首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinal muscular atrophy (SMA) is one of the most common autosomal-recessive diseases, caused by absence of both copies of the survival motor neuron 1 (SMN1) gene. Identification of SMA carriers has important implications for individuals with a family history and the general population. SMA carriers are completely healthy and most are unaware of their carrier status until they have an affected child. A total of 422 individuals have been studied to identify SMA carriers. This cohort included 117 parents of children homozygously deleted for SMN1 (94% were carriers and 6% had two copies of SMN1; of these individuals, two in seven had the '2+0' genotype, two in seven were normal but had children carrying a de novo deletion and three in seven were unresolved), 158 individuals with a significant family history of SMA (47% had one copy, 49% had two copies and 4% had three copies of SMN1) and 146 individuals with no family history of SMA (90% had two copies, 2% had one copy and 8% had three copies of SMN1). The SMA carrier frequency in the Australian population appears to be 1/49 and the frequency of two-copy SMN1 alleles and de novo deletion mutations are both at least 1.7%. A multimodal approach involving quantitative analysis, linkage analysis and genetic risk assessment (GRA), facilitates the resolution of SMA carrier status in individuals with a family history as well as individuals of the general population, providing couples with better choices in their family planning.  相似文献   

2.
目的探讨脊髓性肌萎缩(spinal muscular atrophy,SMA)的临床表型与运动神经元生存基因(survival motor neuron,SMN)拷贝数变化之间是否存在相关性。方法应用TaqMan技术的实时荧光定量PCR方法对57例不同临床表型的SMA患者的SMN2基因拷贝数进行检测。结果预测拷贝数为1的SM/Ve基因的平均拷贝数为1.017±0.090,变异系数(coefficient of variation,CV)值8.9%;预测拷贝数为2的SMN2基因的平均拷贝数为2.019±0.080,CV值3.9%;预测拷贝数为3的SMN2基因的平均拷贝数为3.104±0.170,CV值5.4%。Ⅰ型SMA患者SMNe基因平均拷贝数为1.926±0.460,Ⅱ型为2.508±0.460,Ⅲ型为2.876±0.270。Ⅱ型SMA患者SMN2平均拷贝数明显高于Ⅰ型(t=4.24,P〈0.01),Ⅲ型SMA患者SMN2平均拷贝数明显高于Ⅱ型(t=2.44,P〈0.01)。85.72%Ⅰ型SMA患者SMN2以2个拷贝为主;Ⅱ型SMA以2个和3个拷贝为主,分别占40%和60%;82%的Ⅲ型SMA则以3个拷贝为主。结论SMA临床表型的变化与SMN2基因拷贝数明显相关。不同类型SMA患者㈣拷贝数的分布不同:各型SMA患者至少有1个拷贝的Shine,11和Ⅲ型SMA患者的ShiNe拷贝数多于I型患者。提示疾病的严重程度依赖于SMN2拷贝数的变化。  相似文献   

3.
Most carriers of autosomal recessive spinal muscular atrophy (SMA) have only one copy of SMN1 because of SMN1 gene deletions or gene conversions from SMN1 to SMN2, which has only one base difference in coding sequence from SMN1. Using SMN gene dosage analysis, we determined the copy numbers of SMN1 and SMN2 in the general population as well as in SMA patients and carriers. Increased SMN1 copy number is associated with decreased SMN2 copy number in the general population; that is, SMN2 copy number was decreased to one or zero copies in 11 of 13 individuals with three or four copies of SMN1, whereas only 71 of 164 individuals with two copies of SMN1 had one or zero copies of SMN2 (P<0.01). SMN2 copy number was increased to three or four in a subset of SMN1 deletion/conversion carriers, and in most SMA patients with a milder phenotype. In conclusion, our data provide evidence that gene conversion from SMN2 to SMN1 occurs, and that SMN1 converted from SMN2 is present in the general population.  相似文献   

