首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The establishment of functional synaptic connections and activity is a pivotal process in the development of neuronal networks. We have studied the synaptic activity in the developing rat cerebellum, and the contribution mediated by purinergic receptors. The mean frequency of the spontaneous postsynaptic currents (sPSCs) recorded with the whole-cell patch-clamp technique from Purkinje neurones in acute brain slices at room temperature, increased fourfold from 4.4 ± 0.8 Hz at postnatal day 9/10 ( n = 23) to 17.8 ± 1.6 Hz at postnatal day 17–20 (p17–p20; n = 113; P < 0.01). ATP, which increased the frequency of sPSCs by up to 100%  (EC50= 18 μ m )  in the third postnatal week, started to modulate the synaptic activity during the second postnatal week, which was determined by three processes: (1) the appearance of functional ATP receptors during p10–p12, (2) the enhancement of the sPSC frequency by endogenous ATP release becoming apparent after inhibition of ecto-ATPases by 6- N , N -diethyl-β,γ-dibromomethylene- d -adenosine-5-triphosphate (ARL67156; 50 μ m ) at p11–p12, and (3) with tonic stimulation of purinoceptors at p14, as revealed by the P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 μ m ). ATP had a similar effect at later stages (p24–p27) and at 35°C. Our results suggest that endogenous release of ATP starts to enhance the synaptic activity in Purkinje neurones by the end of the second postnatal week.  相似文献   

2.
Neuromedin U (NMU) is a brain–gut peptide first isolated from the spinal cord. Recent studies on NMU and its receptors have suggested a role of NMU in sensory transmission. Here we report on the localization of NMU in sensory neurones, and the actions of NMU in the substantia gelatinosa (SG) and the deep layer of the dorsal horn (laminae III–V) in adult rat spinal cord slices using the patch-clamp technique. An immunohistochemical study revealed that NMU peptide was present in most of the dorsal root ganglion neurones. In the spinal cord, NMU-immunoreactive neurones were located in the deep layer (laminae III–V), but not in the SG. However, NMU-positive axon terminals were observed in the SG as well as the deep layer. Bath-applied NMU (10 μ m ) increased the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs) in the SG and deep layer neurones by 146 ± 14% ( P < 0.01, n = 17) and 174 ± 21% ( P < 0.01, n = 6), respectively, without inducing any postsynaptic membrane currents recorded in tetrodotoxin. On the other hand, NMU did not affect miniature inhibitory postsynaptic currents recorded in tetrodotoxin. These findings, taken together, suggest that NMU acts on the presynaptic terminals of the primary afferent fibres working as an autocrine/paracrine neuromodulator to increase mEPSC frequency of the SG and deep layer neurones. This may account for the spinal mechanisms of the NMU-induced hyperalgesia reported previously.  相似文献   

3.
The vanilloid receptor protein (VR1) is a well-characterised integrator of noxious stimuli in peripheral sensory neurones. There is evidence for the presence of VR1 in the central nervous system, but little information as to its role there. In this study we have examined the actions of agonists for VR1 receptors in the rat locus coeruleus (LC), using whole-cell patch-clamp recordings from acutely isolated neurones and neurones in slices. Superfusion with capsaicin resulted in a concentration-dependent increase in the frequency of isolated miniature excitatory postsynaptic currents (mEPSCs) in LC neurones. The mean amplitude of the mEPSCs was not affected by capsaicin. The effects of capsaicin (1 μM) were abolished by the VR1 receptor antagonists capsazepine (10 μM) and iodoresiniferatoxin (300 n m ). Removal of extracellular Ca2+ abolished the capsaicin-induced increase in frequency of mEPSCs. Capsaicin superfusion had no consistent effects on evoked excitatory postsynaptic currents. Capsaicin superfusion also resulted in the release of an adrenoceptor agonist in the LC but did not affect the membrane currents of acutely isolated LC neurones. These data demonstrate that the VR1 receptor appears to be located presynaptically on afferents to the LC, and that activation of VR1 may serve to potentiate the release of glutamate and adrenaline/noradrenaline in this brain region.  相似文献   

