首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have shown that the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib ('Iressa', ZD1839) inhibits the development of intrahepatic metastases of hepatocellular carcinoma CBO140C12, and EGFR transactivation by tumor necrosis factor-alpha is a possible target of gefitinib. In the present study, we focused on the fibronectin (FN)-dependent signaling pathway to further elucidate the antimetastatic activity of gefitinib in CBO140C12 cells. We initially observed that FN induced activation of extracellular signal-regulated kinase (ERK), p38 and Akt, as well as cell proliferation and CBO140C12 cell invasion. These responses were mediated by EGFR tyrosine kinase, because gefitinib inhibited these effects of FN. FN-induced ERK, p38 and Akt activation was partly blocked by the Arg-Gly-Asp (RGD)-pseudo-peptide FC-336, anti-alphav integrin antibody RMV-7, the broad-spectrum matrix metalloprotease inhibitor GM6001 and the broad spectrum a disintegrin and metalloprotease (ADAM) inhibitor TAPI-1. But these inhibitors had no effect on EGF-induced signaling pathways, suggesting that integrins and ADAM may be upstream components of EGFR in these responses. These results suggest that FN-induced activation of ERK, p38, Akt, cell proliferation and invasion was mediated, at least in part, via integrins, ADAM and EGFR, and that this FN-induced signaling pathway might be involved in the antimetastatic activity of gefitinib.  相似文献   

2.
Impact of IGF-1R/EGFR cross-talks on hepatoma cell sensitivity to gefitinib   总被引:8,自引:0,他引:8  
Epidermal growth factor receptor (EGFR)- and type 1 insulin-like growth factor receptor (IGF-1R)-dependent pathways are up-regulated in hepatocellular carcinoma (HCC), and cross-talks between both pathways have been described in other systems. Gefitinib, a specific EGFR inhibitor, has shown to reduce significantly, although not completely, HCC formation in rat cirrhotic liver. Here, we investigated whether IGF-1R-dependent pathways may interfere with EGFR signalling in hepatoma cells and, if so, whether such cross-talks may affect the antitumoral effect of gefitinib in these cells. We show that the proliferative action of IGF2 in HepG2 and Hep3B cells requires EGFR activation through the autocrine/paracrine release of amphiregulin. Thus, IGF2-induced extracellular signal-regulated kinase activity and DNA synthesis were inhibited by neutralizing antibodies against either EGFR or amphiregulin and by TAPI-1, a pharmalogical inhibitor of tumor necrosis factor-alpha converting enzyme, a sheddase of amphiregulin. Accordingly, IGF2 and EGF stimulating effects on cell proliferation were both strongly repressed by gefitinib. However, while gefitinib blocked Akt activation by EGF, it had no effect on Akt activation by IGF2 and did not cause apoptosis by its own. AG1024, a selective IGF-1R inhibitor, induced apoptosis and this effect was potentiated by gefitinib. In conclusion, we show that in HCC cells IGF2/IGF-1R activation triggers proliferative and survival signals through EGFR-dependent and -independent mechanisms, respectively. The IGF2/IGF-1R survival pathway may contribute to gefitinib resistance in these cells. Therefore, the inhibition of IGF2/IGF-1R signalling could potentiate the anti-tumoral effect of gefinitib in HCC.  相似文献   

