首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Inhibition of glycogen synthase kinase (GSK)-3 reduces ischemia/reperfusion injury by mechanisms that involve the mitochondria. The goal of this study was to explore possible molecular targets and mechanistic basis of this cardioprotective effect. In perfused rat hearts, treatment with GSK inhibitors before ischemia significantly improved recovery of function. To assess the effect of GSK inhibitors on mitochondrial function under ischemic conditions, mitochondria were isolated from rat hearts perfused with GSK inhibitors and were treated with uncoupler or cyanide or were made anoxic. GSK inhibition slowed ATP consumption under these conditions, which could be attributable to inhibition of ATP entry into the mitochondria through the voltage-dependent anion channel (VDAC) and/or adenine nucleotide transporter (ANT) or to inhibition of the F(1)F(0)-ATPase. To determine the site of the inhibitory effect on ATP consumption, we measured the conversion of ADP to AMP by adenylate kinase located in the intermembrane space. This assay requires adenine nucleotide transport across the outer but not the inner mitochondrial membrane, and we found that GSK inhibitors slow AMP production similar to their effect on ATP consumption. This suggests that GSK inhibitors are acting on outer mitochondrial membrane transport. In sonicated mitochondria, GSK inhibition had no effect on ATP consumption or AMP production. In intact mitochondria, cyclosporin A had no effect, indicating that ATP consumption is not caused by opening of the mitochondrial permeability transition pore. Because GSK is a kinase, we assessed whether protein phosphorylation might be involved. Therefore, we performed Western blot and 1D/2D gel phosphorylation site analysis using phos-tag staining to indicate proteins that had decreased phosphorylation in hearts treated with GSK inhibitors. Liquid chromatographic-mass spectrometric analysis revealed 1 of these proteins to be VDAC2. Taken together, we found that GSK-mediated signaling modulates transport through the outer membrane of the mitochondria. Both proteomics and adenine nucleotide transport data suggest that GSK regulates VDAC and that VDAC may be an important regulatory site in ischemia/reperfusion injury.  相似文献   

2.
Halestrap  Andrew P.  Kerr  Paul M.  Javadov  Sabzali  Suleiman  Saadah 《Sepsis》1999,2(4):312-325
The mitochondrial permeability transition (MPT) occurs when a non-specific pore opens in the inner mitochondrial membrane and converts the mitochondrion from an organelle whose ATP production sustains the normal function of the cell to an instrument of death. Conditions favouring the MPT including high [Ca2+], oxidative stress and adenine nucleotide depletion, all of which occur when a tissue is reperfused following a period of ischemia. Cyclosporin A (CsA) and low pH (<7.0) are potent inhibitors of the MPT. Methods have been devised to demonstrate directly that the MPT pores open upon reperfusion but not during ischemia. The mechanism of the MPT appears to involve binding of mitochondrial cyclophilin (CyP) to the adenine nucleotide translocase (ANT) followed by a calcium-mediated conformational change that converts the ANT into a non-specific pore. Understanding the molecular mechanism has assisted in devising strategies that can be used to protect tissues from damage caused by reperfusion injury. These might also be of benefit in the prevention of multiple organ failure for which reperfusion injury of the gut is thought to be the initial trigger. Protective regimes include the pretreatment of tissues prior to ischemia/reperfusion with CsA (binds to CyP), free radical scavengers that reduce oxidative stress (e.g., pyruvate and propofol) and agents that decrease pHi (e.g., pyruvate or amelioride derivatives). Reperfusion injury can produce both immediate cell death by necrosis or delayed apoptotic cell death and it appears that the mitochondria determine which route is taken. Prolonged opening leads to rapid cell death by necrosis, whilst transient opening leads to cytochrome c release and subsequent apoptosis hours or days later.  相似文献   

3.
Mitochondria play a key role in determining cell fate during exposure to stress. Their role during ischemia/reperfusion is particularly critical because of the conditions that promote both apoptosis by the mitochondrial pathway and necrosis by irreversible damage to mitochondria in association with mitochondrial permeability transition (MPT). MPT is caused by the opening of permeability transition pores in the inner mitochondrial membrane, leading to matrix swelling, outer membrane rupture, release of apoptotic signaling molecules such as cytochrome c from the intermembrane space, and irreversible injury to the mitochondria. During ischemia (the MPT priming phase), factors such as intracellular Ca2+ accumulation, long-chain fatty acid accumulation, and reactive oxygen species progressively increase mitochondrial susceptibility to MPT, increasing the likelihood that MPT will occur on reperfusion (the MPT trigger phase). Because functional cardiac recovery ultimately depends on mitochondrial recovery, cardioprotection by ischemic and pharmacological preconditioning must ultimately involve the prevention of MPT. Investigations into this area are beginning to unravel some of the mechanistic links between cardioprotective signaling and mitochondria.  相似文献   

