首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MyD88 is an adapter protein required for the induction of proinflammatory cytokines by most Toll-like receptors (TLR), and Pseudomonas aeruginosa expresses ligands for multiple TLRs. MyD88(-/-) (KO) mice are highly susceptible to aerosolized P. aeruginosa, failing to elicit an early inflammatory response and permitting a 3-log increase in bacterial CFU in the lungs by 24 h after infection. We hypothesized that alveolar macrophages are the first cells to recognize and kill aerosolized P. aeruginosa in an MyD88-dependent fashion due to their location within the airways. To determine which cells in the lungs mediate MyD88-dependent defenses against P. aeruginosa, we generated radiation bone marrow (BM) chimeras between MyD88KO and wild-type (WT) mice. MyD88KO mice transplanted with MyD88KO BM (MyD88KO-->MyD88KO mice) displayed uncontrolled bacterial replication, whereas all other chimeras controlled the infection by 24 h. However, at 4 h, both MyD88KO-->MyD88KO and WT-->MyD88KO mice permitted intrapulmonary bacterial replication, whereas MyD88KO-->WT and WT-->WT mice did not, indicating that the source of BM had little impact on the early control of infection. Similarly, the genotype of the recipient rather than that of the BM donor determined early neutrophil recruitment to the lungs. Whereas intrapulmonary TNF-alpha and IL-1beta production were associated with WT BM, levels of the CXC chemokines MIP-2 and KC as well as GM-CSF were associated with recipient genotype. We conclude that lung parenchymal and BM-derived cells collaborate in the MyD88-dependent response to P. aeruginosa infection in the lungs in mice.  相似文献   

2.
Toll-like receptors and the β-glucan receptor, dectin-1, mediate macrophage inflammatory responses to Aspergillus fumigatus through MyD88-dependent and -independent signaling mechanisms; however, pulmonary inflammatory responses in MyD88-deficient mice challenged with A. fumigatus are poorly defined. The role of MyD88 signaling in early pulmonary inflammation and fungal clearance was evaluated in C57BL/6J wild-type (WT) and MyD88-deficient (MyD88−/−) mice. Early (<48 h) after infection, MyD88−/− mice had higher fungal burdens than those of WT mice, although fungal burdens rapidly declined (>72 h) in both. MyD88−/− mice had less consolidated inflammation, with fewer NK cells, in lung tissue early (24 h) after infection than did WT mice. At the latter time point, MyD88−/− mouse lungs were characterized by a large amount of necrotic cellular debris and fibrin, while WT lungs had organized inflammation. Although there were equivalent numbers of macrophages in WT and MyD88−/− mouse lung tissues, MyD88−/− cells demonstrated delayed uptake of green fluorescent protein-expressing A. fumigatus (GFP-Af293); histologically, MyD88−/− mouse lungs had more hyphal invasion of terminal airways and vessels, the appearance of bronchiolar epithelial cell necrosis, and necrotizing vasculitis. MyD88−/− lung homogenates contained comparatively decreased amounts of interleukin-1β (IL-1β), IL-6, KC, and gamma interferon and paradoxically increased amounts of tumor necrosis factor alpha and macrophage inflammatory protein 1α. These data indicate that the MyD88-dependent pathway mediates acute pulmonary fungal clearance, inflammation, and tissue injury very early after infection. Resolution of abnormalities within a 3-day window demonstrates the importance of redundant signaling pathways in mediating pulmonary inflammatory responses to fungi.  相似文献   

3.
Legionella pneumophila is a gram-negative facultative intracellular parasite of macrophages. Although L. pneumophila is the causative agent of a severe pneumonia known as Legionnaires' disease, it is likely that most infections caused by this organism are cleared by the host innate immune system. It is predicted that host pattern recognition proteins belonging to the Toll-like receptor (TLR) family are involved in the protective innate immune responses. We examined the role of TLR-mediated responses in L. pneumophila detection and clearance using genetically altered mouse hosts in which the macrophages are permissive for L. pneumophila intracellular replication. Our data demonstrate that cytokine production by bone marrow-derived macrophages (BMMs) in response to L. pneumophila infection requires the TLR adapter protein MyD88 and is reduced in the absence of TLR2 but not in the absence of TLR4. Bacterial growth ex vivo in BMMs from MyD88-deficient mice was not enhanced compared to bacterial growth ex vivo in BMMs from heterozygous littermate controls. Wild-type mice were able to clear L. pneumophila from the lung, whereas respiratory infection of MyD88-deficient mice caused death that resulted from robust bacterial replication and dissemination. In contrast to an infection with virulent L. pneumophila, MyD88-deficient mice were able to clear infections with L. pneumophila dotA mutants, indicating that MyD88-independent responses in the lung are sufficient to clear bacteria that are unable to replicate intracellularly. In vivo growth of L. pneumophila was enhanced in the lungs of TLR2-deficient mice, which resulted in a delay in bacterial clearance. No significant differences were observed in the growth and clearance of L. pneumophila in the lungs of TLR4-deficient mice and heterozygous littermate control mice. Our data indicate that MyD88 is crucial for eliciting a protective innate immune response against virulent L. pneumophila and that TLR2 is one of the pattern recognition receptors involved in initiating this MyD88-dependent response.  相似文献   

