首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To effectively analyze Mycoplasma gallisepticum for virulence-associated determinants, the ability to create stable genetic mutations is essential. Global M. gallisepticum mutagenesis is currently limited to the use of transposons. Using the gram-positive transposon Tn4001mod, a mutant library of 110 transformants was constructed and all insertion sites were mapped. To identify transposon insertion points, a unique primer directed outward from the end of Tn4001mod was used to sequence flanking genomic regions. By comparing sequences obtained in this manner to the annotated M. gallisepticum genome, the precise locations of transposon insertions were discerned. After determining the transposon insertion site for each mutant, unique reverse primers were synthesized based on the specific sequences, and PCR was performed. The resultant amplicons were used as unique Tn4001mod mutant identifiers. This procedure is referred to as signature sequence mutagenesis (SSM). SSM permits the comprehensive screening of the M. gallisepticum genome for the identification of novel virulence-associated determinants from a mixed mutant population. To this end, chickens were challenged with a pool of 27 unique Tn4001mod mutants. Two weeks postinfection, the birds were sacrificed, and organisms were recovered from respiratory tract tissues and screened for the presence or absence of various mutants. SSM is a negative-selection screening technique whereby those mutants possessing transposon insertions in genes essential for in vivo survival are not recovered from the host. We have identified a virulence-associated gene encoding dihydrolipoamide dehydrogenase (lpd). A transposon insertion in the middle of the coding sequence resulted in diminished biologic function and reduced virulence of the mutant designated Mg 7.  相似文献   

2.
Pathogenic mycobacteria survive and replicate within host macrophages, but the molecular mechanisms involved in this necessary step in the pathogenesis of infection are not completely understood. Mycobacterium marinum has recently been used as a model for aspects of the pathogenesis of tuberculosis because of its close genetic relationship to Mycobacterium tuberculosis and because of similarities in the pathology and course of infection caused by this organism in its natural hosts, fish and frogs, with tuberculosis in humans. In order to advance the utility of the M. marinum model, we have developed efficient transposon mutagenesis of the organism by using a Drosophila melanogaster mariner-based transposon. To determine the efficiency of transposition, we have analyzed pigmentation mutants from the transposon mutant library. In addition to insertions in four known genes in the pathway of pigment biosynthesis, two insertions in novel genes were identified in our mutant library. One of these is in a putative inhibitor of the carotenoid biosynthesis pathway. The second unexpected insertion is in an intergenic region between two genes homologous to Rv2603c and Rv2604c of M. tuberculosis. In addition to a pigmentation defect, this mutant showed increased susceptibility to singlet oxygen and grew poorly in murine macrophages. Complementation with M. tuberculosis genomic DNA encompassing Rv2603c to Rv2606c corrected the pigmentation and growth defects of the mutant. These data demonstrate the utility of mariner-based transposon mutagenesis of M. marinum and that M. marinum can be used to study the function of M. tuberculosis genes involved in intracellular survival and replication.  相似文献   

3.
Staphylococcus aureus is an important human pathogen that is also able to kill the model nematode Caenorhabditis elegans. We constructed a 2,950-member Tn917 transposon insertion library in S. aureus strain NCTC 8325. Twenty-one of these insertions exhibited attenuated C. elegans killing, and of these, 12 contained insertions in different genes or chromosomal locations. Ten of these 12 insertions showed attenuated killing phenotypes when transduced into two different S. aureus strains, and 5 of the 10 mutants correspond to genes that have not been previously identified in signature-tagged mutagenesis studies. These latter five mutants were tested in a murine renal abscess model, and one mutant harboring an insertion in nagD exhibited attenuated virulence. Interestingly, Tn917 was shown to have a very strong bias for insertions near the terminus of DNA replication.  相似文献   