4.
OBJECTIVE: The present study aimed to elucidate the involvement of sodium overload and following damage to mitochondria during ischemia in the genesis of ischemia/reperfusion injury of perfused rat hearts. METHODS: Isolated, perfused hearts were exposed to different durations (15-35 min) of ischemia followed by 60-min reperfusion. At the end of ischemia or reperfusion, myocardial sodium and calcium contents and myocardial high-energy phosphates were determined. The cardiac mitochondrial ability to produce ATP was measured using saponin-skinned bundles. The effects of sodium on the mitochondrial membrane potential and the oxidative phosphorylation rate were examined using isolated mitochondria from normal hearts. RESULTS: Post-ischemic recovery of left ventricular developed pressure decreased in an ischemic duration-dependent manner. Ischemia induced an increase in myocardial sodium, but not calcium. This increase was dependent on the duration of ischemia. The oxygen consumption rate of skinned bundles from the ischemic heart decreased at the end of ischemia. Incubation of mitochondria with various concentrations of sodium chloride or sodium lactate in vitro resulted in a depolarization of mitochondrial membrane potential and a decrease in ATP-generating activity. This decrease was not restored after elimination of sodium compounds. CONCLUSIONS: The present findings suggest that ischemia induces an increase in sodium influx from the extracellular space and that accumulated sodium may induce irreversible damage to mitochondria during ischemia. This mitochondrial dysfunction may be one of the most important determinants for the genesis of ischemia/reperfusion injury in perfused rat hearts.  相似文献   

5.
A plethora of apoptotic stimuli converge on the mitochondria and affect their membrane integrity, thereby eliciting release of multiple death-promoting factors residing in the mitochondrial intermembrane space into the cytosol. Among the death-promoting factors, a serine protease, high temperature requirement A2 (HtrA2) has drawn attention as a key player in the apoptosis pathways in different pathological conditions including myocardial ischemia/reperfusion injury. Heart ischemia/reperfusion results in HtrA2 translocation from the mitochondria to the cytosol, where it promotes cardiomyocyte apoptosis via a protease activity-dependent and caspase-mediated pathway. Once released, cytosolic HtrA2 causes X-chromosome-linked inhibitor of apoptosis protein (XIAP) degradation, caspase activation, and subsequent apoptosis. Consistent with the hypothesis, inhibition of HtrA2 improved postischemic myocardial contractile functions along with reduction of myocardial infarct size. The precise mechanism underlying HtrA2-induced apoptosis in mammalian cells has been studied through biochemical, structural, and genetic studies, in which HtrA2 promotes proteolytic activation of caspases through multiple pathways in heart ischemia. Therapeutic interventions that inhibit HtrA2 expression, translocation, or protease activity (such as by using the ucf-101 inhibitor) may provide an attractive therapeutics in the treatment of cardiovascular diseases.  相似文献   

6.
Mitochondrial damage during myocardial ischemia   总被引:7,自引:0,他引:7  
Summary The effects of 3 hours of ischemia and 1 hour of reperfusion on biochemical, physiological and ultrastructural parameters were studied in 12 dogs. In the ischemic subendocardium without reperfusion, mitochondrial losses of adenine (ATP+ADP+AMP) and pyridine (NAD+NADH) nucleotides far exceeded those observed in whole tissue. Adenine nucleotide translocator (aNT) was severely inhibited and seemed to, be a sensitive indicator of a lesion of the inner mitochondrial membrane.Postischemic reperfusion led to a slight loss of adenine and pyridine nucleotides from the reversibly damaged subepicardium and to an enorous loss from the irreversibly damaged subendocardium. The washout of nucleotides from irreversibly damaged areas caused the negative para-Nitro Blue Tetrazolium (pNBT) staining of the infarcted tissue. Diagnosis of cell death with pNBT failed after the occlusion period without reflow because pyridine, although lost from the mitochondria, was still present in the tissue. In reversibly injured areas, mitochondrial function and ultrastructure were restored after reperfusion, although a significant nucleotide loss was found in the tissue. These studies suggest that mitochondrial ultrastructure and function may play a key role in cellular viability during recovery from ischemia.Supported by NIH Grant HL 17736 and the Veterans Administration, and the Max-Planck-Institut für experimentelle Kardiologie  相似文献   