4.
Citrobacter koseri (C. koseri) is a Gram-negative bacterium that can cause a highly aggressive form of neonatal meningitis, which often progresses to establish multi-focal brain abscesses. The roles of Toll-like receptor 4 (TLR4) and its signaling adaptor MyD88 during CNS C. koseri infection have not yet been examined, which is important since recent evidence indicates that innate immune responses are tailored towards specific pathogen classes. Here TLR4 WT (C3H/FeJ) and TLR4 mutant (C3H/HeJ) mice as well as MyD88 KO animals were infected intracerebrally with live C. koseri, resulting in meningitis and ventriculitis with accompanying brain abscess formation. MyD88 KO mice were exquisitely sensitive to C. koseri, demonstrating enhanced mortality rates and significantly elevated bacterial burdens compared to WT animals. Interestingly, although early proinflammatory mediator release (i.e. 12 h) was MyD88-dependent, a role for MyD88-independent signaling was evident at 24 h, revealing a compensatory response to CNS C. koseri infection. In contrast, TLR4 did not significantly impact bacterial burdens or proinflammatory mediator production in response to C. koseri. Similar findings were obtained with primary astrocytes, where MyD88-dependent pathways were essential for chemokine release in response to intact C. koseri, whereas TLR4 was dispensable; implicating the involvement of alternative TLRs since highly enriched astrocytes did not produce IL-1 upon bacterial exposure, which also signals via MyD88. Collectively, these findings demonstrate the importance of MyD88-dependent mechanisms in eliciting maximal proinflammatory responses, astrocyte activation, and bacterial containment during CNS C. koseri infection, as well as a late-phase MyD88-independent signaling pathway for cytokine/chemokine production.  相似文献   

5.
TIRAP: an adapter molecule in the Toll signaling pathway   总被引:2,自引:0,他引:2  
Mammalian Toll-like receptors (TLRs) recognize conserved products of microbial metabolism and activate NF-kappa B and other signaling pathways through the adapter protein MyD88. Although some cellular responses are completely abolished in MyD88-deficient mice, TLR4, but not TLR9, can activate NF-kappa B and mitogen-activated protein kinases and induce dendritic cell maturation in the absence of MyD88. These differences suggest that another adapter must exist that can mediate MyD88-independent signaling in response to TLR4 ligation. We have identified and characterized a Toll-interleukin 1 receptor (TIR) domain-containing adapter protein (TIRAP) and have shown that it controls activation of MyD88-independent signaling pathways downstream of TLR4. We have also shown that the double-stranded RNA-binding protein kinase PKR is a component of both the TIRAP- and MyD88-dependent signaling pathways.  相似文献   

6.
7.
The role of Toll-like receptors (TLR) and MyD88 for immune responses to Mycobacterium tuberculosis (Mtb) infection remains controversial. To address the impact of TLR-mediated pathogen recognition and MyD88-dependent signaling events on anti-mycobacterial host responses, we analyzed the outcome of Mtb infection in TLR2/4/9 triple- and MyD88-deficient mice. After aerosol infection, both TLR2/4/9-deficient and wild-type mice expressed pro-inflammatory cytokines promoting antigen-specific T cells and the production of IFN-gamma to similar extents. Moreover, TLR2/4/9-deficient mice expressed IFN-gamma-dependent inducible nitric oxide synthase and LRG-47 in infected lungs. MyD88-deficient mice expressed pro-inflammatory cytokines and were shown to expand IFN-gamma-producing antigen-specific T cells, albeit in a delayed fashion. Only mice that were deficient for MyD88 rapidly succumbed to unrestrained mycobacterial growth, whereas TLR2/4/9-deficient mice controlled Mtb replication. IFN-gamma-dependent restriction of mycobacterial growth was severely impaired only in Mtb-infected MyD88, but not in TLR2/4/9-deficient bone marrow-derived macrophages. Our results demonstrate that after Mtb infection neither TLR2, -4, and -9, nor MyD88 are required for the induction of adaptive T cell responses. Rather, MyD88, but not TLR2, TLR4 and TLR9, is critical for triggering macrophage effector mechanisms central to anti-mycobacterial defense.  相似文献   

