM孵育后测定细胞内游离钙离子浓度和咖啡因诱导的肌浆网钙释放。结果DNA测序证实R146W突变成功引入大鼠cTnⅠ cDNA。新鲜分离的成年大鼠心肌细胞存活率达70%~80%,无血清培养7天后绝大部分能保持长杆状形态。重组腺病毒转染48h后荧光显微镜下可观察到绿色荧光,cTnⅠ和绿色荧光蛋白单抗均能检测到重组蛋白。与野生型cTnⅠ和正常对照组比较,突变型cTnⅠ组心肌细胞膜L型钙电流峰值明显降低。Fura-2/AM法测定细胞内游离钙离子浓度和咖啡因诱导的肌浆网钙释放,三组之问差异无统计学意义。结论含R146W突变的cTnⅠ蛋白可能引起心肌细胞的电生理学重构,进一步研究可探讨肌丝对钙的敏感性及钙调节蛋白表达的改变。  相似文献   

6.
AIM: Mutations in a sarcomeric protein can cause hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM), the opposite ends of a spectrum of phenotypic responses of the heart to mutations. We posit the contracting phenotypes could result from differential effects of the mutant proteins on interactions among the sarcomeric proteins. To test the hypothesis, we generated transgenic mice expressing either cardiac troponin T (cTnT)-Q92 or cTnT-W141, known to cause HCM and DCM, respectively, in the heart. METHODS AND RESULTS: We phenotyped the mice by echocardiography, histology and immunoblotting, and real-time polymerase chain reaction. We detected interactions between the sarcomeric proteins by co-immunoprecipitation and determined Ca2+ sensitivity of myofibrillar protein ATPase activity by Carter assay. The cTnT-W141 mice exhibited dilated hearts and decreased systolic function. In contrast, the cTnT-Q92 mice showed smaller ventricles and enhanced systolic function. Levels of cardiac troponin I, cardiac alpha-actin, alpha-tropomyosin, and cardiac troponin C co-immunoprecipitated with anti-cTnT antibodies were higher in the cTnT-W141 than in the cTnT-Q92 mice, as were levels of alpha-tropomyosin co-immunoprecipitated with an anti-cardiac alpha-actin antibody. In contrast, levels of cardiac troponin I co-immunoprecipitated with an anti-cardiac alpha-actin antibody were higher in the cTnT-Q92 mice. Ca2+ sensitivity of myofibrillar ATPase activity was increased in HCM but decreased in DCM mice compared with non-transgenic mice. CONCLUSION: Differential interactions among the sarcomeric proteins containing cTnT-Q92 or cTnT-W141 are responsible for the contrasting phenotypes of HCM or DCM, respectively.  相似文献   

7.
Cardiac troponin I (cTnI) is an essential element in activation of myofilaments by Ca2+ binding to cardiac troponin C (cTnC). Yet, its role in transduction of the Ca2+ binding signal to cardiac troponin T (cTnT) and tropomyosin-actin remain poorly understood. We have recently discovered that regions of cTnI C-terminal to a previously defined inhibitory peptide are essential for full inhibitory activity and Ca(2+)-sensitivity of cardiac myofilaments (Rarick et al., 1997). However, apart from its role in structural binding to cTnC, there is little knowledge concerning the role of the N-terminus of cTnI in the activation and regulation of cardiac myofilaments. To address this question, we generated wild-type mouse cardiac TnI (WT-cTnI; 211 residues) and two N-terminal deletion mutants of mouse cTnI, cTnI54-211 (missing 53 residues), and cTnI80-211 (missing 79 residues). The cTnI54-211 mutant retained the ability to bind to cTnT, but lost the ability to bind to cTnC, whereas the cTnI80-211 mutant lost the ability to bind to cTnT, but bound weakly to cTnC. Both mutants bound to F-actin. In the absence of Ca2+, cTnI54-211 was able to inhibit the unregulated MgATPase activity of myofibrils lacking endogenous cTnI-cTnC to the same extent as WT-cTnI, whereas cTnI80-211 had some impairment of its inhibitory capability. Reconstitution with cTnI54-211/cTnC complex did not restore Ca(2+)-activation of myofibrillar MgATPase activity at all, however, the cTnI80-211/cTnC complex restored Ca(2+)-activation to nearly 50% of that obtained with WT-cTnI/cTnC. These data provide the first evidence of a significant function of a cTnT-binding domain on cTnI. They also indicate that the structural cTnC binding site on cTnI is required for Ca(2+)-dependent activation of cardiac myofilaments, and that cTnT binding to the N-terminus of cTnI is a negative regulator of activation.  相似文献   