4.
P. multocida is the causative agent of several economically significant veterinary diseases occurring in numerous species worldwide. Signature-tagged mutagenesis (STM) is a powerful genetic technique used to simultaneously screen multiple transposon mutants of a pathogen for their inability to survive in vivo. We have designed an STM system based on a mini-Tn10 transposon, chemiluminescent detection and semi-quantitative analysis and have identified transposon insertions into genes of Pasteurella multocida that attenuate virulence in a septicemic mouse model. A bank of 96 transposons containing strongly-hybridizing tags was used to create 19 pools of P. multocida transposon mutants containing approximately 70-90 mutants/pool. A total of 62 mutants were attenuated when checked individually, and 25 unique single transposon insertion mutations were identified from this group. The sequence of the disrupted ORF for each attenuated mutant was determined by either cloning or PCR-amplifying and sequencing the flanking regions. The attenuated mutants contained transposon insertions in genes encoding biosynthetic enzymes, virulence factors, regulatory components and unknown functions. This study should contribute to an understanding of the pathogenic mechanisms by which P. multocida and other pathogens in the Pasteurellaceae family cause disease and identify novel live vaccine candidates and new potential antibiotic targets.  相似文献   

5.
Actinobacillus pleuropneumoniae is a significant respiratory pathogen of swine causing a severe and often fatal fibrinous hemorrhagic bronchopneumonia with significant economic losses resulting from chronic as well as acute infections. This study describes the application of a signature-tagged mutagenesis (STM) system to identify in vivo critical genes of A. pleuropneumoniae. Twenty pools representing over 800 A. pleuropneumoniae mutants were screened in a natural-host porcine infection model and presumptive attenuated mutants were selected. The identity of the disrupted gene in each mutant was determined using an inverse PCR approach to amplify DNA sequences adjacent to the transposon insertion, followed by sequencing of the PCR product and comparison to bacterial databases. In vitro and in vivo competitive indices were determined for each unique mutant, and a total of 20 unique, attenuating gene disruptions were identified including insertions into homologues of genes involved in biosynthesis, virulence determinants, regulation, translation and unknown functions. Three of the genes required for virulence of A. pleuropneumoniae in this study were also identified in a previous STM study of Pasteurella multocida. Seven of the STM-derived mutants were also evaluated for their potential as live vaccine strains and provided good protection against homologous challenge.  相似文献   

6.
Moraxella catarrhalis ETSU-9 was subjected to random transposon insertion mutagenesis to identify genes encoding products involved in the ability of the organism to form biofilms in vitro. Screening of approximately 3,000 transposon insertion mutants in the crystal violet-based biofilm assay system yielded six mutants that exhibited greatly reduced abilities to form biofilms. Three of these mutants had transposon insertions in the uspA2H gene, which encodes a surface protein previously shown to be involved in the ability of M. catarrhalis to both attach to human cell lines in vitro and resist killing by normal human serum. Random insertion mutagenesis of the uspA2H gene, involving the introduction of a 15-nucleotide fragment encoding 5 amino acids, was used to attempt to identify the domain(s) necessary for biofilm formation. Most of these insertions adversely affected biofilm formation, whereas the abilities of these same mutants to attach to Chang conjunctival epithelial cells in vitro were usually not reduced. Gain-of-function experiments showed that introduction of the M. catarrhalis ETSU-9 uspA2H gene into Escherichia coli conferred biofilm formation ability on this recombinant strain. Two of the other three M. catarrhalis ETSU-9 transposon insertion mutants that had greatly reduced abilities to form biofilms were shown to have insertions in genes encoding products predicted to be directly or indirectly involved in cell wall metabolism.  相似文献   

