首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy) pyrimidine hydrochloride (NS-7), a novel neuroprotective compound, on the voltage-sensitive sodium channels (VSSC) were examined in the rat brain and cardiac myocytes. NS-7 inhibited [3H]batrachotoxinin A 20α-benzoate (BTX) binding (neurotoxin receptor site 2) in brain membranes with a Ki value of 1 μM , while the compound was less effective in the cardiac myocytes (Ki = 13 μM). Aconitine, on the other hand, inhibited [3H]BTX binding to brain membranes and cardiac myocytes with the same potency. In contrast, NS-7 had no affinity for [3H]saxitoxin binding in brain (neurotoxin receptor site 1). In superfused slices of the rat cerebral cortex, NS-7 inhibited the veratridine (5 μM)-evoked glutamate release in a concentration-dependent manner, the IC50 value of which was 7.7 μM, whereas the compound showed a weak and not significant suppression of KCl-evoked glutamate release. The tissue concentrations of NS-7 in the rat cerebral cortex and heart were 89 and 28 nmole/g tissue, respectively, 5 min after its intravenous injection (8 mg/kg). Furthermore, in the cerebral cortex, NS-7 distributed preferentially to the membrane-enriched synaptosomal fraction. Since neurotoxin receptor site 2 is located in the transmembrane region of the VSSC moiety, the channel function may be substantially inhibited by a peripheral administration of NS-7. These results suggest that the blockade of neurotoxin receptor site 2 of VSSC in the brain contributes to the neuroprotective action of NS-7. Received: 29 October 1996 / Accepted: 20 January 1997  相似文献   

2.
We have previously shown the involvement of Na(+) channel as well as N-type and P/Q-type Ca(2+) channels in the oxygen and glucose deprivation-induced injury in rat cerebrocortical slices. In the present study, we investigated the influence of halothane on the cerebroprotective effects of a variety of Na(+) and Ca(2+) channel blockers in rat cerebrocortical slices. The hypoxic injury was attenuated by Na(+) channel blockers including tetrodotoxin, lidocaine and dibucaine, and Ca(2+) channel blockers, such as verapamil, omega-agatoxin IVA and omega-conotoxin GVIA. Halothane abolished the protective effects of lidocaine, dibucaine and verapamil, all of which block the respective cation channels in a voltage-dependent manner, without affecting the actions of tetrodotoxin, omega-agatoxin IVA and omega-conotoxin GVIA, which reveal voltage-independent blockade. On the other hand, the nitric oxide synthesis estimated from the extracellular cyclic GMP formation was elevated during exposure to hypoxia. All channel blockers tested here attenuated hypoxia-evoked nitric oxide synthesis. Halothane blocked almost completely these actions of lidocaine and verapamil. Moreover, the Na(+) and Ca(2+) channel blockade by these compounds, as determined by veratridine- and KCl-stimulated nitric oxide synthesis, respectively, was also reversed by halothane. These findings suggest that an anesthetic agent halothane reversed the Na(+) and Ca(2+) channel blockade of several voltage-dependent ion channel blockers, leading to the attenuation of their cerebroprotective actions. Therefore, the influence of halothane anesthesia should be taken into consideration for the evaluation of neuroprotective action of Na(+) and Ca(2+) channel blockers.  相似文献   