8.
AIMS: Heat shock protein 27 (Hsp27) renders cardioprotection from ischaemia/reperfusion (I/R) injury, but little is known about its role in myofilaments. We proposed that increased expression of Hsp27 may improve post-ischaemic contractile dysfunction by preventing I/R-induced cardiac troponin I (cTnI) and troponin T (cTnT) degradation. METHODS AND RESULTS: Adenovirus-mediated Hsp27 overexpression improved contractile function in perfused rat hearts subjected to global no-flow I/R (30-min/30-min). Such improvement was further confirmed in Hsp27-overexpressing cardiomyocytes subjected to simulated I/R (20-min/30-min). Moreover, these cells showed restored myofilament response to Ca(2+) but not intracellular Ca(2+) transients. The protection correlated with attenuation of I/R-induced cTnI and cTnT degradation. Confocal microscopy revealed co-localization of Hsp27 with these proteins. Co-immunoprecipitation and pull-down assays further confirmed that Hsp27 interacted with the COOH-terminus of cTnI and the NH(2)-terminus of cTnT and that Hsp27 overexpression decreased the interaction between mu-calpain (a protease mediating proteolysis of cTnI and cTnT) and cTnI or cTnT under I/R. CONCLUSION: The findings reveal a novel role of Hsp27 in the protection of cTnI and cTnT from I/R-induced degradation by preventing their proteolytic cleavage via interacting with these proteins. Such protection may result in restored post-ischaemic myofilament response to Ca(2+) and improved post-ischaemic contractile function.  相似文献   

9.
Striated muscle contraction is regulated by the binding of Ca(2+) to the N-terminal regulatory lobe of the cardiac troponin C (cTnC) subunit in the troponin complex. In the heart, beta-adrenergic stimulation induces protein kinase A phosphorylation of cardiac troponin I (cTnI) at Ser23/24 to alter the interaction of cTnI with cTnC in the troponin complex and is critical to the regulation of cardiac contractility. We investigated the effect of the dilated cardiomyopathy linked cTnC Gly159 to Asp (cTnC-G159D) mutation on the development of Ca(2+)-dependent tension and ATPase rate in whole troponin-exchanged skinned rat trabeculae. Even though this mutation is located in the C-terminal lobe of cTnC, the G159D mutation was demonstrated to depress ATPase activation and filament sliding in vitro. The effects of this mutation within the cardiac myofilament are unknown. Our results demonstrate that the cTnC-G159D mutation by itself does not alter the myofilament response to Ca(2+) in the cardiac muscle lattice. However, in the presence of cTnI phosphorylated at Ser23/24, which reduced Ca(2+) sensitivity and enhanced cross-bridge cycling in controls, cTnC-G159D specifically blunted the phosphorylation induced decrease in Ca(2+)-sensitive tension development without altering cross-bridge cycling. Measurements in purified troponin confirmed that this cTnC-G159D blunting of myofilament desensitization results from altered Ca(2+)-binding to cTnC. Our results provide novel evidence that modification of the cTnC-cTnI interaction has distinct effects on troponin Ca(2+)-binding and cross-bridge kinetics to suggest a novel role for thin filament mutations in the modulation of myofilament function through beta-adrenergic signaling as well as the development of cardiomyopathy.  相似文献   

