首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
The consequences of VanD type glycopeptide resistance on the activity of vancomycin and teicoplanin were evaluated in vitro and in a rabbit model of aortic endocarditis with VanD type clinical isolate Enterococcus faecium BM4339 (MICs: vancomycin, 64 microg/ml; teicoplanin, 4 microg/ml) and its susceptible derivative BM4459 (MICs: vancomycin, 1 microg/ml; teicoplanin, 1 microg/ml). The two antibiotics were inactive against BM4339 in vivo, in terms both of reduction of bacterial counts and of prevention of emergence of glycopeptide-resistant subpopulations, despite using teicoplanin at concentrations greater than the MIC for VanD strains. This could be due to the high inoculum effect also observed in vitro with BM4339 and two other VanD type isolates against both antibiotics. These results suggest that detection of VanD type resistance is of major importance because it abolishes in vivo glycopeptide activity and allows the emergence of mutants highly resistant to glycopeptides.  相似文献   

2.
Enterococcus faecalis BM4405 was resistant to low levels of vancomycin (MIC, 16 microg/ml) and was susceptible to teicoplanin (MIC, 0.5 microg/ml). No PCR product was obtained when the total DNA of this clinical isolate was used as a template with primers specific for glycopeptide resistance genes vanA, vanB, vanC, and vanD. However, a 604-bp PCR fragment was obtained when V1 and V2 degenerate primers were used and total DNA was digested with HindIII as a template. The product was cloned and sequenced. The deduced amino acid sequence had greater identity (55%) with VanC than with VanA (45%), VanB (43%), or VanD (44%). This was consistent with the fact that BM4405 synthesized peptidoglycan precursors that terminated in D-serine residues. After induction with vancomycin, weak D,D-dipeptidase and penicillin-insensitive D,D-carboxypeptidase activities were detected in cytoplasmic extracts of BM4405, whereas a serine racemase activity was found in the membrane preparation. This new type of acquired glycopeptide resistance was named VanE.  相似文献   

3.
Three of five natural plasmids carrying a wild-type vanA gene cluster did not confer LY333328 glycopeptide resistance on Enterococcus faecalis JH2-2 (MIC = 2 microg/ml). The two remaining plasmids conferred resistance to the drug (MIC, 8 microg/ml). The vanB gene cluster did not confer resistance to LY333328, since this antibiotic was not an inducer. Mutations in the vanS(B) sensor gene that allowed induction by teicoplanin or constitutive expression of the vanB cluster led to LY333328 resistance (MIC, 8 to 16 microg/ml). Overproduction of the VanH, VanA, and VanX proteins for D-alanyl-D-lactate (D-Ala-D-Lac) synthesis and D-Ala-D-Ala hydrolysis was sufficient for resistance to LY333328 (MIC, 16 microg/ml). Mutations in the host D-Ala:D-Ala ligase contributed to LY333328 resistance in certain VanA- and VanB-type strains, but the MICs of the antibiotic did not exceed 16 microg/ml. Addition of D-2-hydroxybutyrate in the culture medium of mutants that did not produce the VanH D-lactate dehydrogenase led to incorporation of this D-2-hydroxy acid at the C-terminal ends of the peptidoglycan precursors and to LY333328 resistance (MIC, 64 microg/ml). The vanZ gene of the vanA cluster conferred resistance to LY333328 (MIC, 8 microg/ml) by an unknown mechanism. These data indicate that VanA- and VanB-type enterococci may acquire moderate-level resistance to LY333328 (MIC 相似文献   