7.
Legionella dumoffii is one of the common causes of Legionnaires' disease and is capable of replicating in macrophages. To understand the mechanism of survival within macrophages, transposon mutagenesis was employed to isolate the genes necessary for intracellular growth. We identified four defective mutants after screening 790 transposon insertion mutants. Two transposon insertions were in genes homologous to icmB or dotC, within dot/icm loci, required for intracellular multiplication of L. pneumophila. The third was in a gene whose product is homologous to the 17-kDa antigen forming part of the VirB/VirD4 type IV secretion system of Bartonella henselae. The fourth was in the djlA (for "dnaj-like A") gene. DjlA is a member of the DnaJ/Hsp40 family. Transcomplementation of the djlA mutant restored the parental phenotype in J774 macrophages, A549 human alveolar epithelial cells, and the amoeba Acanthamoeba culbertsoni. Using confocal laser-scanning microscopy and transmission electron microscopy, we revealed that in contrast to the wild-type strain, L. dumoffii djlA mutant-containing phagosomes were unable to inhibit phagosome-lysosome fusion. Transmission electron microscopy also showed that in contrast to the virulent parental strain, the djlA mutant was not able to recruit host cell rough endoplasmic reticulum. Furthermore, the stationary-phase L. dumoffii djlA mutants were more susceptible to H2O2, high osmolarity, high temperature, and low pH than was their parental strain. These results indicate that DjlA is required for intracellular growth and organelle trafficking, as well as bacterial resistance to environmental stress. This is the first report demonstrating that a single DjlA-deficient mutant exhibits a distinct phenotype.  相似文献   

8.
Streptococcus parasanguis, a primary colonizer of the tooth surface, has long, peritrichous fimbriae. A fimbria-associated protein, Fap1, is identified as an adhesin of S. parasanguis FW213. The mature Fap1 protein is glycosylated, and the glycosylation is required for fimbria biogenesis and bacterial adhesion. Little is known about the mechanism of Fap1 glycosylation due to the lack of identifiable mutants. A novel transposon mutagenesis system was established and used to generate a mutant library. Screening of the library with a monoclonal antibody specific for a glycan epitope of Fap1 yielded six mutants with decreased expression levels of surface-associated glycosylated Fap1 protein. Southern blot analyses revealed that three of the mutants had the transposon inserted in the fap1 locus, whereas the other three mutants had insertions in other genes. Among the latter three mutants, two expressed Fap1 polypeptides on which no glycosylation was detected by glycan-specific antibodies; the other mutant expressed a partially glycosylated Fap1 polypeptide. These data suggest that three mutants were isolated with defects in genes implicated in Fap1 glycosylation.  相似文献   

9.
To explore the role in viral pathogenesis of the region located between the two functional AUG (inter-AUG) in foot-and-mouth disease virus (FMDV), we derived viruses containing transposon (tn) inserts from a mutagenized cDNA infectious clone of FMDV (pA24-WT). Mutant viruses containing an in-frame 57-nt transposon insertion grew at a slower rate and had a smaller plaque size phenotype than the parental virus (A24-WT). A mutant virus containing a 51-nt deletion in inter-AUG had a similar phenotype in cell culture to that of A24-WT. When tested by aerosol inoculation in cattle (3 animals per virus), the deletion mutant was fully virulent as was A24-WT. Mutant viruses containing insertions in inter-AUG did not cause clinical disease or viremia. However, viruses that partially or totally removed the tn insertion during animal infection reverted to virulence in 2 inoculated steers. Therefore, this study identified inter-AUG as an FMDV viral virulence determinant in cattle infected by aerosol route.  相似文献   

10.
Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans.  相似文献   

11.
Burkholderia pseudomallei, the causative agent of melioidosis, is an important human pathogen in Southeast Asia and northern Australia for which a vaccine is unavailable. A panel of 892 double signature-tagged mutants was screened for virulence using an intranasal BALB/c mouse model of infection. A novel DNA tag microarray identified 33 mutants as being attenuated in spleens, while 6 were attenuated in both lungs and spleens. The transposon insertion sites in spleen-attenuated mutants revealed genes involved in several stages of capsular polysaccharide biosynthesis and DNA replication and repair, a putative oxidoreductase, ABC transporters, and a lipoprotein that may be important in intercellular spreading. The six mutants identified as missing in both lungs and spleens were found to have insertions in recA involved in the SOS response and DNA repair; putative auxotrophs of leucine, threonine, p-aminobenzoic acid, and a mutant with an insertion in aroB causing auxotrophy for aromatic compounds were also found. Murine challenge studies revealed partial protection in BALB/c mice vaccinated with the aroB mutant. The refined signature-tagged mutagenesis approach developed in this study was used to efficiently identify attenuating mutants from this highly pathogenic species and could be applied to other organisms.  相似文献   