4.
Proximal spinal muscular atrophy (SMA) is a common motor neuron disease in humans and in its most severe form causes death by the age of 2 years. It is caused by defects in the telomeric survival motor neuron gene ( SMN1 ), but patients retain at least one copy of a highly homologous gene, centromeric SMN ( SMN2 ). Mice possess only one survival motor neuron gene ( Smn ) whose loss is embryonic lethal. Therefore, to obtain a mouse model of SMA we created transgenic mice that express human SMN2 and mated these onto the null Smn (-/-)background. We show that Smn (-/-); SMN2 mice carrying one or two copies of the transgene have normal numbers of motor neurons at birth, but vastly reduced numbers by postnatal day 5, and subsequently die. This closely resembles a severe type I SMA phenotype in humans and is the first report of an animal model of the disease. Eight copies of the transgene rescues this phenotype in the mice indicating that phenotypic severity can be modulated by SMN2 copy number. These results show that SMA is caused by insufficient SMN production by the SMN2 gene and that increased expression of the SMN2 gene may provide a strategy for treating SMA patients.  相似文献   

5.
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder which presents with various clinical phenotypes ranging from severe to very mild. All forms are caused by the homozygous absence of the survival motor neuron ( SMN1 ) gene. SMN1 and a nearly identical copy ( SMN2 ) are located in a duplicated region at 5q13 and encode identical proteins. The genetic basis for the clinical variability of SMA remains unclear, but it has been suggested that the copy number of SMN2 could influence the disease severity. We have assessed the number of SMN2 genes in patients with different clinical phenotypes by fluorescence in situ hybridization (FISH) using as SMN probe a mixture of small specific DNA fragments. Gene copy number was established by FISH on interphase nuclei, but the presence of two SMN2 genes on the same chromosome could also be revealed by FISH on metaphase spreads. All patients had at least two SMN2 genes. We found two or three copies of SMN2 in severely affected type I patients, three copies in intermediately affected type II patients, generally four copies in mildly affected type III patients and four or eight copies in patients with very mild adult-onset SMA. No alterations of the genes were detected by Southern blot and sequence analysis, suggesting that all gene copies of SMN2 were intact. These data provide additional evidence that the SMN2 genes modulate the disease severity and suggest that knowledge of the gene copy number could be of some prognostic value.  相似文献   

6.
脊髓性肌萎缩症SMN1基因定量研究及基因携带者的筛查   总被引:4,自引:0,他引:4  
目的进行脊髓性肌萎缩症(spinal muscular atrophy,SMA)基因携带者的筛查,为遗传咨询提供理论依据。方法应用实时荧光定量PCR特异性扩增264名健康人、88例经基因诊断确诊SMA患者的双亲、32名SMA家系其它成员的SMN1基因第7外显子及其邻近区域,以已确定只有2拷贝SMN1的样品作为标准对照。结果88例确诊SMA患者双亲除4名SMN1拷贝数为2外,其余均只有1拷贝SMN1。264名正常人中5人仅有1拷贝SMN1,为基因携带者,该组中含2、3、4拷贝SMN1的人数分别为232、25、2。32名SMA家系成员中有2名SMN1拷贝数为1,为基因携带者,25名SMN1拷贝数为2,另5名拷贝数为3。结论实时荧光定量PCR技术可进行单拷贝差异SMN1基因的定量检测,结果准确、重复性好,基因携带者的筛查为本病遗传咨询提供了重要依据。  相似文献   

7.
8.
Best practice guidelines for molecular analysis in spinal muscular atrophy.   总被引:7,自引:0,他引:7  
With a prevalence of approximately 1/10 000, and a carrier frequency of 1/40-1/60 the proximal spinal muscular atrophies (SMAs) are among the most frequent autosomal recessive hereditary disorders. Patients can be classified clinically into four groups: acute, intermediate, mild, and adult (SMA types I, II, III, and IV, respectively). The complexity and instability of the genomic region at chromosome 5q13 harbouring the disease-causing survival motor neuron 1 (SMN1) gene hamper molecular diagnosis in SMA. In addition, affected individuals with SMA-like phenotypes not caused by SMN1, and asymptomatic individuals with two mutant alleles exist. The SMN gene is present in at least one telomeric (SMN1) and one centromeric copy (SMN2) per chromosome in normal (non-carrier) individuals, although chromosomes containing more copies of SMN1 and/or SMN2 exist. Moreover, the two SMN genes (SMN1 and SMN2) are highly homologous and contain only five base-pair differences within their 3' ends. Also, a relatively high de novo frequency is present in SMA. Guidelines for molecular analysis in diagnostic applications, carrier detection, and prenatal analysis using direct and indirect approaches are described. Overviews of materials used in the molecular diagnosis as well as Internet resources are included.  相似文献   