4.
The consequences on glycopeptide activity of low-level resistance to vancomycin due to VanE-type resistance were evaluated in vitro and in experimental endocarditis caused by Enterococcus faecalis BM4405 (MICs of vancomycin and teicoplanin: 16 and 0.5 microg/ml, respectively), its susceptible derivative BM4405-1, and susceptible E. faecalis JH2-2. After 24 h of incubation, vancomycin at 8 microg/ml was not active against E. faecalis BM4405 whereas it was bacteriostatic against strains BM4405-1 and JH2-2. Against all three strains, vancomycin at 30 microg/ml and teicoplanin at 8 or 30 microg/ml were bacteriostatic but bactericidal when combined with gentamicin. In rabbits with aortic endocarditis due to VanE-type resistant strain BM4405, treatment with a standard dose of vancomycin generated subinhibitory plasma concentrations (i.e., peak of 36.3 +/- 2.1 microg/ml and trough of 6.0 +/- 2.2 microg/ml) and led to no significant reduction in mean aortic valve vegetation counts compared to no treatment of control animals. In contrast, a higher dosing regimen of vancomycin (i.e., resulting in a peak of 38.3 +/- 5.2 microg/ml and a trough of 15.0 +/- 8.3 microg/ml), providing plasma concentrations above the MIC for the entire dosing interval, led to significant and similar activities against all three strains, which were enhanced by combination with gentamicin. Treatment with teicoplanin led to results similar to those obtained with vancomycin at a high dose. No subpopulations with increased resistance to glycopeptides were selected in vitro or in vivo. In conclusion, the use of a high dose of vancomycin was necessary for the treatment of experimental enterococcal endocarditis due to VanE-type strains.  相似文献   

5.
Enterococcus faecium 10/96A from Brazil was resistant to vancomycin (MIC, 256 microg/ml) but gave no amplification products with primers specific for known van genotypes. A 2,368-bp fragment of a van cluster contained one open reading frame encoding a peptide with 83% amino acid identity to VanH(D), and a second encoding a D-alanine-D-lactate ligase with 83 to 85% identity to VanD. The divergent glycopeptide resistance phenotype was designated VanD4.  相似文献   

6.
Continuing emergence of new antimicrobial resistance mechanisms and the increased frequency of existing resistances, requires the development of alternative antimicrobial agents. Dalbavancin is an amide glycopeptide derivative with a markedly extended serum elimination half-life. Dalbavancin and selected comparators were tested against 6,339 recent clinical isolates (2002) from the Americas and Europe using reference susceptibility testing methods. The general characteristics of this Gram-positive organism collection were: oxacillin (OXA)-resistant Staphylococcus aureus (ORSA) at 39% of strains; vancomycin-resistant enterococci (VRE) at 10%; and penicillin-nonsusceptible pneumococci at 28%. The overall distribution of dalbavancin minimum inhibitory concentration (MIC) values ranged from < or = 0.015 to > 32 microg/ml, but > 99% of MIC results were at < or =1 microg/ml. S. aureus and coagulase-negative staphylococci were extremely susceptible to dalbavancin (MIC90, 0.06 microg/ml) despite resistance patterns to other agents. Dalbavancin was the most potent compound (by weight) against vancomycin-susceptible Enterococcus faecalis and E. faecium (MIC90, 0.06 and 0.12 microg/ml, respectively); however, VRE strains showed decreased dalbavancin susceptibility (MIC50, 4 or 8 microg/ml). All streptococcal isolates were inhibited at < or =0.25 microg/ml of dalbavancin. This reported dalbavancin activity indicates that the new glycopeptide has significant activity, superior to available agents in the class, and a potency that was uniform across geographically sampled organisms. Some VRE were inhibited by very low dalbavancin concentrations (< or = 1 microg/ml; Van B phenotypes). Further clinical development seems warranted for this once-weekly administered agent.  相似文献   

7.
The contribution of penicillin-binding protein 5 (PBP 5) to intrinsic and acquired beta-lactam resistance was investigated by constructing isogenic strains of Enterococcus faecium producing different PBP 5. The pbp5 genes from three E. faecium clinical isolates (BM4107, D344, and H80721) were cloned into the shuttle vector pAT392 and introduced into E. faecium D344S, a spontaneous derivative of E. faecium D344 highly susceptible to ampicillin due to deletion of pbp5 (MIC, 0.03 microg/ml). Immunodetection of PBP5 indicated that cloning of the pbp5 genes into pAT392 resulted in moderate overproduction of PBP 5 in comparison to wild-type strains. This difference may be attributed to a difference in gene copy number. Expression of the pbp5 genes from BM4107 (MIC, 2 microg/ml), D344 (MIC, 24 microg/ml), and H80721 (MIC, 512 microg/ml) in D344S conferred relatively low levels of resistance to ampicillin (MICs, 6, 12, and 20 microg/ml, respectively). A methionine-to-alanine substitution was introduced at position 485 of the BM4107 PBP 5 by site-directed mutagenesis. In contrast to previous hypotheses based on comparison of nonisogenic strains, this substitution resulted in only a 2.5-fold increase in the ampicillin MIC. The reversed-phase high-performance liquid chromatography muropeptide profiles of D344 and D344S were similar, indicating that deletion of pbp5 was not associated with a detectable defect in cell wall synthesis. These results indicate that pbp5 is a nonessential gene responsible for intrinsic resistance to moderate levels of ampicillin and by itself cannot confer high-level resistance.  相似文献   