7.
Yeh CH  Pang JH  Wu YC  Wang YC  Chu JJ  Lin PJ 《Chest》2004,125(1):228-235
OBJECTIVE: Cardiac ischemia/reperfusion-induced oxidative damage often occurs in mitochondria. We identified differentially expressed genes in the canine heart after global cardiac ischemia/reperfusion injury was induced during cardiopulmonary bypass (CPB). METHODS: Differential-display polymerase chain reaction (ddPCR) was performed on cardiac tissue from canine hearts with or without global cardiac ischemia/reperfusion injury induced during CPB. Ischemia/reperfusion-associated mitochondrial injury was investigated at the protein level using various cardioplegic solutions and Western blot analysis. RESULTS: A mitochondrial protein nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase gene was identified on ddPCR. The NADH:ubiquinone oxidoreductase gene was up-regulated in canine hearts after 60 min of global cardiac ischemia/reperfusion injury during CPB. Western blot analysis revealed that, after manipulation with different cardioplegic solutions, increased Bcl-2 expression and decreased cytochrome c expression were associated with cardiomyocytic apoptosis. CONCLUSIONS: The NADH:ubiquinone oxidoreductase gene is up-regulated during global cardiac ischemia/reperfusion injury during CPB in canines. To our knowledge, involvement of this gene in global cardiac ischemia/reperfusion injury during CPB has not been described previously. The NADH:ubiquinone oxidoreductase gene may have a role in the regulation of molecular changes during the global cardiac ischemia/reperfusion injury during CPB, such as the up-regulation of Bcl-2, which might block release of cytochrome c from the mitochondria and prevent cardiomyocytic apoptosis.  相似文献   

8.
The mitochondrion is a powerhouse of the cell, a platform of cell signaling and decision-maker of cell death, including death by ischemia/reperfusion. Ischemia shuts off ATP production by mitochondria, and cell viability is compromised by energy deficiency and build-up of cytotoxic metabolites during ischemia. Furthermore, the mitochondrial permeability transition pore (mPTP) is primed by ischemia to open upon reperfusion, leading to reperfusion-induced cell necrosis. mPTP opening can be suppressed by ischemic preconditioning (IPC) and other interventions that induce phosphorylation of GSK-3β. Activation of the mitochondrial ATP-sensitive K+ channel (mKATP channel) is an important signaling step in a trigger phase of IPC, which ultimately enhances GSK-3β phosphorylation upon reperfusion, and this channel functions as a mediator of cytoprotection as well. The mitochondrial Ca2+-activated K+ channel appears to play roles similar to those of the mKATP channel, though regulatory mechanisms of the channels are different. Phosphorylated GSK-3β inhibits mPTP opening presumably by multiple mechanisms, including preservation of hexokinase II in mPTP complex, prevention of interaction of cyclophilin-D with adenine nucleotide translocase, inhibition of p53 activation and attenuation of ATP hydrolysis during ischemia. However, cytoprotective signaling pathways to GSK-3β phosphorylation and other mPTP regulatory factors are modified by co-morbidities, including type 2 diabetes, and such modification makes the myocardium refractory to IPC and other cardioprotective agents. Regulatory mechanisms of mPTP, and their alterations by morbidities frequently associated with ischemic heart disease need to be further characterized for translation of mitochondrial and mPTP biology to the clinical arena.  相似文献   

9.
Ischemia and post-ischemic reperfusion cause a wide array of functional and structural alterations of mitochondria. Although mitochondrial impairment is recognized as pivotal in determining loss of viability, the causal relationships among the various processes involved is ill defined. Nevertheless, a wide consensus exists in attributing a crucial role to opening of the mitochondrial permeability transition pore (PTP). Strong support for this concept has recently been provided by the reduced infarct size observed in mice lacking cyclophilin D. This protein located within the mitochondrial matrix favours PTP opening by increasing its sensitivity to Ca2+ in a process that is antagonized by cyclosporin A. Genetic approaches have also been used to demonstrate that adenine nucleotide translocase is not an essential component of the PTP. Here, we discuss our current understanding of the structure and function of PTP in the context of heart injury caused by ischemia and reperfusion.  相似文献   