3.
The effect of EGF stimulation and its inhibition with gefitinib ('Iressa', ZD1839), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has been investigated in two EGFR-positive human bladder tumour cell lines, RT112 and RT4. The growth of RT112 cells in a medium containing 10% foetal bovine serum was inhibited by 50% with 10 microM gefitinib, whereas this dose completely inhibited RT4 cell growth. Cells were more sensitive to growth inhibition in the serum-free medium. Increased growth of cells in the serum-free medium was observed with 10 or 50 ng x ml(-1) EGF and the proliferative effect of EGF stimulation in both cell lines was inhibited in the presence of 1 microM, but not 0.1 microM gefitinib. Zymography of the conditioned medium from RT112 cells treated with EGF and gefitinib showed a decrease in matrix metalloproteinase 2 (MMP2) concentrations. Western blot analysis showed that tissue inhibitor of metalloproteinase 1(TIMP1) increased in the conditioned medium from RT112 cells treated with EGF, and this was partially inhibited with both 1 and 5 microM gefitinib. Conversely, TIMP2 decreased with EGF stimulation and this was reversed with gefitinib. Tissue inhibitor of metalloproteinase 1 had no effect on the growth of either cell line. These studies show alterations in the balance of MMPs and their inhibitors in EGF-stimulated bladder tumour cells, which are reversed by gefitinib, suggesting gefitinib should be investigated for its effect on human bladder tumours.  相似文献   

4.
Somatic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are reported to be associated with clinical responsiveness of lung cancer to gefitinib, an EGFR tyrosine kinase inhibitor. To elucidate the association between somatic mutations and the pharmacological actions of gefitinib, the chemosensitivity of isolated cancer cells from the lungs of Japanese patients to gefitinib was examined by the collagen gel-droplet embedded culture drug sensitivity test in vitro. In 30 specimens isolated from non-small-cell lung cancer patients, mutations were observed in eight tumour specimens (27%) and chemosensitivity to gefitinib was observed in seven specimens (23%). However, somatic mutations were not predominantly associated with chemosensitivity to gefitinib in vitro. Both mutation and chemosensitivity frequencies in this study were higher than those reported in studies from the United States, indicating a possible ethnic difference. Moreover, both frequencies were much higher in females than in males. Since a gender difference in chemosensitivity to gefitinib was observed in isolated cancer cells in vitro, this suggests that gefitinib works in part through the suppression of EGFR signalling, but that other factors, including sex-related factors, may participate in gefitinib action.  相似文献   

5.
ZD6474 is a novel, orally active inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase, with some additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. The purpose of this study was to determine the potential of ZD6474 in the control of established experimental lung metastasis and pleural effusions produced by human non-small cell lung cancer (NSCLC) cells. PC14PE6 (adenocarcinoma) and H226 (squamous cell carcinoma) cells express high levels of EGFR and only PC14PE6 cells overexpress VEGF. Neither ZD6474 nor the EGFR tyrosine kinase inhibitor gefitinib inhibit proliferation of PC14PE6 or H226 cells in vitro. Both PC14PE6 and H226 cells inoculated intravenously into nude mice induced multiple lung nodules after 5-7 weeks. In addition, PC14PE6 cells produced bloody pleural effusions. Daily oral treatment with ZD6474 did not reduce the number of lung nodules produced by PC14PE6 or H226 cells, but did reduce the lung weight and the size of lung nodules. ZD6474 also inhibited the production of pleural effusions by PC14PE6 cells. Histological analyses of lung lesions revealed that ZD6474 treatment inhibited activation of VEGFR-2 and reduced tumor vascularization and tumor cell proliferation. Therapeutic effects of ZD6474 were considered likely to be due to inhibition of VEGFR-2 tyrosine kinase because gefitinib was inactive in this model. These results indicate that ZD6474, an inhibitor of VEGFR-2, may be useful in controlling the growth of established lung metastasis and pleural effusions by NSCLC.  相似文献   