3.
1 The mode of Ca(2+) channel blocking by gabapentin [1-(aminomethyl)cyclohexane acetic acid] was compared to those of other Ca(2+) channel blockers, and the potential role of Ca(2+) channel antagonists in providing protection against hypoxic injury was subsequently investigated in rat cerebrocortical slices. 2 mRNA for the alpha(2)delta subunits of Ca(2+) channels was found in rat cerebral cortex. 3 Nitric oxide (NO) synthesis estimated from cGMP formation was enhanced by KCl stimulation, which was mediated primarily by the activation of N- and P/Q-type Ca(2+) channels. Gabapentin blocked both types of Ca(2+) channels, and preferentially reversed the response to 30 mM K(+) stimulation compared with 50 mM K(+) stimulation. In contrast, verapamil preferentially inhibited the response to depolarization by the higher concentration (50 mM) of K(+). 4 Gabapentin inhibited KCl-induced elevation of intracellular Ca(2+) in primary neuronal culture. 5 Hypoxic injury was induced in cerebrocortical slices by oxygen deprivation in the absence (severe injury) or presence of 3 mM glucose (mild injury). Gabapentin preferentially inhibited mild injury, while verapamil suppressed only severe injury. omega-Conotoxin GVIA (omega-CTX) and omega-agatoxin IVA (omega-Aga) were effective in both models. 6 NO synthesis was enhanced in a manner dependent on the severity of hypoxic insults. Gabapentin reversed the NO synthesis induced by mild insults, while verapamil inhibited that elicited by severe insults. omega-CTX and omega-Aga were effective in both the cases. 7 Therefore, the data suggest that gabapentin and verapamil cause activity-dependent Ca(2+) channel blocking by different mechanisms, which are associated with their cerebroprotective actions and are dependent on the severity of hypoxic insults.  相似文献   

4.
The selective Na+/Ca2+ exchange inhibitor 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), significantly improves recovery of population spike amplitudes in rat hippocampal slices after hypoxia/hypoglycemia. Our data suggest that the Na+/Ca2+ exchanger, operating in reverse mode, contributes to hypoxia/hypoglycemia-induced injury in CA1 neurons.  相似文献   

5.
1. In the present study we examined the effects of a new Ca2+ channel blocker (lomerizine), an antimigraine drug, on cerebral cortical blood flow (CBF) in anaesthetized rats (laser Doppler flowmetry) and on vertebral blood flow in anaesthetized beagle dogs (electromagnetic flowmeter). 2. Lomerizine (1.25-10 mg/kg, p.o.) dose-dependently increased CBF in rats without affecting blood pressure (BP) or heart rate (HR). 3. The plasma concentration of lomerizine (free base) in anaesthetized rats at 30 and 60 min after the initial administration of 5 mg/kg, p.o., time at which there was a significant increase in CBF, was similar to that reported in healthy subjects receiving lomerizine at 10 mg (2 x 5 mg)/day, p.o., a dose that significantly reduces the frequency and mean duration of headache attacks. 4. Flunarizine (10 mg/kg, p.o.) did not increase CBF significantly. Flunarizine (20 mg/kg, p.o.) did not increase CBF, but did decrease BP 30-120 min after its administration. 5. Lomerizine (2.5 and 5 mg/kg, intraduodenally) dose-dependently increased vertebral blood flow in dogs without significantly changing BP or HR. With 10 mg/kg intraduodenal lomerazine, vertebral blood flow remained elevated from 20 to 240 min after administration and BP was decreased from 20 to 120 min. 6. Thus, lomerizine had a greater effect on CBF than on BP and HR and, therefore, it may be clinically effective in conditions associated with circulatory disturbances in the brain, such as migraine, without producing systemic effects (e.g. hypotension) generally seen with other Ca2+ channel blockers.  相似文献   

6.
We demonstrated previously that amlodipine, a dihydropyridine Ca(2+) channel blocker, exhibits antitumor effects on human epidermoid carcinoma A431 cells both in vitro and in vivo, in part through inhibition of capacitative Ca(2+) entry. In this study, we examined the effects of amlodipine on cell cycle distribution and cell cycle regulatory molecules in A431 cells, since a rise in intracellular Ca(2+) is required at several points during cell cycle progression. Flow cytometric analysis revealed that treatment with amlodipine (20-30muM, for 24h) induced G1 phase cell accumulation. The amlodipine-induced G1 arrest was associated with a decrease in phosphorylation of retinoblastoma protein (pRB), a regulator of G1 to S phase transition, reduction of protein levels of cyclin D1 and cyclin dependent kinase 4 (CDK4), G1 specific cell cycle proteins, and increased expression of p21(Waf1/Cip1), an inhibitory protein of CDK/cyclin complexes. In vitro kinase assay revealed that amlodipine significantly decreased CDK2-, CDK4-, and their partners cyclin E- and cyclin D1-associated kinase activities. The amlodipine-induced reductions in cyclin D1 protein expression and in CDK2 kinase activity were reproduced by a dihydropyridine derivative, nicardipine, having an inhibitory effect on A431 cell growth, but not by nifedipine, lacking the antiproliferative activity. Our results demonstrate that amlodipine caused G1 cell cycle arrest and growth inhibition in A431 cells through induction of p21(Waf1/Cip1) expression, inhibition of CDK/cyclin-associated kinase activities, and reduced phosphorylation of pRB.  相似文献   