10.
Two mitochondrial subpopulations were isolated from guinea-pig heart by density gradient centrifugation. Under control conditions, both contain functionally intact mitochondria in which ischemic damage develops similarly. However, in one subpopulation adenine nucleotide content, adenine nucleotide translocase activity, oxidative phosphorylation and Ca2+ uptake are a quarter lower than in the other one when related to mitochondrial protein mass. Cytochrome contents and uncoupled electron flux are the same. Changes develop most evidently at the very beginning of ischemia for NAD-linked respiration. When ischemia progresses, cytochromes and the translocator protein are gradually lost or inactivated. Thereupon only partial recovery of mitochondrial function can be obtained after 20 min of reperfusion.  相似文献   

11.
12.
The purpose of the present study was to determine if repetitive myocardial ischemia would result in the cumulative loss of mitochondrial adenine nucleotides. Isolated perfused rat hearts were subjected to continuous or intermittent ischemia. A single 5-minute period of continuous ischemia did not result in a significant decrease in the mitochondrial adenine nucleotide pool; a single 10-minute period of ischemia resulted in a decrease of approximately 17%. Next, the adenine nucleotide content of mitochondria from preischemic and 30-minute continuous ischemic hearts was compared with two groups of hearts undergoing intermittent ischemia (both groups receiving a total of 30 minutes of ischemia). One group received three 10-minute episodes of ischemia interrupted by 5-minute periods of reperfusion (3 x 10-minute intermittent ischemia); the other intermittent ischemic group received six 5-minute episodes of ischemia interrupted by 5-minute periods of perfusion (6 x 5-minute intermittent ischemia). The mitochondrial adenine nucleotide content (expressed as nanomoles per nanomole cytochrome a) for the preischemic and 30-minute continuous ischemic hearts was 14.7 +/- 0.6 and 8.0 +/- 0.4, respectively. The mitochondrial adenine nucleotide content of the 3 x 10-minute intermittent ischemia group (8.5 +/- 0.5) was not significantly different from the 30-minute continuous ischemic group. The mitochondrial adenine nucleotide content of the 6 x 5-minute intermittent ischemia group (11.0 +/- 0.6) was significantly larger than that of the 30-minute continuous and the 3 x 10-minute intermittent ischemia groups (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Reperfusion injury has become a scientific problem of increasing importance, in part because of recent developments of thrombolytic therapy. The mechanisms of reperfusion injury following focal cerebral ischemia, however, are not known in detail. Recent studies strongly suggest that reactive oxygen species (ROS) and calcium overload play an important role in reperfusion injury and that pharmacological interventions against calcium- or free radical-mediated damage could extend the therapeutic window in cerebral ischemia/reperfusion. The mediators involved are known to induce a mitochondrial permeability transition (PT) during the reperfusion period, which is associated with uncoupling of mitochondrial respiration, loss of mitochondrial membrane potential, and a burst production of ROS, leading to cellular death. The mitochondrial PT is considered to be a key process in reperfusion injury following cerebral ischemia, as also observed in other organs such as heart and liver. Pharmacological modulation of mitochondrial permeability changes have the potential to reduce tissue damage due to reperfusion.  相似文献   

14.
The objective of this study was to identify the mitochondrial proteins that undergo changes in phosphorylation during global ischemia and reperfusion in the isolated rabbit heart. We also assessed whether the cardioprotective intervention of ischemic preconditioning affected mitochondrial protein phosphorylation. We established a reconstituted system using isolated mitochondria and cytosol from control or ischemic hearts. We found that phosphorylation of a 46-kDa protein on a serine residue was increased in ischemia and that phosphorylation was reduced in control or preconditioned hearts. Using 2D gel electrophoresis and mass spectrometry, we have identified the 46-kDa protein as mitochondrial translational elongation factor Tu (EF-Tu(mt)). These data reveal that ischemia and preconditioning modulate the phosphorylation of EF-Tu(mt) and suggest that the mitochondrial protein synthesis machinery may be regulated by phosphorylation. Phosphorylation of mitochondrial EF-Tu has not been previously described; however, in prokaryotes, EF-Tu phosphorylation inhibits protein translation. We hypothesized that phosphorylation of mitochondrial EF-Tu would inhibit mitochondrial protein translation and attempted to reproduce the effect with inhibition of mitochondrial protein synthesis by chloramphenicol. We found that chloramphenicol pretreatment significantly reduced infarct size, suggesting that mitochondrial protein synthesis is one determinant of myocardial injury during ischemia and reperfusion.  相似文献   