8.
Chemokine receptors are important for recruiting leukocytes to sites of infection and may contribute to immune cell activation. The present study investigated the role of the chemokine receptor CCR2 in polymicrobial septic peritonitis. The results showed that peritoneal production of the CCR2 ligands CCL2 and CCL12 in septic mice was largely independent of the common Toll-like receptor signaling adaptor MyD88. Antibody blockade of CCR2 reduced the recruitment of macrophages and neutrophils to the infected peritoneal cavities of both wild-type and MyD88-deficient mice, suggesting that CCR2 engagement contributes to the MyD88-independent cellular response against polymicrobial septic peritonitis. Notably, administration of blocking CCR2 antibodies markedly increased local and systemic IL-10 levels in septic wild-type mice, whereas IL-10 was not detected in MyD88-deficient mice irrespective of whether CCR2 was blocked or not. Inhibition of CCR2 directly augmented Toll-like receptor-induced IL-10, but not TNF and IL-6, production of macrophages in vitro. Concomitant with enhanced IL-10 production, CCR2 blockade caused impaired bacterial clearance and aggravated kidney injury in wild-type, but not MyD88-null mice. These results indicate that CCR2 engagement modulates the innate immune response to polymicrobial septic peritonitis by both MyD88-dependent and -independent processes and suggest that a major function of CCR2 in sepsis is to attenuate IL-10 production and IL-10-mediated suppression of host defense.  相似文献   

9.
Inhaled endotoxins induce an acute inflammatory response in the airways mediated through Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). However, the relative roles of the TLR4 adaptor proteins TIRAP and TRIF and of the MyD88-dependent IL-1 and IL-18 receptor pathways in this response are unclear. Here, we demonstrate that endotoxin-induced acute bronchoconstriction, vascular damage resulting in protein leak, Th1 cytokine and chemokine secretion and neutrophil recruitment in the airways are abrogated in mice deficient for either TIRAP or MyD88, but not in TRIF deficient mice. The contribution of other TLR-independent, MyD88-dependent signaling pathways was investigated in IL-1R1, IL-18R and caspase-1 (ICE)-deficient mice, which displayed normal airway responses to endotoxin. In conclusion, the TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin critically depend on the expression of both adaptor proteins, TIRAP and MyD88, suggesting cooperative roles, while TRIF, IL-1R1, IL-18R signaling pathways are dispensable.  相似文献   

10.
The Toll-like receptors (TLRs) and the adaptor myeloid differentiation factor 88 (MyD88) are important in the innate immune defenses of the host to microbial infections. Meningococcal ligands signaling via TLRs control inflammatory responses, and stimulation can result in fulminant meningococcal sepsis. In this study, we show that the responses to nonlipooligosaccharide (non-LOS) ligands of meningococci are MyD88 dependent. An isogenic LOS-deficient mutant of the serogroup C meningococcal strain FAM20 caused fatal disease in wild type C57BL/6 mice that was not observed in MyD88-/- mice. Fatality correlated with high proinflammatory cytokine and C5a levels in serum, high neutrophil numbers in blood, and increased bacteremia at 24 h postinfection in the wild-type mice. Infection with the parent strain FAM20 resulted in fatality in 100% of the wild-type mice and 50% of the MyD88-/- mice. We conclude that both LOS and another neisserial ligand cause meningococcal sepsis in an in vivo mouse model and confirm that meningococcal LOS can act via both the MyD88- dependent and -independent pathways, while the non-LOS meningococcal ligand(s) acts only via the MyD88-dependent pathway.  相似文献   