6.
Gastric cancer metastasised to the liver was found to overexpress HER2 at a significantly higher incidence than primary gastric cancers. The purpose of the present study was to investigate the possibility of molecular therapy targeting HER2 overexpression in gastric cancer liver metastasis. We developed three new HER2-overexpressing gastric cancer cell lines (GLM-1, GLM-2, GLM-4) without epidermal growth factor receptor (EGFR) mutations derived from such liver metastasis, two of which had HER2 gene amplifications. All these GLM series of cell lines were highly sensitive to gefitinib in vitro, a specific inhibitor of EGFR tyrosine kinase (Iressa) rather than anti-HER2 antibody trastuzumab (Herceptin), whereas most of the HER2 low-expressing counterparts were not. In these HER2-overexpressing GLM series, protein kinase B (Akt), but not extracellular signal-regulated kinase 1/2 (ERK1/2), was constitutively phosphorylated, and gefitinib efficiently inhibited this Akt phosphorylation, induced strong apoptosis in vitro and exhibited antitumour activity in tumour xenografts in nude mice. This gefitinib-mediated antitumour effect in xenograft was significantly potentiated by trastuzumab treatment. On the other hand, gefitinib-resistant cells (GLM-1R) exhibited increased EGFR expression, followed by constitutive activation of mitogen-activated protein kinase (MAPK) pathway. These results suggest that the antitumour effect of gefitinib is due to the effective inhibition of HER2-driven constitutive activation of phosphatidylinositol-3-kinase (PI3K)/Akt pathway, and that the acquired resistance to gefitinib is due to the constitutive activation of Ras/MAPK pathway in compensation for PI3K/Akt pathway. Gastric cancer liver metastasis with HER2 overexpression would be a potential molecular target for gefitinib and trastuzumab.  相似文献   

7.
Epidermal growth factor receptor (EGFR) is frequently amplified and/or mutated in a number of human tumours and abnormal signalling from this receptor is believed to contribute to the malignant phenotype seen in these tumours. Gefitinib is a small molecule inhibitor that specifically binds and inhibits the EGFR tyrosine kinase and has been shown to inhibit the growth, proliferation, survival and invasion of a range of tumour cells overexpressing EGFR. However, clinical response to gefitinib has failed to correlate with EGFR levels and activity, indicating that other molecular mechanisms such as downstream signalling and mutations could be of importance in predicting clinical response. We therefore investigated the effect of the specific EGFR inhibitor gefitinib on the phosphorylation level, signalling and growth of cells expressing the naturally occurring constitutively active EGFR variant EGFRvIII, a low nontransforming level of EGFR and a high transforming level of EGFR. Results show that levels of gefitinib sufficient to suppress EGFR phosphorylations, EGFR-mediated proliferation and EGFR-mediated anchorage-independent growth are not sufficient to inhibit these features in cells expressing EGFRvIII. Furthermore, the data indicate that long-term exposure of EGFRvIII-expressing cells to low concentrations of gefitinib (0.01-0.1 microM) result in increased phosphotyrosine load of the receptor, increased signalling to ERK and stimulation of proliferation and anchorage-independent growth, presumably by inducing EGFRvIII dimerisation. Higher concentrations of gefitinib (1-2 microM), on the other hand, significantly decreased EGFRvIII phosphotyrosine load, EGFRvIII-mediated proliferation and anchorage-independent growth. Further studies are needed to investigate the implications of these important findings in the clinical setting.  相似文献   

8.
Summary We have previously demonstrated that oestrogen receptor α (ERα) modulates epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signalling efficiency in a tamoxifen-resistant MCF-7 breast cancer cell line (Tam-R). In the present study we have investigated whether this cross-talk between EGFR/MAPK and ERα signalling pathways is bidirectional by examining the effects of EGFR/MAPK activity on ER functionality in the same cell line. Elevated expression levels of phosphorylated serine 118 (S118) ERα were observed in the Tam-R compared to the parental wild type MCF-7 cell line (WT-MCF-7) under basal growth conditions. Phosphorylation of ERα at S118 was regulated by the EGFR/MAPK pathway in Tam-R cells being increased in response to amphiregulin (AR) and inhibited by the selective EGFR tyrosine kinase inhibitor, gefitinib and the MEK1/2 inhibitor, PD184352. Recruitment of the co-activators p68 RNA helicase and SRC1 to ERα, oestrogen response element (ERE) activity and Tam-R cell growth were similarly EGFR/MAPK-regulated. Chromatin immunoprecipitation (ChIP) studies revealed that in Tam-R cells the ERα assembled on the AR gene promoter and this was associated with elevated basal expression of AR mRNA. Furthermore, AR mRNA expression was under the regulation of the EGFR/MAPK and ERα signalling pathways. Neutralising antibodies to AR inhibited EGFR/ERK1/2 activity, reduced S118 ERα phosphorylation and reduced AR mRNA expression in TAM-R cells. These findings suggest that ERα function in Tam-R cells is maintained as a consequence of EGFR/MAPK-mediated phosphorylation at serine residue 118 resulting in the generation of a self-propogating autocrine growth-regulatory loop through the ERα-mediated production of AR.  相似文献   