10.
AIMS: To understand the functional consequences of the Lys184 deletion in murine cardiac troponin I (mcTnI(DeltaK184)), we have studied the primary effects of this mutation linked to familial hypertrophic cardiomyopathy (FHC) at the sarcomeric level. METHODS AND RESULTS: Ca(2+) sensitivity and kinetics of force development and relaxation were investigated in cardiac myofibrils from transgenic mice expressing mcTnI(DeltaK184), as a model which co-segregates with FHC. Ca(2+)-dependent conformational changes (switch-on/off) of the fluorescence-labelled human troponin complex, containing either wild-type hcTnI or mutant hcTnI(DeltaK183), were investigated in myofibrils prepared from the guinea pig left ventricle. Ca(2+) sensitivity and maximum Ca(2+)-activated and passive forces were significantly enhanced and cooperativity was reduced in mutant myofibrils. At partial Ca(2+) activation, mutant but not wild-type myofibrils displayed spontaneous oscillatory contraction of sarcomeres. Both conformational switch-off rates of the incorporated troponin complex and the myofibrillar relaxation kinetics were slowed down by the mutation. Impaired relaxation kinetics and increased force at low [Ca(2+)] were reversed by 2,3-butanedione monoxime (BDM), which traps cross-bridges in non-force-generating states. CONCLUSION: We conclude that these changes are not due to alterations of the intrinsic cross-bridge kinetics. The molecular mechanism of sarcomeric diastolic dysfunction in this FHC model is based on the impaired regulatory switch-off kinetics of cTnI, which induces incomplete inhibition of force-generating cross-bridges at low [Ca(2+)] and thereby slows down relaxation of sarcomeres. Ca(2+) sensitization and impairment of the relaxation of sarcomeres induced by this mutation may underlie the enhanced systolic function and diastolic dysfunction at the sarcomeric level.  相似文献   

11.
Mutations in striated muscle alpha-tropomyosin (alpha-TM), an essential thin filament protein, cause both dilated cardiomyopathy (DCM) and familial hypertrophic cardiomyopathy. Two distinct point mutations within alpha-tropomyosin are associated with the development of DCM in humans: Glu40Lys and Glu54Lys. To investigate the functional consequences of alpha-TM mutations associated with DCM, we generated transgenic mice that express mutant alpha-TM (Glu54Lys) in the adult heart. Results showed that an increase in transgenic protein expression led to a reciprocal decrease in endogenous alpha-TM levels, with total myofilament TM protein levels remaining unaltered. Histological and morphological analyses revealed development of DCM with progression to heart failure and frequently death by 6 months. Echocardiographic analyses confirmed the dilated phenotype of the heart with a significant decrease in the left ventricular fractional shortening. Work-performing heart analyses showed significantly impaired systolic, and diastolic functions and the force measurements of cardiac myofibers revealed that the myofilaments had significantly decreased Ca(2+) sensitivity and tension generation. Real-time RT-PCR quantification demonstrated an increased expression of beta-myosin heavy chain, brain natriuretic peptide, and skeletal actin and a decreased expression of the Ca(2+) handling proteins sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor. Furthermore, our study also indicates that the alpha-TM54 mutation decreases tropomyosin flexibility, which may influence actin binding and myofilament Ca(2+) sensitivity. The pathological and physiological phenotypes exhibited by these mice are consistent with those seen in human DCM and heart failure. As such, this is the first mouse model in which a mutation in a sarcomeric thin filament protein, specifically TM, leads to DCM.  相似文献   

12.
Troponin I isoforms play a key role in determining myofilament Ca2+ sensitivity in cardiac muscle. The goal here was to identify domain clusters and residues that confer troponin I isoform-specific myofilament Ca2+ and pH sensitivities of contraction. Key domains/residues that contribute to troponin I isoform-specific Ca2+ and pH sensitivity were studied using gene transfer of a slow skeletal troponin I (ssTnI) template, with targeted cardiac troponin I (cTnI) residue substitutions. Substitutions in ssTnI with cognate cTnI residues R125Q, H132A, and V134E, studied both independently and together (ssTnIQAE), resulted in efficient stoichiometric replacement of endogenous myofilament cTnI in adult cardiac myocytes. In permeabilized myocytes, the pCa50 of tension ([Ca2+] required for half maximal force), and the acidosis-induced rightward shift of pCa50 were converted to the cTnI phenotype in myocytes expressing ssTnIQAE or ssTnIH132A, and there was no functionally additive effect of ssTnIQAE versus ssTnIH132A. Interestingly, only the acidosis-induced shift in Ca2+ sensitivity was comparable to cTnI in myocytes expressing ssTnIV134E, while ssTnIR125Q fully retained the ssTnI phenotype. An additional ssTnIN141H substitution, which lies within the same structural region of TnI as V134, produced a shift in myofilament Ca2+ sensitivity comparable to cTnI at physiological pH, while the acidic pH response was similar to the effect of wild-type ssTnI. Analysis of sarcomere shortening in intact adult cardiac myocytes was consistent with the force measurements. Targeted substitutions in the carboxyl portion of TnI produced residue-specific influences on myofilament Ca2+ and pH sensitivity of force and give new molecular insights into the TnI isoform dependence of myofilament function.  相似文献   