7.
The electrophysiological and antiarrhythmic effects of a structurally novel compound, SD-3212, were evaluated in comparison with its enantiomer (SD-3211). In isolated guinea pig ventricular muscles, SD-3212 reduced the maximum upstroke velocity and the plateau phase of action potential in a concentration-dependent manner, while SD-3211 significantly affected only action potential duration. SD-3212 had oral prophylactic effects against both ouabain-induced (in guinea pigs) and chloroform-induced (in rats) arrhythmas, whereas SD-3211 and verapamil were effective only on the former arrhythmia model and mexiletine was effective only on the latter. These results suggest that there is an enantiospecific interaction with cardiac Na+ and Ca++ channels, and that the dual inhibitory action of SD-3212 on these channels may contribute to its antiarrhythmic properties.  相似文献   

8.
1. We have shown previously that 1,4‐dihydro‐2,6‐dimethyl‐4‐(3‐nitrophenyl)‐3,5‐pyridinedicarboxylic acid pentyl methyl ester (MN9202), a new 1,4‐dihydropyridine Ca2+ channel modulator, has significant hypotensive effects and favourable pharmacokinetic characteristics. As a chiral molecule, MN9202 has two optical isomers. The aim of the present study was to evaluate the pharmacological properties of the two enantiomers. 2. The two enantiomers, S‐(?)‐ and R‐(+)‐MN9202, were obtained by HPLC. At 1 μmol/L, both racemic MN9202 and S‐(?)‐MN9202 decreased the contractility of rat ventricular myocytes by 54.0 and 64.4%, respectively, compared with control, whereas R‐(+)‐MN9202 enhanced cell shortening by 10.1%. At 1 μmol/L, racemic MN9202 markedly reduced calcium transient (CaT) and L‐type Ca2+ channel current (ICa,L) by 60.0 and 50.7%, respectively, whereas the reductions in CaT and ICa,L produced by 1 μmol/L S‐(?)‐MN9202 were greater still (62.2 and 65.7%, respectively). In contrast, 1 μmol/L R‐(+)‐MN9202 increased CaT and ICa,L by 11.4 and 10.6%, respectively. Furthermore, findings from kinetics studies of ICa,L revealed that the steady state inactivation curve of ICa,L was shifted towards a hyperpolarizing potential by S‐(?)‐MN9202, but towards a depolarizing potential by R‐(+)‐MN9202. These results demonstrate different effects of R‐(+)‐MN9202 and S‐(?)‐MN9202. 3. In conclusion, the findings of the present study suggest that the chirality of MN9202 results in opposing pharmacological properties of its two enantiomers: S‐(?)‐MN9202 may be responsible for the therapeutic effects of racemic MN9202, whereas R‐(+)‐MN9202 contributes to it unwanted effects. The findings of the present study also indicate that MN9202 may be used as a new probe with which to investigate the structure–function relationships of Ca2+ channels.  相似文献   