15.
The antiapoptotic protein Bcl-2 is targeted to the mitochondria, but it is uncertain whether Bcl-2 affects only myocyte survival after ischemia, or whether it also affects metabolic functions of mitochondria during ischemia. Hearts from mice overexpressing human Bcl-2 and from their wild-type littermates (WT) were subjected to 24 minutes of global ischemia followed by reperfusion. During ischemia, the decrease in pH(i) and the initial rate of decline in ATP were significantly reduced in Bcl-2 hearts compared with WT hearts (P<0.05). The reduced acidification during ischemia was dependent on the activity of mitochondrial F1F0-ATPase. In the presence of oligomycin (Oligo), an F1F0-ATPase inhibitor, the decrease in pH(i) was attenuated in WT hearts, but in Bcl-2 hearts, Oligo had no additional effect on pH(i) during ischemia. Likewise, addition of Oligo to WT hearts slowed the rate of decline in ATP during ischemia to a level similar to that observed in Bcl-2 hearts, but addition of Oligo had no significant effect on the rate of decline in ATP in Bcl-2 hearts during ischemia. These data are consistent with Bcl-2-mediated inhibition of consumption of glycolytic ATP. Furthermore, mitochondria from Bcl-2 hearts have a reduced rate of consumption of ATP on uncoupler addition. This could be accomplished by limiting ATP entry into the mitochondria through the voltage-dependent anion channel, and/or the adenine nucleotide transporter, or by direct inhibition of the F1F0-ATPase. Immunoprecipitation showed greater interaction between Bcl-2 and voltage-dependent anion channel during ischemia. These data indicate that Bcl-2 modulation of metabolism contributes to cardioprotection.  相似文献   

16.
Mitochondria from diabetic hearts are sensitized to mitochondrial permeability transition pore (PTP) opening, which may be responsible for the increased propensity for cardiac injury in diabetic hearts. The purpose of this study was to determine if redox-dependent PTP opening contributes to augmented injury in diabetic hearts, and if compounds targeted at mitochondrial PTP, ROS, and calcium influx protected diabetic hearts from injury. Hearts from control or streptozotocin-induced diabetic rats were excised for either whole-heart or isolated mitochondria experiments. Myocardial glutathione content was oxidized in diabetic hearts when compared to control, and this translated to increased oxidation of the adenine nucleotide translocase in diabetic hearts. Diabetic mitochondria displayed significantly greater sensitivity to PTP opening than non-diabetic counterparts, which was reversed with the thiol-reducing agent dithiothreitol. The thiol-oxidant diamide increased calcium sensitivity in control, but not diabetic mitochondria. Diabetic animals treated with the mitochondria-targeted ROS suppressing peptide MTP-131 also showed improved resistance to PTP opening. In separate experiments hearts underwent ex vivo ischemia/reperfusion (IR). Diabetic hearts were more susceptible to IR injury, with infarct sizes of 60 ± 4% of the area-at-risk (vs. 46 ± 2% in non-diabetics; P<0.05). Administration of the PTP blocker NIM811 (5 μM), MTP-131 (1 nM) or the mitochondrial calcium uniporter blocker minocycline (1 μM) at the onset of reperfusion reduced infarct sizes in both control and diabetic hearts. These findings suggest that augmented susceptibility to injury in the diabetic heart is mediated by redox-dependent shifts in PTP opening, and that three novel mitochondria-targeted agents administered at reperfusion may be suitable adjuvant reperfusion therapies to attenuate injury in diabetic patients.  相似文献   

17.
The relationship between energy metabolism and the extent of irreversible ischemic damage was examined in an isolated perfused working rat heart. The amount of cardiac work recovered after reperfusion of hearts exposed to severe global ischemia was dependent upon both the duration of ischemia and the type of substrate provided (either 5 mM glucose or 5 mM glucose + acetate). There appear to be two distinct phases in the ability to recover mechanical function in the reperfused ischemic heart. The second phase corresponds to the onset of severe irreversible tissue damage. Irreversible mitochondrial damage was not found to correspond with the onset of heart failure since the ATP/ADP ratio remained constant in the reperfused myocardium. Furthermore, there does not appear to be a direct correlation between the total ATP content and the extent of irreversible damage, either during ischemia or following reperfusion. However, the total adenine nucleotide content during ischemia showed dramatic changes which correspond temporally with the initiation of the second phase of damage. The observation that the adenine nucleotide pool becomes further depleted during reperfusion suggests that alterations in the salvage pathway for adenine nucleotide synthesis have occurred. Loss of adenine nucleotides appears to be an excellent marker for irreversible heart failure. Acetate provides some protection the the ischemic myocardium. The mechanism by which acetate mediates this protective effect is discussed.  相似文献   