13.
Ca2+ desensitization of myofilaments is indicated as a primary mechanism for the pathogenesis of familial dilated cardiomyopathy (DCM) associated with the deletion of lysine 210 (ΔK210) in cardiac troponin T (cTnT). ΔK210 knock-in mice closely recapitulate the clinical phenotypes documented in patients with this mutation. Considerable evidence supports the proposition that phosphorylation of cardiac sarcomeric proteins is a key modulator of function and may exacerbate the effect of the deletion. In this study we investigate the impact of K210 deletion on phosphorylation propensity of sarcomeric proteins. Analysis of cardiac myofibrils isolated from ΔK210 hearts identified a decrease in phosphorylation of cTnI (46%), cTnT (30%) and MyBP-C (32%) compared with wild-type controls. Interestingly, immunoblot analyses with phospho-specific antibodies show augmented phosphorylation of cTnT-Thr203 (28%) and decreased phosphorylation of cTnI-Ser23/24 (41%) in mutant myocardium. In vitro kinase assays indicate that ΔK210 increases phosphorylation propensity of cTnT-Thr203 three-fold, without changing cTnI-Ser23/24 phosphorylation. Molecular modeling of cTnT-ΔK210 structure reveals changes in the electrostatic environment of cTnT helix (residues 203-224) that lead to a more basic environment around Thr203, which may explain the enhanced PKC-dependent phosphorylation. In addition, yeast two-hybrid assays indicate that cTnT-ΔK210 binds stronger to cTnI compared with cTnT-wt. Collectively, our observations suggest that cardiomyopathy-causing ΔK210 has far-reaching effects influencing cTnI-cTnT binding and posttranslational modifications of key sarcomeric proteins.  相似文献   

14.
Dilated cardiomyopathy and hypertrophic cardiomyopathy (HCM) can be caused by mutations in thin filament regulatory proteins of the contractile apparatus. In vitro functional assays show that, in general, the presence of dilated cardiomyopathy mutations decreases the Ca(2+) sensitivity of contractility, whereas HCM mutations increase it. To assess whether this functional phenomenon was a direct result of altered Ca(2+) affinity or was caused by altered troponin-tropomyosin switching, we assessed Ca(2+) binding of the regulatory site of cardiac troponin C in wild-type or mutant troponin complex and thin filaments using a fluorescent probe (2-[4'-{iodoacetamido}aniline]-naphthalene-6-sulfonate) attached to Cys35 of cardiac troponin C. The Ca(2+)-binding affinity (pCa(50)=6.57+/-0.03) of reconstituted troponin complex was unaffected by all of the HCM and dilated cardiomyopathy troponin mutants tested, with the exception of the troponin I Arg145Gly HCM mutation, which caused an increase (DeltapCa(50)=+0.31+/-0.05). However, when incorporated into regulated thin filaments, all but 1 of the 10 troponin and alpha-tropomyosin mutants altered Ca(2+)-binding affinity. Both HCM mutations increased Ca(2+) affinity (DeltapCa(50)=+0.41+/-0.02 and +0.51+/-0.01), whereas the dilated cardiomyopathy mutations decreased affinity (DeltapCa(50)=-0.12+/-0.04 to -0.54+/-0.04), which correlates with our previous functional in vitro assays. The exception was the troponin T Asp270Asn mutant, which caused a significant decrease in cooperativity. Because troponin is the major Ca(2+) buffer in the cardiomyocyte sarcoplasm, we suggest that Ca(2+) affinity changes caused by cardiomyopathy mutant proteins may directly affect the Ca(2+) transient and hence Ca(2+)-sensitive disease state remodeling pathways in vivo. This represents a novel mechanism for this class of mutation.  相似文献   