8.
A vancomycin-resistant, anaerobic, gram-positive coccus containing the vanD and vanG-like genes (strain CCRI-16110) was isolated from a human fecal specimen during a hospital surveillance program to detect carriers of vancomycin-resistant enterococci. Comparison of the 16S rRNA gene sequence of strain CCRI-16110 with databases revealed a potentially novel Ruminococcus species that was most similar (<94% identity) to Clostridium and Ruminococcus species. Strain CCRI-16110 was highly resistant to vancomycin and teicoplanin (MICs of >256 microg/ml). The complete DNA sequence of the vanD cluster was most similar (98.2% identity) to that of Enterococcus faecium BM4339, containing the vanD1 allele. An intD gene with 99% identity with that of this E. faecium strain was found to be associated with the vanD gene cluster of this novel anaerobic bacterium. Strain CCRI-16110 also harbors genes encoding putative VanS(G), VanG, and VanT(G) proteins displaying 56, 73.6, and 55% amino acid sequence identity, respectively, compared to the corresponding proteins encoded by the vanG1 and vanG2 operons of Enterococcus faecalis BM4518 and N03-0233. This study reports for the first time an anaerobic bacterium containing the vanD gene cluster. This strain also harbors a partial vanG-like gene cluster. The presence of vanD- and vanG-containing anaerobic bacteria in the human bowel flora suggests that these bacteria may serve as a reservoir for the vanD and vanG vancomycin resistance genes.  相似文献   

9.
Enterococcus gallinarum N04-0414 (MIC for vancomycin, 256 microg/ml) harbored a vanD-type vancomycin resistance operon as well as the intrinsic vanC1 operon. The D-Ala:D-Ala ligase 2 gene (ddl2) was not present in the strain, though it is found downstream of the vanS gene from the vanC operon in E. gallinarum ATCC 49573 and 19 other E. gallinarum strains tested.  相似文献   

10.
Enterococcus faecalis G1-0247 (vancomycin MIC, 16 microg/ml) was found to harbor a vanG operon 99% identical to the vanG operon in E. faecalis BM4518. E. faecalis N03-0233 (vancomycin MIC, 16 microg/ml) was found to harbor a novel vanG operon, vanG2, on an element in a different chromosomal location than the vanG-harboring elements in G1-0247 and BM4518.  相似文献   

11.
12.
Microdilution MIC testing was used to test the susceptibility of 202 pneumococci to LY 333328 and six other agents. LY 333328 was the most active glycopeptide (MIC at which 90% of the pneumococci were inhibited [MIC90], 0.008 microgram/ml), followed by teicoplanin (MIC90, 0.06 microgram/ml) and vancomycin (MIC90, 0.5 microgram/ml). Rifampin resistance was seen in some penicillin-resistant strains. The MICs of imipenem and ceftriaxone rose with those of penicillin. Time-kill testing confirmed the excellent antipneumococcal activity of LY 333328.  相似文献   

13.
The in vitro activity of garenoxacin (BMS-284756) against 62 clinical Haemophilus influenzae isolates with different fluoroquinolone susceptibilities was determined by the microdilution susceptibility testing method and compared with the activities of other oral quinolones and nonquinolone oral antimicrobial agents. Cefixime presented the highest intrinsic activity (MIC at which 50% of the isolates tested were inhibited [MIC(50)], 0.01 microg/ml), followed by garenoxacin, moxifloxacin, and ciprofloxacin (MIC(50), 0.06 microg/ml), levofloxacin (MIC(50), 0.12 microg/ml), cefuroxime (MIC(50), 1.0 microg/ml), and amoxicillin-clavulanate (MIC(50), 1.0/0.5 microg/ml), amoxicillin (MIC(50), 2 microg/ml), azithromycin (MIC(50), 4 microg/ml), and erythromycin (MIC(50), 8 microg/ml). In strains with ciprofloxacin MICs of < or =0.06 microg/ml, ciprofloxacin and garenoxacin displayed similar MIC(50)s and MIC(90)s, one dilution lower than those of moxifloxacin and levofloxacin. For strains for which ciprofloxacin MICs were > or = 0.12 microg/ml, MIC(50)s were similar for the four quinolones tested, although garenoxacin presented the widest activity range (0.03 to 32 microg/ml) and the highest MIC at which 90% of the isolates tested were inhibited (16.0 microg/ml). For strains without amino acid changes in the quinolone resistance determining region (QRDR) of GyrA and ParC, garenoxacin MICs were < or =0.03 microg/ml; with a single amino acid change in GyrA, garenoxacin MICs were 0.06 to 0.12 microg/ml; with one amino acid change each in GyrA and ParC, garenoxacin MICs were 0.5 to 2.0 micro g/ml; one amino acid change in ParC combined with two amino acid changes in GyrA increased the MICs to > or = 4 microg/ml for all assayed quinolones. We conclude that garenoxacin has excellent activity against H. influenzae, although progressive acquired resistance was observed by step-by-step mutation in the QRDR of gyrA and parC.  相似文献   