4.
Loading slices of rat barrel cortex with 50 μ m BAPTA-AM while recording from pyramidal cells in layer II induces a marked reduction in both the frequency and amplitudes of mEPSCs. These changes are due to a presynaptic action. Blocking the refilling of Ca2+ stores with 20 μ m cyclopiazonic acid (CPA), a SERCA pump inhibitor, in conjunction with neuronal depolarisation to activate Ca2+ stores, results in a similar reduction of mEPSCs to that observed with BAPTA-AM, indicating that the source for intracellular Ca2+ is the endoplasmic reticulum. Block or activation of ryanodine receptors by 20 μ m ryanodine or 10 m m caffeine, respectively, shows that a significant proportion of mEPSCs are caused by Ca2+ release from ryanodine stores. Blocking IP3 receptors with 14 μ m 2-aminoethoxydiphenylborane (2APB) also reduces the frequency and amplitude of mEPSCs, indicating the involvement of IP3 stores in the generation of mEPSCs. Activation of group I metabotropic receptors with 20 μ m ( RS) -3,5-dihydroxyphenylglycine (DHPG) results in a significant increase in the frequency of mEPSCs, further supporting the role of IP3 receptors and indicating a role of group I metabotropic receptors in causing transmitter release. Statistical evidence is presented for Ca2+-induced Ca2+ release (CICR) from ryanodine stores after the spontaneous opening of IP3 stores.  相似文献   

5.
The cholinergic and glutamatergic systems are known to be downregulated in the brain of Alzheimer's disease patients. Galantamine and nefiracetam have been shown to potentiate the phasic activity of nicotinic acetylcholine receptors (nAChRs) in the brain. Stimulation of nAChRs is also known to cause release of various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). We have previously reported that nefiracetam and galantamine potentiate the activity of nAChRs. Therefore, nefiracetam and galantamine are hypothesized to cause stimulations of the glutamate and GABA systems via stimulation of nAChRs. The present study was set out to test this hypothesis by measuring the effects of these drugs on spontaneous miniature excitatory postsynaptic currents (mEPSCs) and spontaneous miniature inhibitory postsynaptic currents (mIPSCs) recorded by the whole-cell patch clamp technique from rat cortical neurons in primary cultures. Acetylcholine (ACh) at 30 nM generated a steady inward current and increased the frequency of mEPSCs and mIPSCs. Nefiracetam at 10 nM plus 30 nM ACh increased the frequency of mEPSCs and mIPSCs beyond the levels increased by ACh alone. The potentiating action of nefiracetam was abolished by dihydro-β-erythroidine. None of these treatments affected the amplitude of mEPSCs or mIPSCs. Galantamine at 1 μM plus ACh did not significantly potentiate the frequency. Nefiracetam at 10 nM had no effect on neurons that did not respond to 30 nM ACh. It was concluded that the nefiracetam released glutamate via stimulation of the α4β2 nAChRs.  相似文献   

6.
In neonatal spinal cord, we previously reported that exogenous angiotensin II (ANG II) acts at postsynaptic AT1 receptors to depolarize neonatal rat spinal ventral horn neurons in vitro. This study evaluated an associated increase in synaptic activity. Patch clamp recordings revealed that 38/81 thoracolumbar (T7-L5) motoneurons responded to bath applied ANG II (0.3-1 microM; 30 s) with a prolonged (5-10 min) and reversible increase in spontaneous postsynaptic activity, selectively blockable with Losartan (n = 5) but not PD123319 (n = 5). ANG-II-induced events included both spontaneous inhibitory (IPSCs; n = 6) and excitatory postsynaptic currents (EPSCs; n = 5). While most ANG induced events were tetrodotoxin-sensitive, ANG induced a significant tetrodotoxin-resistant increase in frequency but not amplitude of miniature IPSCs (n = 7/13 cells) and EPSCs (n = 2/7 cells). In 35/77 unidentified neurons, ANG II also induced a tetrodotoxin-sensitive and prolonged increase in their spontaneous synaptic activity that featured both IPSCs (n = 5) and EPSCs (n = 4) when tested in the presence of selective amino acid receptor antagonists. When tested in the presence of tetrodotoxin, ANG II was noted to induce a significant increase in the frequency but not the amplitude of mIPSCs (n = 9) and mEPSCs (n = 8). ANG also increased spontaneous motor activity from isolated mouse lumbar ventral rootlets. Collectively, these observations support the existence of a wide pre- and postsynaptic distribution of ANG II AT1 receptors in neonatal ventral spinal cord that are capable of influencing both inhibitory and excitatory neurotransmission.  相似文献   