9.
Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is an active agent in non-small cell lung cancer, and rapidly relieves bronchorrhea in patients with bronchioloalveolar carcinoma before the improvement of radiological findings. In addition, epidermal growth factor regulates mucin secretion in normal airway goblet cells. The present study was designed to clarify whether gefitinib modifies mucin production in lung cancer cell lines apart from its anti-proliferative effects, using A549 adenocarcinoma and NCI-H292 mucoepidermoid carcinoma cells expressing EGFR and MUC5AC mRNA. Mucin synthesis was measured by RT-PCR and ELISA, and MAPK and Akt, the downstream targets of EGFR, were examined by Western blotting assay. The clinically-achievable concentration of 1muM gefitinib inhibited the growth of both cells by only 10%, but gefitinib suppressed MUC5AC mRNA levels subsequent to a decrease in intracellular and secreted MUC5AC protein. Gefitinib also inhibited the phosphorylation of MAPK and Akt, and the selective inhibitors PD98059 and LY294002 also suppressed MUC5AC protein synthesis. These findings suggest that gefitinib may inhibits MUC5AC synthesis, at least in part, through MAPK and Akt signaling pathways. Thus, gefitinib inhibits mucin production, which is encouraging for trials involving its use against bronchorrhea in patients with lung cancer.  相似文献   

10.
Des-γ-carboxy prothrombin (DCP), an aberrant prothrombin produced by hepatocellular carcinoma (HCC) cells, has been shown to be associated with the biological malignant potential of HCC. The aim of this study was to evaluate the effect of DCP on HCC cell growth and metastasis, and to explore the underlying molecular mechanisms. DCP significantly stimulated HCC cell growth, as measured by cell counting kit-8 assay. Transwell chamber assay showed that DCP increased HCC cell migration through reconstituted extracellular matrix (Matrigel). Gelatin zymography assay and Western blot analysis demonstrated that DCP increased the secretion and expression of matrix metalloproteinase (MMP)-2 and MMP-9 in the supernatant of cultured HCC cells and on tumour cell membranes. DCP was found to bind to the cell surface receptor Met, resulting in Met phosphorylation and subsequent activation of the epidermal growth factor receptor (EGFR). Western blot analysis demonstrated that DCP stimulated a sequential kinase phosphorylation cascade including ERK1/2, MEK1/2 and c-Raf, indicating activation of the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK1/2 MAPK) signalling pathway. Furthermore, blocking ERK1/2 MAPK activation with ERK1/2 inhibitor PD98059 essentially abolished the DCP-induced MMP-2 and MMP-9 activity, confirming the signalling pathway of DCP stimulation. Taken together, these results suggested that DCP stimulates HCC growth and promotes HCC metastasis by increasing the activity of MMP-2 and MMP-9 through activation of the ERK1/2 MAPK signalling pathway.  相似文献   