9.
Plasma concentration profiles and excretion were investigated after a single intravenous injection of 14C-NS-7 (4-(fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride, CAS 178429-67-9), a novel Na+/Ca2+ channel blocker, to rats, dogs and monkeys. Plasma protein binding of this drug was determined in vitro and in vivo. AUC0-infinity values for radioactivity and NS-7 after the intravenous administration of 14C-NS-7 to male rats increased with the dose, namely from 0.04 to 5 mg/kg (radioactivity) and from 0.2 to 5 mg/kg (NS-7), indicating the linearity of the drug's pharmacokinetics. Plasma concentrations of the unchanged drug after the intravenous injection of 0.2 mg/kg 14C-NS-7 decreased biexponentially, respective t1/2 beta values being 15.9 h in the male and 22.4 h in the female rats. The t1/2 beta values difference in the males and females might be due to sex differences in NS-7 metabolism. Urinary and fecal excretions of radioactivity within 168 h of administration were 33.0 and 61.4% of the dose in the male and 35.0 and 53.2% in the female rats. No radioactivity was detected in air exhaled from the males and females collected for 168 h after NS-7 administration. Within 24 h of administration, respective biliary excretions for the male and female rats were 26.1 and 11.9% of the dose. Of this excreted radioactivity, 34.9% was reabsorbed in the males. NS-7 plasma concentrations decreased biexponentially after intravenous administration of 0.2 mg/kg 14C-NS-7 to dogs and monkeys. The elimination half-life was 18 h for the dogs and 9.52 h for the monkeys. Urinary and fecal excretions of radioactivity within 168 h of administration were 24.2 and 70.0% of the dose for the dogs, and 63.3 and 24.8% for the monkeys. These species differences in excretion may be due to differences in urinary metabolite compositions. In vitro protein binding of NS-7 showed no marked species differences and was independent of the NS-7 concentration. Binding of 14C-NS-7 in the sera of rats, dogs, monkeys and humans was 90.7%, 73.5% 79.0% and 87.1%, respectively. Binding to human serum albumin, alpha 1-acid glycoprotein and lipoprotein was 56.2%, 45.4% and 79.5%, in the range of 4-40 ng/ml. In vivo binding in rat serum 5 min, 6 h and 24 h after the intravenous injection of 14C-NS-7(0.2 mg/kg) ranged from 89.6 to 90.6%.  相似文献   

10.

BACKGROUND AND PURPOSE

SKF 96365 is well known for its suppressing effect on human glioblastoma growth by inhibiting pre-activated transient receptor potential canonical (TRPC) channels and Ca2+ influx. The effect of SKF 96363 on glioblastoma cells, however, may be multifaceted and this possibility has been largely ignored.

EXPERIMENTAL APPROACH

The effects of SKF 96365 on cell cycle and cell viability of cultured human glioblastoma cells were characterized. Western blot, Ca2+ imaging and patch clamp recordings were used to delineate cell death mechanisms. siRNA gene knockdown provided additional evidence.

KEY RESULTS

SKF 96365 repressed glioblastoma cell growth via increasing intracellular Ca2+ ([Ca2+]i) irrespective of whether TRPC channels were blocked or not. The effect of SKF 96365 primarily resulted from enhanced reverse operation of the Na+/Ca2+ exchanger (NCX) with an EC50 of 9.79 μM. SKF 96365 arrested the glioblastoma cells in the S and G2 phases and activated p38-MAPK and JNK, which were all prevented by the Ca2+ chelator BAPTA-AM or EGTA. The expression of NCX in glioblastoma cells was significantly higher than in normal human astrocytes. Knockdown of the NCX1 isoforms diminished the effect of SKF 96365 on glioblastoma cells.

CONCLUSIONS AND IMPLICATIONS

At the same concentration, SKF 96365 blocks TRPC channels and enhances the reverse mode of the NCX causing [Ca2+]i accumulation and cytotoxicity. This finding suggests an alternative pharmacological mechanism of SKF 96365. It also indicates that modulation of the NCX is an effective method to disrupt Ca2+ homeostasis and suppress human glioblastoma cells.  相似文献   