7.
Structural malformations of the cortex, arising as a result of genetic mutation or injury during development are associated with dyslexia, epilepsy, and other neurological deficits. We have used a rat model of a microgyral malformation to examine mechanisms of epileptogenesis. Our previous studies showed that the frequency of miniature excitatory postsynaptic currents (mEPSCs) recorded in neocortical layer V pyramidal neurons is increased in malformed cortex at a time when field potential epileptiform events can be evoked. Here we show that the increase occurs at an age before onset of cortical epileptiform activity and at a time when the frequency of mEPSCs in control layer V pyramidal neurons is stable. An increase in the frequency of spontaneous (s)EPSCs in layer V pyramidal neurons of malformed cortex occurs earlier than that for mEPSCs, suggesting that there may additionally be alterations in intrinsic properties that increase the excitability of the cortical afferents. Frequencies of EPSC bursts and late evoked activity were also increased in malformed cortex. These results suggest that a hyperinnervation of layer V pyramidal neurons by excitatory afferents occurs as an active process likely contributing to subsequent development of field epileptiform events.  相似文献   

8.
The hypothalamic peptides hypocretin-1 (orexin A) and hypocretin-2 (Hcrt-2; orexin B) are important in modulating behaviours demanding arousal, including sleep and appetite. Fibres containing hypocretin project from the hypothalamus to the superficial dorsal horn (SDH) of the spinal cord (laminae I and II); however, the effects produced by hypocretins on SDH neurones are unknown. To study the action of Hcrt-2 on individual SDH neurones, tight-seal, whole-cell recordings were made with biocytin-filled electrodes from rat lumbar spinal cord slices. In 19 of 63 neurones, Hcrt-2 (30 n m to 1 μ m ) evoked an inward (excitatory) current accompanied by an increase in baseline noise. The inward current and noise were unaffected by TTX but were blocked by the P2X purinergic receptor antagonist suramin (300–500 μ m ). Hcrt-2 (30 n m to 1 μ m ) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in the majority of neurones. The sIPSC increase was blocked by strychnine (1 μ m ) and by TTX (1 μ m ), suggesting that the increased sIPSC frequency was glycine and action potential dependent. Hcrt-2 increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in a few neurones but had no effect on dorsal root-evoked EPSCs in these or in other neurones. Neurones located in outer lamina II, particularly radial and vertical cells, were most likely to respond to Hcrt-2. We conclude that Hcrt-2 has excitatory effects on certain SDH neurones, some of which exert inhibitory influences on other cells of the region, consistent with the perspective that hypocretin has a role in orchestrating reactions related to arousal, including nociception, pain and temperature sense.  相似文献   

9.
It is well established that synaptic transmission declines at temperatures below physiological, but many in vitro studies are conducted at lower temperatures. Recent evidence suggests that temperature-dependent changes in presynaptic mechanisms remain in overall equilibrium and have little effect on transmitter release at low transmission frequencies. Our objective was to examine the postsynaptic effects of temperature. Whole-cell patch-clamp recordings from principal neurons in the medial nucleus of the trapezoid body showed that a rise from 25°C to 35°C increased miniature EPSC (mEPSC) amplitude from −33 ± 2.3 to −46 ± 5.7 pA ( n = 6) and accelerated mEPSC kinetics. Evoked EPSC amplitude increased from −3.14 ± 0.59 to −4.15 ± 0.73 nA with the fast decay time constant accelerating from 0.75 ± 0.09 ms at 25°C to 0.56 ± 0.08 ms at 35°C. Direct application of glutamate produced currents which similarly increased in amplitude from −0.76 ± 0.10 nA at 25°C to −1.11 ± 0.19 nA 35°C. Kinetic modelling of fast AMPA receptors showed that a temperature-dependent scaling of all reaction rate constants by a single multiplicative factor ( Q 10= 2.4) drives AMPA channels with multiple subconductances into the higher-conducting states at higher temperature. Furthermore, Monte Carlo simulation and deconvolution analysis of transmission at the calyx of Held showed that this acceleration of the receptor kinetics explained the temperature dependence of both the mEPSC and evoked EPSC. We propose that acceleration in postsynaptic AMPA receptor kinetics, rather than altered presynaptic release, is the primary mechanism by which temperature changes alter synaptic responses at low frequencies.  相似文献   