15.
The first human cardiac troponin I (hcTnI) mutation in the N-terminal 32 residue region, R21C (arginine residue number 21 mutated to cysteine), which has been linked to hypertrophic cardiomyopathy (HCM), has recently been reported. The effect of this mutation on the physiological function of hcTnI was investigated. Human cTnI R21C (in the absence or presence of troponin T and troponin C) was phosphorylated by protein kinase A (PKA) at a significantly slower rate than wild-type hcTnI. In skinned fiber studies, the TnI R21C mutant showed a large increase in Ca(2+)-sensitivity of force development when compared to wild-type TnI (DeltapCa(50)=0.33). Phosphorylation of skinned fibers containing TnI R21C by PKA resulted in a significantly smaller decrease in the Ca(2+)-sensitivity of force development when compared to phosphorylation of fibers containing wild-type TnI. The decreased sensitivity of TnI R21C to PKA is most likely due to a decreased ability of PKA to phosphorylate this TnI rather than conformational problems within this TnI. In addition, skinned fibers were found to contain an endogenous kinase that is capable of phosphorylating wild-type TnI. However, the endogenous kinase activity did not affect the Ca(2+)-sensitivity of force development, the Hill coefficient or maximal force of these skinned fibers. Actomyosin ATPase assays showed that the R21C mutation did not affect the inhibitory properties of TnI or the maximal ATPase activity. TnI R21C was also found to be more susceptible to proteolysis by calpain II than wild-type TnI. These results suggest that this R21C mutation in TnI affects the Ca(2+)-sensitizing effect of Tn, the ability of TnI to be readily phosphorylated by PKA and the stability of TnI to calpain. The results also suggest that the N-terminal region may have important roles such as modulating the Ca(2+)-sensitivity of force-development.  相似文献   

16.
Inherited restrictive cardiomyopathy (RCM) is a debilitating disease characterized by a stiff heart with impaired ventricular relaxation. Mutations in cardiac troponin I (cTnI) were identified as causal for RCM. Acute genetic engineering of adult cardiac myocytes was used to identify primary structure/function effects of mutant cTnI. Studies focused on R193H cTnI owing to the poor prognosis of this allele. Compared with wild-type cTnI, R193H mutant cTnI more effectively incorporated into the sarcomere, where it exerted dose-dependent effects on basal and dynamic contractile function. Under loaded conditions, permeabilized myocyte Ca(2+) sensitivity of tension was increased, whereas the passive tension-extension relationship was not altered by R193H cTnI. Normal rod-shaped myocyte morphology acutely transitioned to a "short-squat" phenotype in concert with progressive stoichiometric incorporation of R193H in the absence of altered diastolic Ca(2+). The specific myosin inhibitor blebbistatin fully blocked this transition. Heightened Ca(2+) buffering by the R193H myofilaments, and not alterations in Ca(2+) handling by the sarcoplasmic reticulum, slowed the decay rate of the Ca(2+) transient. Incomplete mechanical relaxation conferred by R193H was exacerbated at increasing pacing frequencies independent of elevated diastolic Ca(2+). R193H cTnI-dependent mechanical tone caused acute remodeling to a quasicontracted state not elicited by other Ca(2+)-sensitizing proteins and is a direct correlate of the stiff heart characteristic of RCM in vivo. These results point toward targets downstream of Ca(2+) handling, notably thin filament regulation and actin-myosin interaction, in designing therapeutic strategies to redress the primary cell morphological and mechanical underpinnings of RCM.  相似文献   

17.
Tropomyosin, an essential component of the sarcomere, regulates muscle contraction through Ca(2+)-mediated activation. Familial hypertrophic cardiomyopathy (FHC) is caused by mutations in numerous cardiac sarcomeric proteins, including myosin heavy and light chains, actin, troponin T and I, myosin binding protein C, and alpha-tropomyosin. This study developed transgenic mouse lines that encode an FHC mutation in alpha-tropomyosin; this mutation is an amino acid substitution at codon 180 (Glu180Gly) which occurs in a troponin T binding region. Non-transgenic and control mice expressing wild-type alpha-tropomyosin demonstrate no morphological or physiological changes. Expression of exogenous mutant tropomyosin leads to a concomitant decrease in endogenous alpha-tropomyosin without altering the expression of other contractile proteins. Histological analysis shows that initial pathological changes, which include ventricular concentric hypertrophy, fibrosis and atrial enlargement, are detected within 1 month. The disease-associated changes progressively increase and result in death between 4 and 5 months. Physiological analyses of the FHC mice using echocardiography, work-performing heart analyses, and force measurements of cardiac myofibers, demonstrate dramatic functional differences in diastolic performance and increased sensitivity to calcium. This report demonstrates that mutations in alpha-tropomyosin can be severely disruptive of sarcomeric function, which consequently triggers a dramatic hypertrophic response that culminates in lethality.  相似文献   