11.
Tissue distribution, placental transfer and secretion of radioactivity in milk were studied after a single intravenous administration of 0.2 mg/kg of 14C-NS-7 (4-(fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride, CAS 178429-67-9), a novel Na+/Ca2+ channel blocker, to rats. Except for white fat in male and female rats, tissue radioactivity concentrations 5 min after administration were 2 to 100 times the plasma values, evidence that the drug is widely distributed throughout the body. Five minutes after administration the highest concentration was in the lung followed in order by the adrenal gland, kidney and thyroid gland. Concentrations in the cerebral cortex, striatum and cerebellum, the target organs of NS-7, were similar and 10 to 18 times the plasma concentrations in the male and female rats. Radioactivity concentrations in the lungs decreased rapidly. The pancreas had the highest concentration 2 h after administration. Concentrations decreased in all the tissues examined as the plasma concentration decreased. Maternal and fetal tissue radioactivity concentrations were determined after intravenous injection of 14C-NS-7 to pregnant rats on the 18th day of gestation. Radioactivity was well and rapidly distributed to the maternal tissues, and concentrations in all the tissues tested were higher than the plasma concentrations. In the amniotic fluid, however, the concentration was lower than in the plasma. In all the fetal tissues tested, radioactivity reached a maximum 1 h after administration. The respective fetal blood and whole body concentrations were 2 to 6 and 11 to 13 times the maternal plasma concentration. Of the fetal tissues tested the liver had the highest radioactivity. Decreases in fetal tissue radioactivity concentrations paralleled the decrease in the maternal plasma. More than 90% of the radioactivity present in the placenta and fetal whole body 1 and 24 h after administration was due to the unchanged drug. After intravenous injection of 14C-NS-7 (0.2 mg/kg) to lactating rats on the 10-14th day after parturition, radioactivity was excreted rapidly into the milk, reaching a maximum that was 4 to 6 times the plasma value 1 h after injection.  相似文献   

12.
We evaluated the effects of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline), a novel and selective Na+/Ca2+ exchange inhibitor, on ischemic acute renal failure. Ischemic acute renal failure in rats was induced by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after the contralateral nephrectomy. SEA0400 administration (0.3, 1 and 3 mg/kg, i.v.) before ischemia dose-dependently attenuated the ischemia/reperfusion-induced renal dysfunction and histological damage such as tubular necrosis. SEA0400 pretreatment at the higher dose suppressed the increment of renal endothelin-1 content after reperfusion. The ischemia/reperfusion-induced renal dysfunction was also overcome by post-ischemia treatment with SEA0400 at 3 mg/kg, i.v. In in vitro study, SEA0400 (0.2 and 1 microM) protected cultured porcine tubular cells (LLC-PK1) from hypoxia/reoxygenation-induced cell injury. These findings support the view that Ca2+ overload via the reverse mode of Na+/Ca2+ exchange, followed by endothelin-1 overproduction, plays an important role in the pathogenesis of ischemia/reperfusion-induced renal injury. The possibility exists that a selective Na+/Ca2+ exchange inhibitor such as SEA0400 is useful as effective therapeutic agent against ischemic acute renal failure in humans.  相似文献   

13.
One of the most common acute complications of stroke is brain edema. Treatment of edema is recommended when the condition of the patients is deteriorating. The present study was undertaken to evaluate the effect of T-477 [(R)-(+)-2-(4-chlorophenyl)-2,3-dihydro-4-diethyl aminoacetyl-4H-1,4-benzorthiazine hydrochloride], a novel neuronal Na+ and Ca2+ channel blocker, on brain edema in rats. Cerebral ischemia was induced by intra-arterial infusion of 1000 microspheres into the forebrain of freely moving rats, resulting in brain edema. T-477 was intravenously infused continuously for 24 h or twice for 3 h with a 3-h interval between infusions immediately after microsphere injection. T-477 dose-dependently inhibited the increase in brain water content by both infusion procedures; the inhibition was statistically significant at doses of 25 mg/kg per 24 h and 14 mg/kg per 9 h. Additionally, infusion of T-477 at a dose of 14 mg/kg per 9 h significantly inhibited the decrease in K content and the increase in Ca content of the forebrain. In conclusion, T-477 prevents brain edema following microsphere-induced cerebral embolism in rats.  相似文献   