11.
The ability of the innate immune system to trigger an adaptive T cell response is critical to resolution of infection with the fungal pathogen Histoplasma capsulatum. However, the signaling pathways and cell types involved in the recognition of and response to this respiratory pathogen remain poorly defined. Here, we show that MyD88, an adaptor protein vital to multiple innate immune pathways, is critically required for the host response to Histoplasma. MyD88-deficient (MyD88−/−) mice are unable to control the fungal burden and are more sensitive to Histoplasma infection than wild-type, Dectin-1−/−, or interleukin 1 receptor-deficient (IL-1R−/−) mice. We found that MyD88 is necessary for the production of key early inflammatory cytokines and the subsequent recruitment of inflammatory monocytes to the lung. In both our in vitro and ex vivo analyses, MyD88 was intrinsically required in dendritic cells and alveolar macrophages for initial cytokine production. Additionally, MyD88-deficient bone marrow-derived dendritic cells fail to efficiently control fungal growth when cocultured with primed splenic T cells. Surprisingly, mice that lack MyD88 only in dendritic cells and alveolar macrophages are competent for early cytokine production and normal survival, indicating the presence of compensatory and redundant MyD88 signaling in other cell types during infection. Ultimately, global MyD88 deficiency prevents proper T cell activation and gamma interferon (IFN-γ) production, which are critical for infection resolution. Collectively, this work reveals a central role for MyD88 in coordinating the innate and adaptive immune responses to infection with this ubiquitous fungal pathogen of humans.  相似文献   

12.
To assess the role of Toll-like receptor (TLR) signalling in host response to mycobacterial infection, mice deficient in the TLR adaptor molecule myeloid differentiation factor 88 (MyD88) were infected with the vaccine strain Mycobacterium bovis (BCG), and the immune response and bacterial burden were investigated. Macrophages and dendritic cells from MyD88-deficient mice stimulated in vitro with BCG mycobacterial antigens produced very low levels of proinflammatory cytokines, while the expression of costimulatory molecules such as CD40 and CD86 was preserved. Upon systemic infection with BCG (2 x 10(6) CFU i.v.) MyD88-deficient mice developed confluent chronic pneumonia with two log higher CFU than wild-type mice. Interestingly, the infection was controlled in liver and spleen and there was efficient systemic T-cell priming with high IFNgamma production by CD4+ splenic T cells in MyD88-deficient mice. Lung infiltrating cells showed IFNgamma production by pulmonary CD4+ T cells upon specific restimulation, and a reduced capacity to produce nitric oxide and IL-10. In summary, despite the dramatic reduction of the innate immune response, MyD88-deficient mice were able to mount an efficient T-cell response to mycobacterial antigens, which was however insufficient to control infection in the lung, resulting in chronic pneumonia in MyD88-deficient mice.  相似文献   

13.
Clostridium difficile can infect the large intestine and cause colitis when the normal intestinal microbiota is altered by antibiotic administration. Little is known about the innate immune signaling pathways that marshal inflammatory responses to C. difficile infection and whether protective and pathogenic inflammatory responses can be dissociated. Toll-like receptors predominantly signal via the MyD88 adaptor protein and are important mediators of innate immune signaling in the intestinal mucosa. Here, we demonstrate that MyD88-mediated signals trigger neutrophil and CCR2-dependent Ly6C(hi) monocyte recruitment to the colonic lamina propria (cLP) during infection, which prevent dissemination of bystander bacteria to deeper tissues. Mortality is markedly increased in MyD88-deficient mice following C. difficile infection, as are parameters of mucosal tissue damage and inflammation. Antibody-mediated depletion of neutrophils markedly increases mortality, while attenuated recruitment of Ly6C(hi) monocytes in CCR2-deficient mice does not alter the course of C. difficile infection. Expression of CXCL1, a neutrophil-recruiting chemokine, is impaired in the cLP of MyD88(-/-) mice. Our studies suggest that MyD88-mediated signals promote neutrophil recruitment by inducing expression of CXCL1, thereby providing critical early defense against C. difficile-mediated colitis.  相似文献   