11.
12.
The epidermal growth factor receptor (EGFR) is highly expressed in gastric cancer indicating its suitability as a target for receptor tyrosine kinase (RTK) inhibitors. In the current study we explored the role of EGFR and its potential use as a therapeutic target in gastric cancer. First we analyzed 66 gastric cancer samples of Asian and Caucasian patients for the presence of EGFR mutations. No activating EGFR mutations were found and gefitinib alone was only weakly effective in gastric cancer cell lines. However, acetylsalicylic acid (ASA) significantly enhanced the inhibitory effects of gefitinib indicating synergistic action. Whole genome expression profiling indicated significant regulation of 120 genes in the case of co-administration of gefitinib and ASA (32 induced, 88 repressed) in gastric adenocarcinoma cells. Further analyses indicated that several important signalling pathways were effectively inhibited by simultaneous exposure to gefitinib and ASA. Our findings indicate that although gastric cancer does not seem to harbour mutations which render the cancer cells constitutively susceptible to gefitinib, the co-administration of ASA can strengthen RTK inhibitor activity in adenocarcinoma cells by EGFR activation. This is the first report of effective modulation of EGFR-inhibition activity in cancer.  相似文献   

13.
The efficacy of epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors such as gefitinib and erlotinib in non-small cell lung cancer (NSCLC) is often limited by the emergence of drug resistance conferred either by a secondary T790M mutation of EGFR or by acquired amplification of the MET gene. We now show that the extent of activation of the tyrosine kinase Src is markedly increased in gefitinib-resistant NSCLC (HCC827 GR) cells with MET amplification compared with that in the gefitinib-sensitive parental (HCC827) cells. In contrast, the extent of Src activation did not differ between gefitinib-resistant NSCLC (PC9/ZD) cells harboring the T790M mutation of EGFR and the corresponding gefitinib-sensitive parental (PC9) cells. This activation of Src in HCC827 GR cells was largely abolished by the MET-TKI PHA-665752 but was only partially inhibited by gefitinib, suggesting that Src activation is more dependent on MET signaling than on EGFR signaling in gefitinib-resistant NSCLC cells with MET amplification. Src inhibitors blocked Akt and Erk signaling pathways, resulting in both suppression of cell growth and induction of apoptosis, in HCC827 GR cells as effectively as did the combination of gefitinib and PHA-665752. Furthermore, Src inhibitor dasatinib inhibited tumor growth in HCC827 GR xenografts to a significantly greater extent than did treatment with gefitinib alone. These results provide a rationale for clinical targeting of Src in gefitinib-resistant NSCLC with MET amplification. ( Cancer Sci 2009)  相似文献   

14.
Vandetanib is a multi-targeted receptor tyrosine kinase inhibitor that is in clinical development for the treatment of solid tumours. This preclinical study examined the inhibition of two key signalling pathways (VEGFR-2, EGFR) at drug concentrations similar to those achieved in the clinic, and their contribution to direct and indirect antitumour effects of vandetanib. For in vitro studies, receptor phosphorylation was assessed by Western blotting and ELISA, cell proliferation was assessed using a cell viability endpoint, and effects on cell cycle determined using flow cytometry. For in vivo studies, Western blotting, ELISA and immunohistochemistry (IHC) were used to assess receptor phosphorylation. Cell culture experiments demonstrated that anti-proliferative effects of vandetanib resulted from inhibition of either EGFR or VEGFR-2 signalling in endothelial cells, but were associated with inhibition of EGFR signalling in tumour cells. Vandetanib inhibited both EGFR and VEGFR-2 signalling in normal lung tissue and in tumour xenografts. In a lung cancer model expressing an activating EGFR mutation, the activity of vandetanib was similar to that of a highly selective EGFR inhibitor (gefitinib), and markedly greater than that of a highly selective VEGFR inhibitor (vatalanib). These data suggest that at the plasma exposures achieved in the clinic, vandetanib will significantly inhibit both VEGFR-2 and EGFR signalling, and that both inhibition of angiogenesis and direct inhibition of tumour cell growth can contribute to treatment response.  相似文献   