14.
Glucagon like peptide-1 (GLP-1) released from enteroendocine L-cells in the intestine has incretin effects due to its ability to amplify glucose-dependent insulin secretion. Promotion of an endogenous release of GLP-1 is one of therapeutic targets for type 2 diabetes mellitus. Although the secretion of GLP-1 in response to nutrient or neural stimuli can be triggered by cytosolic Ca2+ elevation, the stimulus-secretion pathway is not completely understood yet. Therefore, the aim of this study was to investigate the role of reverse Na+/Ca2+ exchanger (rNCX) in Ca2+ entry induced by muscarinic stimulation in NCI-H716 cells, a human enteroendocrine GLP-1 secreting cell line. Intracellular Ca2+ was repetitively oscillated by the perfusion of carbamylcholine (CCh), a muscarinic agonist. The oscillation of cytosolic Ca2+ was ceased by substituting extracellular Na+ with Li+ or NMG+. KB-R7943, a specific rNCX blocker, completely diminished CCh-induced cytosolic Ca2+ oscillation. Type 1 Na+/Ca2+ exchanger (NCX1) proteins were expressed in NCI-H716 cells. These results suggest that rNCX might play a crucial role in Ca2+ entry induced by cholinergic stimulation in NCI-H716 cells, a GLP-1 secreting cell line.  相似文献   

15.
Summary Antiarrhythmic and electrophysiological effects of SD-3212, a novel antiarrhythmic agent, which has both Na+ channel and Ca++ channel blocking activites, were compared with those of its (+)-stereoisomer, SD-3211, which has only a Ca++ channel blocking activity, and bepridil, a known Ca++ channel blocker with additional Na+ channel blocking activity, using the two-stage coronary ligation induced arrhythmia (24h after the ligation of the left anterior descending coronary artery) and 7 day-old myocardial infarcted hearts in anaesthetized dogs.SD-3212 showed a dose-dependent antiarrhythmic effect on the two-stage coronary ligation induced arrhythmia. SD-3212 at a dose of 3 mg/kg reduced the arrhythmic ratio, i.e. ectopic beats per min divided by the sum of ectopic beats and sinus beats per min, significantly from 1 up to 12 min after the administration. Neither bepridil (1–6 mg/kg) nor SD-3211 (1 mg/kg) had an antiarrhythmic effect. SD-3212 (0.3–3 mg/kg) prolonged both the conduction time in the normal myocardium and the delayed potential in the infarcted myocardium in the 7 day-old myocardial infarcted hearts in anaesthetized dogs in a dose-dependent manner. This effect of SD-3212 was shown at coupling intervals of 150–1000 ms increasing with decreasing interval. In this respect, SD-3212 is similar to drugs which show fast recovery of Vmax from use-dependent block such as lidocaine. Bepidril (1–6 mg/kg) also prolonged these parameters in a dose-dependent manner, however, the prolongation induced by bedripil was limited to shorter coupling intervals as compared with that induced by SD-3212. SD-3212 (0.1–1 mg/kg) did not show this prolonging effect. SD-3212 increased the refractory period in the infarcted zone to a small extent (not significantly) at all strengths tested between 0.5–4 mA and also in the normal zone between 0.2–1 mA to an even lesser extent than in the infarcted zone. Bepridil produced a significant increase of refractory period in the infarcted zone. In the normal zone, bepridil produced a non-significant, but greater increase of the refractory period as compared with SD-3212. SD-3211 did not affect the refractory period in the infarcted zone or in the normal zone. None of the three drugs produced a significant change in the excitation threshold.Thus, SD-3212 showed electrophysiological properties of a drug with fast recovery kinetics without producing a significant increase of refractory period, and these properties are very similar to those of class Ib antiarrhythmic agents such as lidocaine. The present study suggests that there might be a possibility of SD-3212 to become a safe and unique antiarrhythmic agent with suppresses both Na+ and Ca++ inward current.Send offprint requests to S. Nagashima at the above address  相似文献   