14.
The biological response to endotoxin mediated through the Toll-like receptor 4 (TLR4)-MD-2 receptor complex is directly related to lipid A structure or configuration. Endotoxin structure may also influence activation of the MyD88-dependent and -independent signaling pathways of TLR4. To address this possibility, human macrophage-like cell lines (THP-1, U937, and MM6) or murine macrophage RAW 264.7 cells were stimulated with picomolar concentrations of highly purified endotoxins. Harvested supernatants from previously stimulated cells were also used to stimulate RAW 264.7 or 23ScCr (TLR4-deficient) macrophages (i.e., indirect induction). Neisseria meningitidis lipooligosaccharide (LOS) was a potent direct inducer of the MyD88-dependent pathway molecules tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 3alpha (MIP-3alpha), and the MyD88-independent molecules beta interferon (IFN-beta), nitric oxide, and IFN-gamma-inducible protein 10 (IP-10). Escherichia coli 55:B5 and Vibrio cholerae lipopolysaccharides (LPSs) at the same pmole/ml lipid A concentrations induced comparable levels of TNF-alpha, IL-1beta, and MIP-3alpha, but significantly less IFN-beta, nitric oxide, and IP-10. In contrast, LPS from Salmonella enterica serovars Minnesota and Typhimurium induced amounts of IFN-beta, nitric oxide, and IP-10 similar to meningococcal LOS but much less TNF-alpha and MIP-3alpha in time course and dose-response experiments. No MyD88-dependent or -independent response to endotoxin was seen in TLR4-deficient cell lines (C3H/HeJ and 23ScCr) and response was restored in TLR4-MD-2-transfected human embryonic kidney 293 cells. Blocking the MyD88-dependent pathway by DNMyD88 resulted in significant reduction of TNF-alpha release but did not influence nitric oxide release. IFN-beta polyclonal antibody and IFN-alpha/beta receptor 1 antibody significantly reduced nitric oxide release. N. meningitidis endotoxin was a potent agonist of both the MyD88-dependent and -independent signaling pathways of the TLR4 receptor complex of human macrophages. E. coli 55:B5 and Vibrio cholerae LPS, at the same picomolar lipid A concentrations, selectively induced the MyD88-dependent pathway, while Salmonella LPS activated the MyD88-independent pathway.  相似文献   

15.
The development of T helper 17 (T(H)17) cells is a well-established adaptive mechanism for the production of interleukin-17A (IL-17A), a cytokine involved in neutrophil recruitment. However, pathways contributing to mucosal expression of IL-17A during the initial phase of a bacterial infection have received less attention. Here we used the mouse colitis model of Salmonella enterica serotype Typhimurium infection to investigate the contribution of myeloid differentiation primary response protein 88 (MyD88) to inflammation and mucosal IL-17A expression. Expression of IL-23 in the cecal mucosa during S. Typhimurium colitis was dependent on the presence of MyD88. Furthermore, initial expression of IL-17A at 24 h after S. Typhimurium infection was dependent on MyD88 and the receptor for IL-1β. IL-23 and IL-1β synergized in inducing expression of IL-17A in splenic T cells in vitro. In the intestinal mucosa, IL-17A was produced by three distinct T cell populations, including δγ T cells, T(H)17 cells, and CD4(-)CD8(-) T cells. The absence of IL-1β signaling or IL-17 signaling reduced CXC chemokine expression but did not alter the overall severity of pathological lesions in the cecal mucosa. In contrast, cecal pathology and neutrophil recruitment were markedly reduced in Myd88-deficient mice during the initial phases of S. Typhimurium infection. Collectively, these data demonstrate that MyD88-dependent mechanisms, including an initial expression of IL-17A, are important for orchestrating early inflammatory responses during S. Typhimurium colitis.  相似文献   

16.
The control of Listeria monocytogenes infection depends on the rapid activation of the innate immune system, likely through Toll-like receptors (TLR), since mice deficient for the common adapter protein of TLR signaling, myeloid differentiation factor 88 (MyD88), succumb to Listeria infection. In order to test whether TLR2 is involved in the control of infections, we compared the host response in TLR2-deficient mice with that in wild-type mice. Here we show that TLR2-deficient mice are more susceptible to systemic infection by Listeria than are wild-type mice, with a reduced survival rate, increased bacterial burden in the liver, and abundant and larger hepatic microabscesses containing increased numbers of neutrophils. The production of tumor necrosis factor, interleukin-12, and nitric oxide and the expression of the costimulatory molecules CD40 and CD86, which are necessary for the control of infection, were reduced in TLR2-deficient macrophages and dendritic cells stimulated by Listeria and were almost abolished in the absence of MyD88, coincident with the high susceptibility of MyD88-deficient mice to in vivo infection. Therefore, the present data demonstrate a role for TLR2 in the control of Listeria infection, but other MyD88-dependent signals may contribute to host resistance.  相似文献   

17.
Controversy exists concerning the role of Toll-like receptors and MyD88 in immunity to tuberculosis (TB). This mini-review argues that (i) Toll-like receptors are not essential for an effective immune response against TB, (ii) MyD88 is essential, but not because it transduces signals from TLRs, (iii) adaptive immunity to TB is largely TLR/MyD88-independent. Some of the discrepancies may be resolved by cogent attribution of distinct immune functions to the individual components of the TLR/MyD88 system. In mice, TLRs and MyD88 are fully dispensable in sensing Mtb infection and instructing T cell-mediated adaptive immunity, and while TLRs are also redundant during macrophage effector immunity, MyD88 is essential for efficient killing of mycobacteria. This distinction should help to molecularly pinpoint the MyD88-dependent, yet TLR-independent critical mechanisms of macrophage activation involved in intracellular growth restriction of Mtb. Disrupted IL-1R and/or IFN-gamma signaling pathways likely play a much more prominent role in explaining the exquisite susceptibility of MyD88-deficient mice to TB than the function of MyD88 as a TLR adaptor.  相似文献   