15.
The aim of this study was to investigate the effects of combining antiangiogenic treatment, epidermal growth factor receptor (EGFR) targeting and irradiation (RT). We evaluated AZD2171, a highly potent, orally active, vascular endothelial growth factor (VEGF) signalling inhibitor, gefitinib, an EGFR tyrosine kinase inhibitor and RT. The antitumour efficacy of these treatments, administered alone and in combination for 2 weeks, was assessed in a VEGF-secreting human head and neck tumour cell line, CAL33 that highly expresses EGFR, established as xenografts (250 mm(3)) in nude mice. The median time to reach a tumour volume of 1000 mm(3) was significantly increased for AZD2171 or gefitinib alone compared with the control. Greater inhibition of tumour growth was seen with the combination of AZD2171+gefitinib compared with either drug alone, and the triple combination compared with either AZD2171+gefitinib or RT alone. The intensity of endothelial cell staining was slightly reduced by each agent given alone, and markedly diminished by the double or triple combination. The triple combination almost completely abolished cell proliferation. The marked RT-induced enhancement in the DNA-repair enzyme ERCC1 expression was totally abolished by the triple combination. This observation could help to explain the supra-additive antitumour effect produced by this combination and could provide a basis for future innovative clinical trials.  相似文献   

16.
Shen Z  Yang ZF  Gao Y  Li JC  Chen HX  Liu CC  Poon RT  Fan ST  Luk JM  Sze KH  Li TP  Gan RB  He ML  Kung HF  Lin MC 《Cancer research》2008,68(2):404-414
The kringle 1 domain of human hepatocyte growth factor (HGFK1) was previously shown to inhibit bovine aortic endothelial cell proliferation, suggesting that it might be an antiangiogenic molecule. Here, we evaluated the in vivo efficacy of a recombinant adenoassociated virus carrying HGFK1 (rAAV-HGFK1) for the treatment of hepatocellular carcinoma (HCC) in a rat orthotopic HCC model and explored its molecular mechanisms in vitro in both endothelial and tumor cells. We first showed that rAAV-HGFK1 treatment significantly prolonged the survival time of rats transplanted with tumor cells. Treatment with rAAV-HGFK1 inhibited tumor growth, decreased tumor microvessel density, and completely prevented intrahepatic, lung, and peritoneal metastasis in this in vivo model. In vitro, rAAV-HGFK1 exhibited both antiangiogenic and antitumor cell effects, inhibiting the proliferation of both murine microvascular endothelial cells (MEC) and tumor cells, and inducing apoptosis and G(0)-G(1) phase arrest in these cells. To our surprise, rAAV-HGFK1 did not act through the hepatocyte growth factor/hepatocyte growth factor receptor pathway. Instead, it worked mainly through epidermal growth factor (EGF)/epidermal growth factor receptor (EGFR) signaling, with more minor contributions from vascular endothelial growth factor/vascular endothelial growth factor receptor and beta fibroblast growth factor (bFGF)/beta fibroblast growth factor receptor (bFGFR) signaling. In both MECs and tumor cells, rAAV-HGFK1 acted through two pathways downstream of EGFR, namely inhibition of extracellular signal-regulated kinase activation and stimulation of p38 mitogen-activated protein kinase/c-Jun-NH(2)-kinase activation. These results suggest for the first time that HGFK1 exerts both antiangiogenic and antitumor cell activities mainly through EGF/EGFR signaling, and may thus be considered as a novel therapeutic strategy for the treatment of HCC.  相似文献   

17.
Summary Src kinase plays a central role in growth factor signalling, regulating a diverse array of cellular functions including proliferation, migration and invasion. Recent studies have demonstrated that Src activity is frequently elevated in human tumours and correlates with disease stage. We have previously demonstrated that, upon acquisition of tamoxifen resistance, MCF7 cells display increased epidermal growth factor receptor (EGFR) activation and a more aggressive phenotype in vitro. Since tumours exhibiting elevated EGFR signalling may possess elevated levels of Src activity, we wished to investigate the role of Src in our MCF7 model of endocrine resistance. Src kinase activity was significantly elevated in tamoxifen-resistant (TamR) cells in comparison to wild type MCF7 cells. This increase was not due to elevated Src protein or gene expression. Treatment of TamR cells with the novel Src inhibitor, AZD0530, significantly reduced the amount of activated Src detectable in both cell types whilst having no effect on total Src levels. AZD0530 significantly suppressed the motile and invasive nature of TamR cells in vitro, reduced basal levels of activated focal adhesion kinase (FAK) and paxillin and promoted elongation of focal adhesions. Furthermore, the use of this compound in conjunction with the EGFR inhibitor, gefitinib, was markedly additive towards inhibition of TamR cell motility and invasion. These observations suggest that Src plays a pivotal role in mediating the motile and invasive phenotype observed in endocrine-resistant breast cancer cells. The use of Src inhibitors in conjunction with EGFR inhibitors such as gefitinib may provide an effective method with which to prevent cancer progression and metastasis.  相似文献   