18.
BACKGROUND: Mitochondrial calcium overload is an important factor in defining ischemia/reperfusion injury. Since pre-menopausal women are relatively protected from ischemia and heart disease, we tested the hypothesis that gender differences alter Ca(2+) handling in rat cardiac mitochondria. METHODS: Using cardiac mitochondria isolated from male, female, and ovariectomized Sprague-Dawley rats, we measured mitochondrial calcium transport, redox state, and membrane potential (Deltapsi(m)) during exposure to a calcium bolus. Redox state was modulated using either succinate (S) or succinate and pyruvate (SP) as substrates. RESULTS: Net Ca(2+) uptake rates were significantly lower in female than male mitochondria using SP, substrate conditions that resulted in a lower redox state (NADH/NAD(+)). Inhibition of the mitochondrial transition pore (MTP) using cyclosporin A showed significantly lower net Ca(2+) uptake in both substrate solutions when mitochondria from female and ovariectomized animals were compared to males, a finding consistent with gender modulation of the mitochondrial uniporter. Blockade of the Ca(2+) uniporter by ruthenium red abolished gender or substrate solution differences in calcium release. While there were no significant differences in resting Deltapsi(m), or Deltapsi(m) following Ca(2+) addition, 80% of female samples recovered from Ca(2+)-induced depolarization compared to 57% and 43% of male and ovariectomized animals, respectively. CONCLUSIONS: Mitochondria from female hearts have lower Ca(2+) uptake rates under physiologic substrate solutions (succinate/pyruvate) and are able to appropriately maintain DeltaYm under conditions of high [Ca(2+)]. These differences are consistent with gender modulation of the Ca(2+) uniporter and may be a mechanism by which female myocardium suffers less injury with ischemia/reperfusion.  相似文献   

19.
A brief period of ischemia and reperfusion has been shown to protect the myocardium against subsequent sustained ischemia and reperfusion injury, which is called "preconditioning". A great number of investigators have explored the mechanisms underlying this preconditioning-induced cardioprotection. This article dealt with possible mechanisms of energy metabolism and mitochondrial activity for preconditioning-induced cardioprotection. Particularly, the contribution of energy metabolites produced during a brief period of ischemia and reperfusion injury, as well as mitochondrial function that is modified by changes in mitochondrial ATPase activity, opening of mitochondrial ATP-dependent potassium channels and production of free radicals in mitochondria, to ischemic preconditioning is discussed.  相似文献   

20.
M. N. Laclau, S. Boudina, J. B. Thambo, L. Tariosse, G. Gouverneur, S. Bonoron-Adèle, V. A. Saks, K. D. Garlid and P. Dos Santos. Cardioprotection by Ischemic Preconditioning Preserves Mitochondrial Function and Functional Coupling Between Adenine Nucleotide Translocase and Creatine Kinase. Journal of Molecular and Cellular Cardiology (2001) 33, 947-956. This study investigates the effect of ischemic preconditioning on mitochondrial function, including functional coupling between the adenine nucleotide translocase and mitochondrial creatine kinase, which is among the first reactions to be altered in ischemia. Three groups of Langendorff-perfused rat hearts were studied: a control group, a group subjected to 30 min ischemia followed by 15 min reperfusion, and a group subjected to ischemic preconditioning prior to 30 min ischemia and 15 min reperfusion. Ischemic preconditioning significantly delayed the onset and amplitude of contracture during ischemia, decreased enzymatic release, and improved the recovery of heart contractile function after reperfusion. Mitochondrial function was assessed in permeabilized skinned fibers. The protective effect of preconditioning was associated with preservation of mitochondrial function, as evidenced by maintenance of the high K(1/2)for ADP in regulation of mitochondrial respiration and V(max)of respiration, the near absence of respiratory stimulation by exogenous cytochrome c, and preservation of functional coupling between mitochondrial creatine kinase and adenine nucleotide translocase. These data suggest that ischemic preconditioning preserves the structure-function of the intermembrane space, perhaps by opening the mitochondrial ATP-sensitive K(+)channel. The consequence is preservation of energy transfer processes from mitochondria to ATP-utilizing sites in the cytosol. Both of these factors may contribute to cardioprotection and better functional recovery of preconditioned hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号