10.
The Kölliker–Fuse nucleus (KF), part of the respiratory network, is involved in the modulation of respiratory phase durations in response to peripheral and central afferent inputs. The KF is immature at birth. Developmental changes in its physiological and anatomical properties have yet to be investigated. Since brain-derived neurotrophic factor (BDNF) is of major importance for the maturation of neuronal networks, we investigated its effects on developmental changes in the KF on different postnatal days (neonatal, P1–5; intermediate, P6–13; juvenile, P14–21) by analysing single neurones in the in vitro slice preparation and network activities in the perfused brainstem preparation in situ . The BDNF had only weak effects on the frequency of mixed excitatory and inhibitory spontaneous postsynaptic currents (sPSCs) in neonatal slice preparations. Postnatally, in the intermediate and juvenile age groups, a significant augmentation of the sPSC frequency was observed in the presence of 100 p m BDNF (+23.5 ± 12.6 and +76.7 ± 28.4%, respectively). Subsequent analyses of BDNF effects on evoked excitatory postsynaptic currents (eEPSCs) revealed significant enhancement of eEPSC amplitude of +20.8 ± 7.0% only in juvenile stages (intermediates, −13.2 ± 4.8%). On the network level, significant modulation of phrenic nerve activity following BDNF microinjection into the KF was also observed only in juveniles. The data suggest that KF neurones are subject to BDNF-mediated fast synaptic modulation after completion of postnatal maturation. After maturation, BDNF contributes to modulation of fast excitatory neurotransmission in respiratory-related KF neurones. This may be important for network plasticity associated with the processing of afferent information.  相似文献   

11.
The relative contribution by GABA and glycine to synaptic transmission of motoneurons was investigated using an hypoglossus nucleus slice preparation from neonatal rats. Spontaneous, miniature, or electrically evoked postsynaptic currents (sPSCs, mPSCs, ePSCs, respectively) mediated by glycine or GABA were recorded under whole cell voltage clamp after blocking excitatory glutamatergic transmission with kynurenic acid. The overall majority of Cl(-)-mediated sPSCs was glycinergic, while only one-third was GABAergic; 70 +/- 10% of mPSCs were glycinergic while 22 +/- 8% were GABAergic. Tetrodotoxin (TTX) application dramatically reduced the frequency (and slightly the amplitude) of GABAergic events without changing frequency or amplitude of glycinergic sPSCs. These results indicate that, unlike spontaneous GABAergic transmission, glycine-mediated neurotransmission was essentially independent of network activity. There was a consistent difference in the kinetics of GABAergic and glycinergic responses as GABAergic events had significantly slower rise and decay times than glycinergic ones. Such a difference was always present whenever sPSCs, mPSCs, or ePSCs were measured. Finally, GABAergic and glycinergic mPSCs were differentially modulated by activation of glutamate metabotropic receptors (mGluRs), which are abundant in the hypoglossus nucleus. In fact, the broad-spectrum mGluR agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (50 microM), which in control solution increased the frequency of both GABAergic and glycinergic sPSCs, enhanced the frequency of glycinergic mPSCs only. These results indicate that on brain stem motoneurons, Cl(-)-mediated synaptic transmission is mainly due to glycine rather than GABA and that GABAergic and glycinergic events differ in terms of kinetics and pharmacological sensitivity to mGluR activation or TTX.  相似文献   

12.
Li YH  Han TZ  Meng K 《Neuroscience letters》2008,432(3):212-216
We have previously shown that glycine binding sites on presynaptic NMDA receptors (NMDA-Rs) can tonically regulate glutamate release in the rat visual cortex. In the present study, we investigated the subunit composition of these presynaptic NMDA-Rs. We recorded miniature a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (mEPSCs) using whole-cell voltage clamp in layer II/III pyramidal neurons of the rat visual cortex with the open-channel NMDA receptor blocker, MK-801, in the recording pipette. We found that the frequency of mEPSCs is significantly reduced by 7-chloro-kynurenic acid (7-Cl KYNA) an NMDA-R glycine binding site antagonist, and glycine reverses this effect. Using a specific antagonist for NR2B-NMDA-Rs, Ro 25-6981 [(alphaR,betaS)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidinepropanol hydrochloride], instead of 7-Cl KYNA, we found that the frequency of mEPSCs is also significantly reduced but glycine cannot reverse this effect. Moreover, Zn(2+), an NR2A-NMDA-R antagonist, did not affect mEPSC frequency. These results suggest that presynaptic NR2B-containing NMDA-Rs are located in layer II/III pyramidal neurons of the rat visual cortex, and that the glycine binding site of these type NMDA-Rs tonically regulates glutamate release.  相似文献   