18.
19.
Anaplastic thyroid cancer is one of the most aggressive human malignancies and the outcomes of conventional therapy have been far from satisfactory. Recently, epidermal growth factor receptor (EGFR)-targeted therapy has been introduced as an alternative therapeutic strategy for highly malignant cancers. This study was undertaken to investigate the expression of EGFR in anaplastic thyroid cancer cell lines, and to explore the potential of therapies targeting EGFR as a new therapeutic approach. EGFR was universally expressed in anaplastic cancer cell lines at a variety of levels. Specific EGFR stimulation with epidermal growth factor showed significant phosphorylation of ERK1/2 and Akt, and resulted in marked growth stimulation in an anaplastic thyroid cancer cell line, which highly expressed EGFR. This EGFR-transmitted proliferation effect of the cancer cell line was completely inhibited by gefitinib, an EGFR tyrosine kinase inhibitor. Moreover, growth of xenografts inoculated in mice was inhibited in a dose-dependent manner with 25-50 mg kg(-1) of gefitinib administrated orally. Inhibition of EGFR-transmitted growth stimulation by gefitinib was clearly observed in anaplastic thyroid cancer cell lines. Our results suggested that EGFR-targeted therapy, such as gefitinib, might be worth further investigation for the treatment of anaplastic thyroid cancer.  相似文献   

20.
Epidermal growth factor receptor [EGFR (HER1, erbB1)] is a receptor with associated tyrosine kinase activity, and is expressed in colorectal cancers and many other solid tumors. We examined the effect of the selective EGFR tyrosine kinase inhibitor (EGFR-TKI) gefitinib ("Iressa") in combination with the DNA topoisomerase I inhibitor CPT-11 (irinotecan) on human colorectal cancer cells. EGFR mRNA and protein expression were detected by RT-PCR and immunoblotting in all 7 colorectal cancer cell lines studied. Gefitinib inhibited the cell growth of the cancer cell lines in vitro with an IC(50) range of 1.2-160 microM by 3,(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Lovo cells exhibited the highest level of protein and autophosphorylation of EGFR and were the most sensitive to gefitinib. The combination of gefitinib and CPT-11 induced supra-additive inhibitory effects in COLO320DM, WiDR and Lovo cells, assessed by an in vitro MTT assay. Administration of gefitinib and CPT-11 had a supra-additive inhibitory effect on WiDR cells and tumor shrinkage was observed in Lovo cell xenografts established in nude mice, whereas no additive effect of combination therapy was observed in COLO320DM cells. To elucidate the mechanisms of synergistic effects, the effect of CPT-11-exposure on phosphorylation of EGFR was examined by immunoprecipitation. CPT-11 increased phosphorylation of EGFR in Lovo and WiDR cells in time- and dose-dependent manners. This EGFR activation was completely inhibited by 5 microM gefitinib and gefitinib-induced apoptosis was enhanced by combination with CPT-11, measured by PARP activation although no PARP activation was induced by 5 microM CPT-11 alone. These results suggested that these modification of EGFR by CPT-11, in Lovo cells, is a possible mechanism for the synergistic effect of CPT-11 and gefitinib. These findings imply that the EGFR-TKI gefitinib and CPT-11 will be effective against colorectal tumor cells that express high levels of EGFR, and support clinical evaluation of gefitinib in combination with CPT-11, in the treatment of colorectal cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号