12.
Actinobacillus pleuropneumoniae is a strict respiratory tract pathogen of swine and is the causative agent of porcine pleuropneumonia. We have used signature-tagged mutagenesis (STM) to identify genes required for survival of the organism within the pig. A total of 2,064 signature-tagged Tn10 transposon mutants were assembled into pools of 48 each, and used to inoculate pigs by the endotracheal route. Out of 105 mutants that were consistently attenuated in vivo, only 11 mutants showed a >2-fold reduction in growth in vitro compared to the wild type, whereas 8 of 14 mutants tested showed significant levels of attenuation in pig as evidenced from competitive index experiments. Inverse PCR was used to generate DNA sequence of the chromosomal domains flanking each transposon insertion. Only one sibling pair of mutants was identified, but three apparent transposon insertion hot spots were found--an anticipated consequence of the use of a Tn10-based system. Transposon insertions were found within 55 different loci, and similarity (BLAST) searching identified possible analogues or homologues for all but four of these. Matches included proteins putatively involved in metabolism and transport of various nutrients or unknown substances, in stress responses, in gene regulation, and in the production of cell surface components. Ten of the sequences have homology with genes involved in lipopolysaccharide and capsule production. The results highlight the importance of genes involved in energy metabolism, nutrient uptake and stress responses for the survival of A. pleuropneumoniae in its natural host: the pig.  相似文献   

13.
14.
The genetic basis for chronic persistence of Brucella abortus in lymphoid organs of mice, cows, and humans is currently unknown. We identified B. abortus genes involved in chronic infection, by assessing the ability of 178 signature-tagged mutants to establish and maintain persistent infection in mice. Each mutant was screened for its ability to colonize the spleens of mice at 2 and 8 weeks after inoculation. Comparison of the results from both time points identified two groups of mutants attenuated for chronic infection in mice. The first group was not recovered at either 2 or 8 weeks postinfection and was therefore defective in establishing infection. Mutants in this group carried transposon insertions in genes involved in lipopolysaccharide biosynthesis (wbkA), in aromatic amino acid biosynthesis, and in type IV secretion (virB1 and virB10). The second group, which was recovered at wild-type levels 2 weeks postinfection but not 8 weeks postinfection was able to establish infection but was unable to maintain chronic infection. One mutant in this group carried a transposon insertion in a gene with homology to gcvB of Mycobacterium tuberculosis, encoding glycine dehydrogenase, an enzyme whose activity is increased during the state of nonreplicating persistence. These results suggest that some mechanisms for long-term persistence may be shared among chronic intracellular pathogens. Furthermore, identification of two groups of genes, those required for initiating infection and those required only for long-term persistence, suggests that B. abortus uses distinct sets of virulence determinants to establish and maintain chronic infection in mice.  相似文献   

15.
We describe and characterize a method for insertional mutagenesis of the yeast pathogen Candida glabrata using the bacterial transposon Tn7. Tn7 was used to mutagenize a C. glabrata genomic fosmid library. Pools of random Tn7 insertions in individual fosmids were recovered by transformation into Escherichia coli. Subsequently, these were introduced by recombination into the C. glabrata genome. We found that C. glabrata genomic fragments carrying a Tn7 insertion could integrate into the genome by nonhomologous recombination, by single crossover (generating a duplication of the insertionally mutagenized locus), and by double crossover, yielding an allele replacement. We were able to generate a highly representative set of approximately 10(4) allele replacements in C. glabrata, and an initial characterization of these shows that a wide diversity of genes were targeted in the mutagenesis. Because the identity of disrupted genes for any mutant of interest can be rapidly identified, this method should be of general utility in functional genomic characterization of this important yeast pathogen. In addition, the method might be broadly applicable to mutational analysis of other organisms.  相似文献   