16.
1. We have shown that in addition to voltage-operated Ca2+ channel (VOC), endothelin-1 (ET-1) activates two types of Ca2+-permeable nonselective cation channel (NSCC) in A7r5 cells: its lower concentrations (< or = 1 nM; lower [ET-1]) activate only an SK&F 96365-resistant channel (NSCC-1), whereas its higher concentrations (> or = 10 nM; higher [ET-1]) activate an SK&F 96365-sensitive channel (NSCC-2) as well. 2. We now characterized the effects of a blocker of Ca2+ entry channel LOE 908 on NSCCs and store-operated Ca2+ channel (SOCC) in A7r5 cells, and using two drugs, clarified the involvement of these channels in the ET-1-induced increase in the intracellular free Ca2+ concentrations ([Ca2+]i). Whole-cell recordings and [Ca2+]i monitoring with fluo-3 were used. 3. LOE 908 up to 10 microM had no effect on increases in [Ca2+]i induced by thapsigargin or ionomycin, but SK&F 96365 abolished them. 4. In the cells clamped at -60 mV, both lower and higher [ET-1] induced inward currents with linear iv relationships and the reversal potentials of -15.0 mV. Thapsigargin induced no currents. 5. In the presence of nifedipine, lower [ET-1] induced a sustained increase in [Ca2+]i, whereas higher [ET-1] induced a transient peak and a sustained increase. The sustained increases by lower and higher [ET-1] were abolished by removal of extracellular Ca2+, and they were suppressed by LOE 908 to 0 and 35%, respectively, with the LOE 908-resistant part being abolished by SK&F 96365. 6. These results show that LOE 908 is a blocker of NSCCs without effect on SOCC, and that the increase in [Ca2+]i at lower [ET-1] results from Ca2+ entry through NSCC-1 in addition to VOC, whereas the increase at higher [ET-1] involves NSCC-1, NSCC-2 and SOCC in addition to VOC.  相似文献   

17.
  1. High potassium produced a concentration-dependent contraction in rat isolated spleen.
  2. The high potassium-induced contraction of rat spleen was abolished in Ca2+-free Krebs solution containing 1 mM EGTA, and the subsequent addition of 3 mM Ca2+ restored the high potassium-induced contraction to the control level.
  3. Nifedipine, verapamil, diltiazem, Cd2+, Ni2+, Co2+, R-(+)-Bay K 8644 and pimozide inhibited and relaxed high potassium-induced contraction of rat spleen with IC50 and EC50 values much higher than those values in rat aorta.
  4. In addition, high potassium-stimulated contraction of rat spleen was insensitive to ω-conotoxin GVIA, ω-conotoxin MVIIC and ω-agatoxin IVA.
  5. The high potassium-induced contraction of rat spleen was also unaffected by tetrodotoxin (TTX), prazosin, chloroethylclonidine (CEC), yohimbine, propranolol, atropine, diphenhydramine, cimetidine, ketanserin, 3-tropanyl-indole-3-carboxylate, saralasin, indomethacin, nordihydroguaiaretic acid, GR32191B, domperidone, naloxone, chlorpromazine, suramin, (±)-2-amino-5-phosphonopentanoic acid, 6,7-dinitroquinoxaline-2,3-dione (DNQX), L-659,877, L-703,606, lorglumide, PD 135,158 N-methyl-D-glucamine, benextramine, amiloride, dantrolene, TMB-8, econazole, staurosporine and neomycin.
  6. Forskolin and sodium nitroprusside relaxed high potassium-induced contraction of rat spleen with EC50 values of 0.55±0.04 and 20.0±2.7 μM, respectively.
  7. It is concluded that high potassium may activate a novel, pharmacologically uncharacterized voltage-operated Ca2+ channel in rat spleen.
  相似文献   

18.
It has been suggested that a new type of large-conductance Ca(2+)-activated K(+) (BK) channel is distributed in the inner mitochondrial membrane (mitoK(Ca) channel) and that its opening may attenuate ischemic cardiac injury. We examined effects of 12,14-dichlorodehydroabietic acid (diCl-DHAA), a novel BK-channel opener, on rat cardiac myocytes and mitochondria. Application of diCl-DHAA concentration-dependently reduced Ca(2+) overload in isolated mitochondria, activated mitoK(Ca) channels in inside-out patches of mitochondrial membrane, facilitated flavoprotein-oxidization in myocytes, and increased cellular viability under simulated ischemia. In conclusion, diCl-DHAA directly opens mitoK(Ca) channels, prevents Ca(2+) influx into matrix, and reduces ischemic injury in cardiac myocytes.  相似文献   