9.
Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by mutations in the survival motor neuron1 gene (SMN1). Global carrier frequency is around 1 in 50 and carrier detection is crucial to define couples at risk to have SMA offspring. Most SMA carriers have one SMN1 copy and are currently detected using quantitative methods. A few, however, have two SMN1 genes in cis (2/0 carriers), complicating carrier diagnosis in SMA. We analyzed our experience in detecting 2/0 carriers from a cohort of 1562 individuals, including SMA parents, SMA relatives, and unrelated individuals of the general population. Interestingly, in three couples who had an SMA child, both the parents had two SMN1 copies. Families of this type have not been previously reported. Our results emphasize the importance of performing a detailed carrier study in SMA parents with two SMN1 copies. Expanding the analysis to other key family members might confirm potential 2/0 carriers. Finally, when a partner of a known carrier presents two SMN1 copies, the study of both parents will provide a more accurate diagnosis, thus optimizing genetic counseling.  相似文献   

10.
Spinal muscular atrophy (SMA) is caused by loss of the survival motor neuron gene (SMN1) and retention of the SMN2 gene. The copy number of SMN2 affects the amount of SMN protein produced and the severity of the SMA phenotype. While loss of mouse Smn is embryonic lethal, two copies of SMN2 prevents this embryonic lethality resulting in a mouse with severe SMA that dies 5 days after birth. Here we show that expression of full-length SMN under the prion promoter (PrP) rescues severe SMA mice. The PrP results in high levels of SMN in neurons at embryonic day 15. Mice homozygous for PrP-SMN with two copies of SMN2 and lacking mouse Smn survive for an average of 210 days and lumbar motor neuron root counts in these mice were normal. Expression of SMN solely in skeletal muscle using the human skeletal actin (HSA) promoter resulted in no improvement of the SMA phenotype or extension of survival. One HSA line displaying nerve expression of SMN did affect the SMA phenotype with mice living for an average of 160 days. Thus, we conclude that expression of full-length SMN in neurons can correct the severe SMA phenotype in mice. Furthermore, a small increase of SMN in neurons has a substantial impact on survival of SMA mice while high SMN levels in mature skeletal muscle alone has no impact.  相似文献   

11.
Wirth B 《Human mutation》2000,15(3):228-237
Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons in the spinal cord, causing progressive weakness of the limbs and trunk, followed by muscle atrophy. SMA is one of the most frequent autosomal recessive diseases, with a carrier frequency of 1 in 50 and the most common genetic cause of childhood mortality. The phenotype is extremely variable, and patients have been classified in type I-III SMA based on age at onset and clinical course. All three types of SMA are caused by mutations in the survival motor neuron gene (SMN1). There are two almost identical copies, SMN1 and SMN2, present on chromosome 5q13. Only homozygous absence of SMN1 is responsible for SMA, while homozygous absence of SMN2, found in about 5% of controls, has no clinical phenotype. Ninety-six percent of SMA patients display mutations in SMN1, while 4% are unlinked to 5q13. Of the 5q13-linked SMA patients, 96.4% show homozygous absence of SMN1 exons 7 and 8 or exon 7 only, whereas 3. 6% present a compound heterozygosity with a subtle mutation on one chromosome and a deletion/gene conversion on the other chromosome. Among the 23 different subtle mutations described so far, the Y272C missense mutation is the most frequent one, at 20%. Given this uniform mutation spectrum, direct molecular genetic testing is an easy and rapid analysis for most of the SMA patients. Direct testing of heterozygotes, while not trivial, is compromised by the presence of two SMN1 copies per chromosome in about 4% of individuals. The number of SMN2 copies modulates the SMA phenotype. Nevertheless, it should not be used for prediction of severity of the SMA.  相似文献   