13.
The role of group III metabotropic glutamate receptors (mGluRs) in modulating excitatory synaptic transmission was investigated in the rat entorhinal cortex (EC) in vitro. AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) were recorded in the whole cell configuration of the patch-clamp technique from visually identified neurons in layers V and II. In layer V, bath application of the specific group III mGluR agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 500 microM) resulted in a marked facilitation of both spontaneous and activity-independent "miniature" (s/mEPSC) event frequency. The facilitatory effect of L-AP4 (100 microM) on sEPSC frequency prevailed in the presence of DL-2-amino-5-phosphonopentanoic acid (100 microM) but was abolished by the group III antagonist (RS)-cyclopropyl-4-phosphonophenylglycine (20 microM). These data confirmed that group III mGluRs, and not N-methyl-D-aspartate (NMDA) receptors were involved in the response to L-AP4. Bath application of the specific mGluR4a agonist (1S,3R,4S)-1-aminocyclopentane-1,2, 4-tricarboxylic acid (20 microM) also had a facilitatory effect on sEPSC frequency, suggesting involvement of mGluR4a. In layer II neurons, L-AP4 caused a reduction in sEPSC frequency but did not affect mEPSCs recorded in the presence of tetrodotoxin. These findings suggest that a group III mGluR with mGluR4a-like pharmacology is involved in modulating synaptic transmission in layer V cells of the EC. The effect on mEPSCs suggests that this receptor is located presynaptically and that its activation results in a direct facilitation of glutamate release. This novel facilitatory effect is specific to layer V and, to our knowledge, is the first report of a direct facilitatory action of group III mGluRs on synaptic transmission. In layer II, L-AP4 had an inhibitory effect on glutamate release similar to that reported in other brain regions.  相似文献   

14.
GABAA receptor-mediated presynaptic depolarization is believed to induce presynaptic inhibition of excitatory synaptic transmission. We report here the functional roles of presynaptic GABAA receptors in glycinergic transmission of the rat spinal cord. In mechanically dissociated rat sacral dorsal commissural nucleus (SDCN) neurons attached with native glycinergic and GABAergic nerve terminals, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were isolated from a mixture of both glycinergic and GABAergic sIPSCs by perfusing the SDCN nerve cell body with ATP-free internal solution. Under such experimental conditions, exogenously applied muscimol (0.5 μM) depolarized glycinergic presynaptic nerve terminals and significantly increased glycinergic sIPSC frequency to 542.7 ± 47.3 % of the control without affecting the mean current amplitude. The facilitatory effect of muscimol on sIPSC frequency was completely blocked by bicuculline (10 μM) or SR95531 (10 μM), selective GABAA receptor antagonists. This muscimol-induced presynaptic depolarization was due to a higher intraterminal Cl concentration, which is maintained by a bumetanide-sensitive Na-K-Cl cotransporter. On the contrary, when electrically evoked, this muscimol-induced presynaptic depolarization was found to decrease the action potential-dependent glycine release evoked by focal stimulation of a single terminal. The results suggest that GABAA receptor-mediated presynaptic depolarization has two functional roles: (1) presynaptic inhibition of action potential-driven glycinergic transmission, and (2) presynaptic facilitation of spontaneous glycinergic transmission.  相似文献   

15.
Y Hori  K Endo 《Neuroscience letters》1992,142(2):191-195
Whole-cell voltage-clamp recordings were made from spinothalamic and spinomesencephalic tract neurons in thin-slice preparations of rat spinal cord. In the presence of tetrodotoxin, spontaneous inward and outward postsynaptic currents were observed near the resting membrane potential. These currents were divided into miniature excitatory postsynaptic currents (mEPSCs) mediated by glutamate, and miniature inhibitory postsynaptic currents (mIPSCs) mediated by glycine or gamma-aminobutyric acid (GABA). Glutamatergic mEPSCs had two components mediated by NMDA and non-NMDA receptors. Analyzing these miniature synaptic currents, valuable information concerning the pre- and postsynaptic mechanisms underlying modulation of synaptic transmission in the spinal dorsal horn could be obtained.  相似文献   