19.
1. The effects of No. 7943 on the Na+/Ca2+ exchange current and on other membrane currents were investigated in single cardiac ventricular cells of guinea-pig with the whole-cell voltage-clamp technique. 2. No. 7943 at 0.1-10 microM suppressed the outward Na+/Ca2+ exchange current in a concentration-dependent manner. The suppression was reversible and the IC50 value was approximately 0.32 microM. 3. No. 7943 at 5-50 microM suppressed also the inward Na+/Ca2+ exchange current in a concentration-dependent manner but with a higher IC50 value of approximately 17 microM. 4. In a concentration-response curve, No. 7943 raised the K(m)Ca2+ value, but did not affect the Imax value, indicating that No. 7943 is a competitive antagonist with external Ca2+ for the outward Na+/ Ca2+ exchange current. 5. The voltage-gated Na+ current, Ca2+ current and the inward rectifier K+ current were also inhibited by No. 7943 with IC50S of approximately 14, 8 and 7 microM, respectively. 6. In contrast to No. 7943, 3', 4'-dichlorobenzamil (DCB) at 3-30 microM suppressed the inward Na+/Ca2+ exchange current with IC50 of 17 microM, but did not affect the outward exchange current at these concentrations. 7. We conclude that No. 7943 inhibits the outward Na+/Ca2+ exchange current more potently than any other currents as a competitive inhibitor with external Ca2+. This effect is in contrast to DCB which preferentially inhibits the inward rather than the outward Na+/Ca2+ exchange current.  相似文献   

20.
We examined the effects of various KCl concentrations on the actions of some vasodilators belonging to different pharmacological classes in rat aortic rings. In some experiments, tissues were precontracted with noradrenaline after blocking voltage-dependent channels to assess the effects of depolarisation unaccompanied by the entry of extracellular Ca2+ into the cytosol. Concentration/response curves for the vasorelaxant effect of calcium entry blockers (e.g. diltiazem), K+ channel openers (e.g. aprikalim), nitrate derivatives (e.g. nitroglycerin), a β2-adrenergic agonist (salbutamol) and papaverine were obtained by using endothelium-denuded rat aortic rings precontracted with KCl (20–60 mM) to determine the potencies and efficacies of the drugs. The efficacies and potencies of calcium entry inhibitors were virtually independent of the [KCl]. A reduction in the potency (up to 18-fold) of papaverine occurred without changes in efficacy when the [KCl] was raised from 20 to 60 mM. The decline in potency was even greater for nitrate-like compounds. The potency of K+ channel openers in aortic rings precontracted with 30 mM KCl decreased by three- to sixfold compared with those precontracted with 20 mM KCl. With the exception of pinacidil, the efficacy of these agents already started to decline in preparations precontracted with 25 mM KCl and was virtually zero in preparations precontracted with 60 mM KCl. In contrast to other K+ channel openers, the vasorelaxant action of pinacidil was relatively resistant to glibenclamide. Salbutamol produced only a slight relaxation even in preparations precontracted with 20 mM KCl. In nitrendipine-pretreated, noradrenaline-precontracted aortic rings, the vasorelaxant effects of aprikalim, but not those of linsidomine or papaverine, declined when the [KCl] of the bathing medium was increased. In conclusion, the vasorelaxant potency and efficacy of calcium entry blockers is independent of the [KCl] used to precontract rat aortic rings, and thus, of the degree of membrane depolarisation. In contrast, increasing the [KCl] strongly reduces the potency and the efficacy of K+ channel openers not only in this preparation but also in noradrenaline-precontracted rings in which the entry of extracellular Ca2+ was prevented with nitrendipine. This indicates that, with the exception of pinacidil, the vasorelaxant activity of K+ channel openers depends on the degree of membrane depolarisation. Finally, the vasorelaxant potency and efficacy of nitrate-like compounds and papaverine are independent of depolarisation per se but they are markedly affected by the influx of Ca2+ accompanying elevated [KCl]. Thus, the degree of vessel depolarisation should be taken into consideration when attempting to compare potencies and efficacies among vasorelaxant agents. Received: 4 May 1998 / Accepted: 6 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号