12.
In an analysis of 30 families affected by spinal muscular atrophy (SMA) we have used the solid-phase minisequencing method to determine the ratio between the number of telomeric and centromeric copies of the survival motor neuron gene (SMN and cBCD541 respectively) on normal and SMA chromosomes. This has enabled us to establish haplotypes with regard to SMN and cBCD541, and estimate their frequencies, on both types of chromosomes. Six predominant haplotypes were identified, three for normal chromosomes and three for SMA chromosomes, characterized by having 0, 1, or 2 copies, respectively, of cBCD541. We found evidence for the presence of patients homozygous for a deletion of SMN and with only one copy of cBCD541, but found none deleted for all copies of this gene. Several asymptomatic carriers of SMA with only a single copy of SMN and no copy of cBCD541 were identified. We could not confirm the hypothesis that the presence of more copies of cBCD541 is correlated to a less severe course of the disease. The frequencies of haplotypes characterized by having 0, 1, or 2 copies, respectively, of cBCD541 were found to differ significantly between normal and SMA chromosomes. This distribution can be explained by an underrepresentation of the haplotype completely lacking SMN genes, which is expected to cause early embryonic death in homozygotes. This first report of a direct haplotype analysis of SMN and cBCD541 should help clarify the role of cBCD541 in the pathogenesis of SMA.   相似文献   

13.
Genetic risk assessment in carrier testing for spinal muscular atrophy   总被引:4,自引:0,他引:4  
As evidenced by the complete absence of a functionally critical sequence in exon 7, approximately 94% of individuals with clinically typical spinal muscular atrophy (SMA) lack both copies of the SMN1 gene at 5q13. Hence most carriers have only one copy of SMN1. Combining linkage and dosage analyses for SMN1, we observed unaffected individuals who have two copies of SMN1 on one chromosome 5 and zero copies of SMN1 on the other chromosome 5. By dosage analysis alone, such individuals, as well as carriers of non-deletion disease alleles, are indistinguishable from non-carrier individuals. We report that approximately 7% of unaffected individuals without a family history of SMA have three or four copies of SMN1, implying a higher frequency of chromosomes with two copies of SMN1 than previously reported. We present updated calculations for disease and non-disease allele frequencies and we describe how these frequencies can be used for genetic risk assessment in carrier testing for SMA.  相似文献   

14.
15.
Spinal muscular atrophy (SMA) is caused by loss of the survival motor neuron 1 gene (SMN1) and retention of the SMN2 gene, resulting in reduced SMN. SMA mice can be rescued with high expression of SMN in neurons, but when is this high expression required? We have developed a SMA mouse with inducible expression of SMN to address the temporal requirement for high SMN expression. Both embryonic and early postnatal induction of SMN resulted in a dramatic increase in survival with some mice living greater than 200 days. The mice had no marked motor deficits and neuromuscular junction (NMJ) function was near normal thus it appears that induction of SMN in postnatal SMA mice rescues motor function. Early postnatal SMN induction, followed by a 1-month removal of induction at 28 days of age, resulted in no morphological or electrophysiological abnormalities at the NMJ and no overt motor phenotype. Upon removal of SMN induction, five mice survived for just over 1 month and two female mice have survived past 8 months of age. We suggest that there is a postnatal period of time when high SMN levels are required. Furthermore, two copies of SMN2 provide the minimal amount of SMN necessary to maintain survival during adulthood. Finally, in the course of SMA, early induction of SMN is most efficacious.  相似文献   