18.
Bacillus anthracis is a spore-forming, gram-positive organism that is the causative agent of the disease anthrax. Recognition of Bacillus anthracis by the host innate immune system likely plays a key protective role following infection. In the present study, we examined the role of TLR2, TLR4, and MyD88 in the response to B. anthracis. Heat-killed Bacillus anthracis stimulated TLR2, but not TLR4, signaling in HEK293 cells and stimulated tumor necrosis factor alpha (TNF-alpha) production in C3H/HeN, C3H/HeJ, and C57BL/6J bone marrow-derived macrophages. The ability of heat-killed B. anthracis to induce a TNF-alpha response was preserved in TLR2-/- but not in MyD88-/- macrophages. In vivo studies revealed that TLR2-/- mice and TLR4-deficient mice were resistant to challenge with aerosolized Sterne strain spores but MyD88-/- mice were as susceptible as A/J mice. We conclude that, although recognition of B. anthracis occurs via TLR2, additional MyD88-dependent pathways contribute to the host innate immune response to anthrax infection.  相似文献   

19.
Summary: Dendritic cells (DCs), monocytes, macrophages, and neutrophils are myeloid-derived phagocytes critical to controlling bacterial infections, and these cells have complementary functions to ensure host survival. Recent data have shed light on the dynamics and function of myeloid cells at the early stage of infection. In particular, murine infection models with Salmonella enterica serovar Typhimurium have been useful for understanding the host response required to develop immunity to systemic salmonellosis. This review summarizes the early cellular responses in the intestinal lymphoid tissues to Salmonella and discusses Peyer's patch-dependent and -independent penetration of bacteria through the intestinal epithelium. Once Salmonella accesses host tissue, phagocytes respond by recruitment, redistribution, and activation in intestinal tissues. Recruited monocytes are specialized in controlling bacterial replication by producing anti-microbial molecules but are poor antigen-presenting cells. In contrast, DCs undergo maturation by direct (bacteria-mediated) and indirect (cytokine-mediated) pathways in vivo to optimize their antigen presentation capacity, and directly matured DCs have unique mechanisms to ensure T-cell stimulation. Toll-like receptor signaling is critical to DC maturation and myeloid cell recruitment during Salmonella infection, and the role of myeloid differentiation factor 88 (MyD88)-dependent and MyD88-independent pathways as well as proinflammatory cytokines and type 1 interferons in these processes are discussed.  相似文献   

20.
Hypoferremia, associated with immune system activation, involves a marked reduction in the levels of circulating iron, coupled with iron sequestration within macrophages. Toll-like receptor (TLR) signaling plays an important role in the development of the hypoferremic response, but how downstream signaling events affect genes involved in iron metabolism is incompletely understood. We investigated the involvement of MyD88-dependent (MyD88) and MyD88-independent (TRIF) TLR signaling in the development of hypoferremia. Using MyD88-deficient and TRIF-deficient mice, we show that MyD88 and TRIF signaling pathways are critical for up-regulation by lipopolysaccharide (LPS) of the iron regulator hepcidin. In addition, MyD88 signaling is required for the induction of lipocalin 2 secretion and iron sequestration in the spleen. Activation of TLR4 and TLR3 signaling through LPS and polyinosinic:polycytidylic acid [poly(I:C)] treatments resulted in rapid down-regulation of HFE protein [encoded by the hemochromatosis gene (Hfe)] and ferroportin [encoded by solute carrier family 40 (iron-regulated transporter), member 1 (Slc40a1)] expression in the spleen, independent of MyD88 or TRIF signaling and proinflammatory cytokine production. However, lack of MyD88 signaling significantly impaired the hypoferremic response triggered by LPS, indicating that ferroportin and HFE protein down-regulation alone are insufficient to maintain hypoferremia. The extent of the hypoferremic response was found to be limited by initial, basal iron levels. Together, these results suggest that targeting specific TLR signaling pathways by affecting the function of adaptor molecules may provide new strategies to counteract iron sequestration within macrophages during inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号