16.
17.
Johne's disease, caused by Mycobacterium paratuberculosis infection, is a worldwide problem for the dairy industry and has a possible involvement in Crohn's disease in humans. To identify virulence determinants of this economically important pathogen, a library of 5,060 transposon mutants was constructed using Tn5367 insertion mutagenesis, followed by large-scale sequencing to identify disrupted genes. In this report, 1,150 mutants were analyzed and 970 unique insertion sites were identified. Sequence analysis of the disrupted genes indicated that the insertion of Tn5367 was more prevalent in genomic regions with G+C content (50.5 to 60.5%) lower than the average G+C content (69.3%) of the rest of the genome. Phenotypic screening of the library identified disruptions of genes involved in iron, tryptophan, or mycolic acid metabolic pathways that displayed unique growth characteristics. Bioinformatic analysis of disrupted genes identified a list of potential virulence determinants for further testing with animals. Mouse infection studies showed a significant decrease in tissue colonization by mutants with a disruption in the gcpE, pstA, kdpC, papA2, impA, umaA1, or fabG2_2 gene. Attenuation phenotypes were tissue specific (e.g., for the umaA1 mutant) as well as time specific (e.g., for the impA mutant), suggesting that those genes may be involved in different virulence mechanisms. The identified potential virulence determinants represent novel functional classes that could be necessary for mycobacterial survival during infection and could provide suitable targets for vaccine and drug development against Johne's and Crohn's diseases.  相似文献   

18.
Mycobacteria have features that make them attractive as potential vaccine vectors. The nonpathogenic and rapidly growing Mycobacterium smegmatis can express both Mycobacterium tuberculosis antigens and heterologous antigens from other pathogens, and it has been used as a viable vector for the development of live vaccines. In order to further improve antigen-specific immunogenicity of M. smegmatis, we screened a random transposon mutant library for mutants displaying enhanced efficiency of protein secretion ("high secretors") and isolated 61 mutants showing enhanced endogenic and transgenic protein secretion. Sequence analysis identified a total of 54 genes involved in optimal secretion of insert proteins, as well as multiple independent transposon insertions localized within the same genomic loci and operons. The majority of transposon insertions occurred in genes that have no known protein secretion function. These transposon mutants were shown to prime antigen-specific CD8(+) T cell responses better than the parental strain. Specifically, upon introducing the simian immunodeficiency virus (SIV) gag gene into these transposon mutant strains, we observed that they primed SIV Gag-specific CD8(+) T cell responses significantly better than the control prime immunization in a heterologous prime/boost regimen. Our results reveal a dependence on bacterial secretion of mycobacterial and foreign antigens for the induction of antigen-specific CD8(+) T cells in vivo. The data also suggest that these M. smegmatis transposon mutants could be used as novel live attenuated vaccine strains to express foreign antigens, such as those of human immunodeficiency virus type 1 (HIV-1), and induce strong antigen-specific T cell responses.  相似文献   

19.
20.
Campylobacter jejuni has been identified as the leading cause of acute bacterial diarrhea in the United States, yet compared with other enteric pathogens, considerably less is understood concerning the virulence factors of this human pathogen. A random in vivo transposon mutagenesis system was recently developed for the purpose of creating a library of C. jejuni transformants. A total of 1,065 C. jejuni transposon mutants were screened for their ability to swarm on motility agar plates and autoagglutinate in liquid cultures; 28 mutants were subsequently identified. The transposon insertion sites were obtained by using random-primed PCR, and the putative genes responsible for these phenotypes were identified. Of these mutants, all 28 were found to have diminished motility (0 to 86% that of the control). Seventeen motility mutants had insertions in genes with strong homology to functionally known motility and chemotaxis genes; however, 11 insertions were in genes of unknown function. Twenty motility mutants were unable to autoagglutinate, suggesting that the expression of flagella is correlated with autoagglutination (AAG). However, four mutants expressed wild-type levels of surface FlaA, as indicated by Western blot analysis, yet were unable to autoagglutinate (Cj1318, Cj1333, Cj1340c, and Cj1062). These results suggest that FlaA is necessary but not sufficient to mediate the AAG phenotype. Furthermore, two of the four AAG mutants (Cj1333 and Cj1062) were unable to invade INT-407 intestinal epithelial cells, as determined by a gentamicin treatment assay. These data identify novel genes important for motility, chemotaxis, and AAG and demonstrate their potential role in virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号