14.
Enterococcus faecium UCN71, isolated from a blood culture, was resistant to low levels of vancomycin (MIC, 16 μg/ml) but susceptible to teicoplanin (MIC, 0.5 μg/ml). No amplification was observed with primers specific for the previously described glycopeptide resistance ligase genes, but a PCR product corresponding to a gene called vanN was obtained using degenerate primers and was sequenced. The deduced VanN protein was related (65% identity) to the d-alanine:d-serine VanL ligase. The organization of the vanN gene cluster, determined using degenerate primers and by thermal asymmetric interlaced (TAIL)-PCR, was similar to that of the vanC operons. A single promoter upstream from the resistance operon was identified by rapid amplification of cDNA ends (RACE)-PCR. The presence of peptidoglycan precursors ending in d-serine and d,d-peptidase activities in the absence of vancomycin indicated constitutive expression of the resistance operon. VanN-type resistance was transferable by conjugation to E. faecium. This is the first report of transferable d-Ala-d-Ser-type resistance in E. faecium.  相似文献   

15.
16.
This study evaluated the current status of antimicrobial resistance in clinical isolates of Streptococcus pyogenes in Taiwan as part of the SMART (Surveillance from Multicenter Antimicrobial Resistance in Taiwan) program. In 2001, 419 different isolates of S. pyogenes, including 275 from respiratory secretions, 87 from wound pus, and 31 from blood, were collected from nine hospitals in different parts of Taiwan. MICs of 23 antimicrobial agents were determined at a central location by the agar dilution method. All of the isolates were susceptible to penicillin (MIC at which 90% of the isolates were inhibited [MIC(90)], moxifloxacin > ciprofloxacin = levofloxacin = gatifloxacin > gemifloxacin) demonstrated potent activity against nearly all of the isolates of S. pyogenes tested. Thirty-two isolates (8%) were not susceptible to quinupristin-dalfopristin. Seventeen percent of isolates had telithromycin MICs of >or=1 microg/ml, and all of these isolates exhibited erythromycin MICs of >or=32 microg/ml. The high prevalence of resistance to telithromycin (which is not available in Taiwan) limits its potential use in the treatment of S. pyogenes infections, particularly in areas with high rates of macrolide resistance.  相似文献   

17.
18.
Grepafloxacin potency and spectrum of activity were re-evaluated against contemporary pathogens collected from clinical infections in 2001-2002. A total of 995 isolates were tested for grepafloxacin by the reference agar dilution method and these results were compared to those of 25 other antimicrobial agents. Grepafloxacin activity remained comparable to that of ciprofloxacin, levofloxacin and gatifloxacin against Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae (MIC(90), 0.03-2 microg/ml; 0.0-7.7% resistance rates). For Pseudomonas aeruginosa, grepafloxacin was active against ciprofloxacin-susceptible (MIC(90), 2 microg/ml), but not against ciprofloxacin-resistant (MIC(90), >8 microg/ml) isolates. Against methicillin-susceptible Staphylococcus aureus, grepafloxacin susceptibility rate was 91.4%, equal to that of levofloxacin. None of the fluoroquinolones showed reasonable activity against methicillin-resistant staphylococci. Gatifloxacin and grepafloxacin had the same MIC(90) against beta-hemolytic streptococci (0.25 microg/ml) and penicillin-susceptible Streptococcus pneumoniae (0.25 microg/ml). Grepafloxacin and other fluoroquinolone activities were not influenced by penicillin resistance in S. pneumoniae. Grepafloxacin was very active against Haemophilus influenzae (MIC(90), 0.03 microg/ml), Moraxella catarrhalis (MIC(90), 0.03 microg/ml) and Legionella spp. (MIC(90), 0.5 microg/ml). These results on recently isolated organisms indicate that grepafloxacin has a sustained potency and spectrum against most clinically important and indicated pathogens.  相似文献   