16.
Magnocellular neurons (MCNs) of the hypothalamic supraoptic nucleus (SON) secrete vasopressin and oxytocin. With the use of whole-cell and nystatin-perforated patch recordings of MCNs in current- and voltage-clamp modes, we show that high-frequency stimulation (HFS, 10-200 Hz) of excitatory afferents induces increases in the frequency and amplitude of 2,3-dioxo-6-nitro-1,2,3, 4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX)-sensitive miniature excitatory postsynaptic currents (mEPSCs) lasting up to 20 min. This synaptic enhancement, referred to as short-term potentiation (STP), could be induced repeatedly; required tetrodotoxin (TTX)-dependent action potentials to initiate, but not to maintain; and was independent of postsynaptic membrane potential, N-methyl-D-aspartate (NMDA) receptors, or retrograde neurohypophyseal neuropeptide release. STP was not accompanied by changes in the conductance of the MCNs or in the responsiveness of the postsynaptic non-NMDA receptors, as revealed by brief application of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate. mEPSCs showed similar rise times before and after HFS and analysis of amplitude distributions of mEPSCs revealed one or more peaks pre-HFS and the appearance of additional peaks post-HFS, which were equidistant from the first peak. STP of mEPSCs was not associated with enhanced evoked responses, but was associated with an NBQX-sensitive increase in spontaneous activity of MCNs. Thus we have identified a particularly long-lasting potentiation of excitatory synapses in the SON, which has a presynaptic locus, is dissociated from changes in evoked release, and which regulates postsynaptic cell excitability.  相似文献   

17.
After experimental status epilepticus, many dentate granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) have also been found in persons with epilepsy. These cells exhibit a high rate of spontaneous activity, which may enhance seizure propagation. Electron microscopic studies indicated that HEGCs receive more recurrent mossy fiber innervation than normotopic granule cells in the same animals but receive much less inhibitory innervation. This study used hippocampal slices prepared from rats that had experienced pilocarpine-induced status epilepticus to test the hypothesis that an imbalance of synaptic excitation and inhibition contributes to the hyperexcitability of HEGCs. Mossy fiber stimulation evoked a much smaller GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSC) in HEGCs than in normotopic granule cells from either control rats or rats that had experienced status epilepticus. However, recurrent mossy fiber-evoked excitatory postsynaptic currents (EPSCs) of similar size were recorded from HEGCs and normotopic granule cells in status epilepticus-experienced rats. HEGCs exhibited the highest frequency of miniature excitatory postsynaptic currents (mEPSCs) and the lowest frequency of miniature inhibitory postsynaptic currents (mIPSCs) of any granule cell group. On average, both mEPSCs and mIPSCs were of higher amplitude, transferred more charge per event, and exhibited slower kinetics in HEGCs than in granule cells from control rats. Charge transfer per unit time in HEGCs was greater for mEPSCs and much less for mIPSCs than in the normotopic granule cell groups. A high ratio of excitatory to inhibitory synaptic function probably accounts, in part, for the hyperexcitability of HEGCs.  相似文献   