16.
17.
脊髓性肌萎缩症SMN基因拷贝数定量分析   总被引:6,自引:1,他引:6  
目的 探讨临床诊断为脊髓性肌萎缩症 (spinal muscular atrophy,SMA)而 PCR定性无运动神经元生存 (survival motor neuron,SMN )基因 T拷贝 (SMN - T)缺失患者的遗传基础 ;并探索 SMA表型与SMN基因 C(SMN- C)拷贝数的关系及 SMA患者及其直系亲属和正常人 SMN基因拷贝数的分布。方法对临床和病理诊断为 SMA ~ 型及少见型 4 5例患者、2 5名表型正常的 SMA直系亲属进行 SMN- T和SMN- C基因拷贝数定量分析 ,并与 33名正常人进行对比 ;所有对象均已经 PCR Dra 酶切法定性检测SMN基因 ,其中 ~ 型的 7例和 型的 2例为 SMN- T纯合缺失 ,余者无缺失。建立 SMN- T和囊性纤维化跨膜调节因子 (cystic fibrosis transmembrane conductance regulator,CFTR)的内标 ,所有标本进行非放射性、非荧光标记的多重竞争性 PCR,根据产物 SMN- T/ CFTR和 SMN- C/ CFTR比值 ,计算 SMN- T和SMN - C拷贝数。结果  7例 ~ 型 SMN - T拷贝数均为 0 ; 型 2例拷贝数为 0 ,2例为 1个拷贝数 ,系杂合缺失 ,4例为 2个拷贝 ; 型及其他型患者均为 2个拷贝 ;直系亲属中 9例为 1个拷贝 ,系杂合缺失 ,其余及正常对照组均为 2个拷贝。SMN - C拷贝数在 SMA 型为≤ 2 , ~ 型为≤ 3, 型及其它型 SMA、直系亲属和正常对照组均为 0~ 3。结  相似文献   

18.
Most spinal muscular atrophy patients lack both copies of SMN1. Loss of SMN1 ('0-copy alleles') can occur by gene deletion or SMN1-to-SMN2 gene conversion. Despite worldwide efforts to map the segmental duplications within the SMN region, most assemblies do not correctly delineate these genes. A near pericentromeric location provides impetus for the strong evidence that SMN1 and SMN2 arose from a primate-specific paralogous gene duplication. Here we meta-analyzed our recent laboratory results together with available published data, in order to calculate new mutation rates and allele/haplotype frequencies in this recalcitrant and highly unstable region of the human genome. Based on our tested assumption of compliance with Hardy-Weinberg equilibrium, we conclude that the SMN1 allele frequencies are: '0-copy disease alleles,' 0.013; '1-copy normal alleles,' 0.95; '2-copy normal alleles (ie, two copies of SMN1 on one chromosome),' 0.038; and '1(D) disease alleles (SMN1 with a small intragenic mutation),' 0.00024. The SMN1 haplotype ['(SMN1 copy number)-(SMN2 copy number)'] frequencies are: '0-0,' 0.00048; '0-1,' 0.0086; '0-2,' 0.0042; '1-0,' 0.27; '1-1,' 0.66; '1-2,' 0.015; '2-0,' 0.027; and '2-1,' 0.012. Paternal and maternal de novo mutation rates are 2.1 x 10(-4) and 4.2 x 10(-5), respectively. Our data provide the basis for the most accurate genetic risk calculations, as well as new insights on the evolution of the SMN region, with evidence that nucleotide position 840 (where a transition 840C>T functionally distinguishes SMN2 from SMN1) constitutes a mutation hotspot. Our data also suggest selection of the 1-1 haplotype and the presence of rare chromosomes with three copies of SMN1.  相似文献   

19.
20.
Screening for carriers of spinal muscular atrophy (SMA) is necessary for effective clinical/prenatal diagnosis and genetic counseling. However, a population-based study of SMA prevalence in mainland China has not yet been conducted. In this study, the copy number of survival motor neuron (SMN) genes was determined in 1712 newborn cord blood samples collected from southern China and from 25 core families, which included 26 SMA patients and 44 parents, to identify SMA carriers. The results presented 13 groups with different SMN1/SMN2 ratios among 1712 newborn individuals, which corresponded to 1535 subjects with two copies of SMN1, 119 with three copies of SMN1, 17 with four copies of SMN1, and 41 with a heterozygous deletion of SMN1 exon 7. Simultaneously, two ‘2+0'' genotypes and two point mutations were found among the 44 obligate carriers in the core families, including a novel SMN1 splice-site mutation that was identified in the junction between intron 6 and exon 7 (c. 835–1G>A). These results indicated that the carrier frequency is 1/42 in the general Chinese population and that duplicated SMN1 alleles and de novo deletion mutations are present in a small number of SMA carriers. In addition, we developed and validated a new alternative screening method using a reverse dot blot assay for rapid genotyping of deletional SMA. Our research elucidated the genetic load and SMN gene variants that are present in the Chinese population, and could serve as the basis for a nationwide program of genetic counseling and clinical/prenatal diagnosis to prevent SMA in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号