18.
Contraction in striated and cardiac muscles is regulated by the motions of a Ca(2+)-sensitive tropomyosin/troponin switch. In contrast, troponin is absent in other muscle types and in nonmuscle cells, and actomyosin regulation is myosin-linked. Here we report an unusual crystal structure at 2.7 A of the C-terminal 31 residues of rat striated-muscle alpha-tropomyosin (preceded by a fragment of the GCN4 leucine zipper). The C-terminal 22 residues (263-284) of the structure do not form a two-stranded alpha-helical coiled coil as does the rest of the molecule, but here the alpha-helices splay apart and are stabilized by the formation of a tail-to-tail dimer with a symmetry-related molecule. The site of splaying involves a small group of destabilizing core residues that is present only in striated muscle tropomyosin isoforms. These results reveal a specific recognition site for troponin T and clarify the physical basis for the unique regulatory mechanism of striated muscles.  相似文献   

19.
Restrictive cardiomyopathy (RCM) has been linked to mutations in the thin filament regulatory protein cardiac troponin I (cTnI). As the pathogenesis of RCM from genotype to clinical phenotype is not fully understood, transgenic (Tg) mice were generated with cardiac specific expression of an RCM-linked missense mutation (R193H) in cTnI. R193H Tg mouse hearts with 15% stoichiometric replacement had smaller hearts and significantly elevated end diastolic pressures (EDP) in vivo. Using a unique carbon microfiber-based assay, membrane intact R193H adult cardiac myocytes generated higher passive tensions across a range of physiologic sarcomere lengths resulting in significant Ca(2+) independent cellular diastolic tone that was manifest in vivo as elevated organ-level EDP. Sarcomere relaxation and Ca(2+) decay was uncoupled in isolated R193H Tg adult myocytes due to the increase in myofilament Ca(2+) sensitivity of tension, decreased passive compliance of the sarcomere, and adaptive in vivo changes in which phospholamban (PLN) content was decreased. Further evidence of Ca(2+) and mechanical uncoupling in R193H Tg myocytes was demonstrated by the biphasic response of relaxation to increased pacing frequency versus the negative staircase seen with Ca(2+) decay. In comparison, non-transgenic myocyte relaxation closely paralleled the accelerated Ca(2+) decay. Ca(2+) transient amplitude was also significantly blunted in R193H Tg myocytes despite normal mechanical shortening resulting in myocyte hypercontractility when compared to non-transgenics. These results identify for the first time that a single point mutation in cTnI, R193H, directly causes elevated EDP due to a myocyte intrinsic loss of compliance independent of Ca(2+) cycling or altered cardiac morphology. The compound influence of impaired relaxation and elevated EDP represents a clinically severe form of diastolic dysfunction similar to the hemodynamic state documented in RCM patients.  相似文献   

20.
Lu D  Ma Y  Zhang W  Bao D  Dong W  Lian H  Huang L  Zhang L 《Hypertension》2012,60(1):81-89
Cytochrome P450 2E1 (CYP2E1) is a cytochrome P450 enzyme that catalyzes the metabolism of toxic substrates. CYP2E1 is upregulated in heart disease, including the dilated cardiomyopathy (DCM) mouse model. Here, knockdown of CYP2E1 significantly ameliorated the dilated left ventricle, thin wall, and dysfunctional contraction in the cTnT(R141W) and adriamycin-induced DCM mouse models. Interstitial fibrosis, poorly organized myofibrils, and swollen mitochondria with loss of cristae were improved in the myocardium of α-myosin heavy chain (MHC)-cTnT(R141W)×CYP2E1-silence double-transgenic mice when compared with the cTnT(R141W) transgenic mice. Oxidative stress, the activation of caspase 3 and caspase 9, the release of cytochrome c, and the apoptosis in the myocardium were significantly decreased in double-transgenic mice compared with the cTnT(R141W) transgenic mice. In summary, the expression of CYP2E1 is upregulated in heart disease and might be induced by hypoxemia in cardiomyopathy. The overexpression of CYP2E1 can enhance the metabolism of endogenous ketones to meet the energy demand of the heart in certain disease states, but the overexpression of CYP2E1 can also increase oxidative stress and apoptosis in the DCM heart. Knockdown or downregulation of CYP2E1 might be a therapeutic strategy to control the development of DCM after mutations of cTnT(R141W) or other factors, because DCM is the third most common cause of heart failure and the most frequent cause of heart transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号