18.
Chen Q  Pan HL 《Neuroscience》2006,142(2):595-606
The hypothalamic paraventricular (PVN) neurons projecting to the spinal cord and brainstem play an important role in the control of homeostasis and the sympathetic nervous system. Although GABA(B) receptors are present in the PVN, their function in the control of synaptic inputs to PVN presympathetic neurons is not clear. Using retrograde tracing and whole-cell patch-clamp recordings in rat brain slices, we determined the role of presynaptic GABA(B) receptors in regulation of glutamatergic and GABAergic inputs to spinally projecting PVN neurons. The GABA(B) receptor agonist baclofen (1-50 microM) dose-dependently decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs). The effect of baclofen on sEPSCs and sIPSCs was completely blocked by 10 microM CGP52432, a selective GABA(B) receptor antagonist. Baclofen also significantly reduced the frequency of both miniature excitatory and miniature inhibitory postsynaptic currents (mEPSCs and mIPSCs). Furthermore, uncoupling pertussis toxin-sensitive G(i/o) proteins with N-ethylmaleimide abolished baclofen-induced inhibition of mEPSCs and mIPSCs. However, the inhibitory effect of baclofen on the frequency of mIPSCs and mEPSCs persisted in the presence of either Cd2+, a voltage-gated Ca2+ channel blocker, or 4-aminopyridine, a blocker of voltage-gated K+ channels. Our results suggest that activation of presynaptic GABA(B) receptors inhibits synaptic GABA and glutamate release to PVN presympathetic neurons. This presynaptic action of GABA(B) receptors is mediated by the N-ethylmaleimide-sensitive G(i/o) proteins, but independent of voltage-gated Ca2+ and K+ channels.  相似文献   

19.
The initial skin blood flow response to rapid local heating is an axon reflex, which may be mediated by calcitonin gene-related peptide and substance P released from C-fibres. We investigated the role of nitric oxide (NO) and noradrenaline on the temperature threshold for the axon reflex during gradual local heating. 36 subjects participated in two studies. Using microdialysis, we examined the following interventions: NO synthase inhibition (10 m m N G-nitro- l -arginine methyl ester, l -NAME); low-dose NO infusion (1.0 μ m sodium nitroprusside, SNP); adrenergic blockade (10 m m bretylium tosylate); and low-dose (0.1 μ m ) noradrenaline infusion. Laser-Doppler flowmetry was used to measure red blood cell flux. Skin was heated at a rate of 0.1°C min−1 from 33°C to 40°C. Compared to control skin sites, the axon reflex response was shifted to a higher temperature in 4 subjects in the l -NAME sites (control, 37.0 ± 0.3°C, n = 16; l -NAME, 39.8 ± 0.1°C, n = 4; P < 0.001) and absent in 12 subjects. The response was also absent in l -NAME plus low-dose SNP sites and not altered by low-dose SNP infusion alone. Adrenergic blockade, with and without low-dose noradrenaline infusion, also abolished the axon reflex response in all subjects. Low-dose noradrenaline infusion alone shifted the axon reflex to a significantly lower temperature threshold compared to control sites (control, 38.2 ± 0.5°C; noradrenaline, 37.7 ± 0.4°C, P < 0.05, n = 5). These results suggest that endogenous NO and noradrenaline contribute to the temperature threshold of the axon reflex response during gradual local heating of the skin.  相似文献   

20.
Lee HS  Chong W  Han SK  Lee MH  Ryu PD 《Neuroscience》2001,102(2):401-411
Glutamate is known to increase neuronal excitability in the subfornical organ, a circumventricular organ devoid of the blood-brain barrier. To understand the synaptic mechanism of neuronal excitation by glutamate in this nucleus, we examined the effects of glutamate on GABAergic spontaneous inhibitory postsynaptic currents recorded from subfornical organ neurons in the rat brain slice. The baseline frequency, amplitude and decay time-constant of such spontaneous synaptic currents were 5.60 Hz, 119 pA and 17.3 ms, respectively. Glutamate (10-1000 microM) selectively inhibited the frequency of spontaneous GABAergic inhibitory postsynaptic currents (half-maximal effective concentration=47 microM) with little effects on their amplitudes and decay time constants. The inhibitory effect of glutamate on the frequency of spontaneous GABAergic postsynaptic currents was not blocked by tetrodotoxin (1 microM), or by the antagonists of ionotropic glutamate receptors. In contrast, such inhibitory effect of glutamate was mimicked by general or group II selective metabotropic glutamate receptor agonists such as DCGIV (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (half-maximal effective concentration=112 nM), but not by the agonists for group I or group III metabotropic glutamate receptors. Under current clamp mode, glutamate reduced the frequencies of spontaneous inhibitory postsynaptic potentials and action potentials in subfornical organ neurons. Our data indicate that glutamate decreases the frequency of spontaneous inhibitory postsynaptic currents by acting on the group II metabotropic glutamate receptors on axonal terminals in the subfornical organ. From these results we suggest that the glutamate-induced modulation of tonic GABAergic inhibitory synaptic activity can influence the excitability of subfornical organ neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号