19.
A total of 6,991 unique patient isolates of Streptococcus pneumoniae were collected from October 1997 to June 2002 from 25 medical centers in 9 of the 10 Canadian provinces. Among these isolates, 20.2% were penicillin nonsusceptible, with 14.6% being penicillin intermediate (MIC, 0.12 to 1 microg/ml) and 5.6% being penicillin resistant (MIC, > or =2 microg/ml). The proportion of high-level penicillin-resistant S. pneumoniae isolates increased from 2.4 to 13.8% over the last 3 years of the study, and the proportion of multidrug-resistant S. pneumoniae isolates increased from 2.7 to 8.8% over the 5-year period. Resistant rates (intermediate and resistant) among non-beta-lactam agents were as follows: macrolides, 9.6 to 9.9%; clindamycin, 3.8%; doxycycline, 5.5%; chloramphenicol, 3.9%; and trimethoprim-sulfamethoxazole, 19.0%. Rates of resistance to non-beta-lactam agents were higher among penicillin-resistant strains than among penicillin-susceptible strains. No resistance to vancomycin or linezolid was observed; however, 0.1% intermediate resistance to quinupristin-dalfopristin was observed. The rate of macrolide resistance (intermediate and resistant) increased from 7.9 to 11.1% over the 5 years. For the fluoroquinolones, the order of activity based on the MICs at which 50% of isolates are inhibited (MIC(50)s) and the MIC(90)s was gemifloxacin > clinafloxacin > trovafloxacin > moxifloxacin > grepafloxacin > gatifloxacin > levofloxacin > ciprofloxacin. The investigational compounds ABT-773 (MIC(90), 0.008 microg/ml), ABT-492 (MIC(90), 0.015 microg/ml), GAR-936 (tigecycline; MIC(90), 0.06 microg/ml), and BMS284756 (garenoxacin; MIC(90), 0.06 micro g/ml) displayed excellent activities. Despite decreases in the rates of antibiotic consumption in Canada over the 5-year period, the rates of both high-level penicillin-resistant and multidrug-resistant S. pneumoniae isolates are increasing in Canada.  相似文献   

20.
The recent identification of glycopeptide intermediate-resistant Staphylococcus aureus (GISA) clinical isolates has provided an opportunity to assess the stability of the glycopeptide resistance phenotype by nonselective serial passage and to evaluate reversion-associated cell surface changes. Three GISA isolates from the United States (MIC of vancomycin = 8 microg/ml) and two from Japan (MICs of vancomycin = 8 and 2 microg/ml) were passaged daily on nutrient agar with or without vancomycin supplementation. After 15 days of passage on nonselective medium, vancomycin- and teicoplanin-susceptible revertants were obtained from each GISA isolate as determined by broth dilution MIC. Revertant isolates were compared with parent isolates for changes in vancomycin heteroresistance, capsule production, hemolysis phenotype, coagulase activity, and lysostaphin susceptibility. Several revertants lost the subpopulations with intermediate vancomycin resistance, whereas two revertants maintained them. Furthermore, although all of the parent GISA isolates produced capsule type 5 (CP5), all but one revertant tested no longer produced CP5. In contrast, passage on medium containing vancomycin yielded isolates that were still intermediately resistant to vancomycin, had no decrease in the MIC of teicoplanin, and produced detectable CP5. No consistent changes in the revertants in hemolysis phenotype, lysostaphin susceptibility, or coagulase activities were discerned. These data indicate that the vancomycin resistance phenotype is unstable in clinical GISA isolates. Reversion of the vancomycin resistance phenotype might explain the difficulty in isolating vancomycin-resistant clinical isolates from the blood of patients who fail vancomycin therapy and, possibly, may account for some of the difficulties in identifying GISA isolates in the clinical laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号