首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cerebral hypometabolism and amyloid accumulation are principal neuropathological manifestations of Alzheimer’s disease (AD). Whether and how brain/neuronal activity might modulate certain pathological processes of AD are interesting topics of recent clinical and basic research in the field, and may be of potential medical relevance in regard to both the disease etiology and intervention. Using the Tg2576 transgenic mouse model of AD, this study characterized a promotive effect of neuronal hypoactivity associated with functional deprivation on amyloid plaque pathogenesis in the olfactory pathway. Unilateral naris‐occlusion caused β‐secretase‐1 (BACE1) elevation in neuronal terminals in the deprived relative to the non‐deprived bulb and piriform cortex in young adult mice. In parallel with the overall age‐related plaque development in the forebrain, locally increased BACE1 immunoreactivity co‐occurred with amyloid deposition first in the piriform cortex then within the bulb, more prominent on the deprived relative to the non‐deprived side. Biochemical analyses confirmed elevated BACE1 protein levels, enzymatic activity and products in the deprived relative to non‐deprived bulbs. Plaque‐associated BACE1 immunoreactivity in the bulb and piriform cortex was localized preferentially to swollen/sprouting glutamatergic axonal terminals, with Aβ immunoreactivity occurring inside as well as around these terminals. Together, these findings suggest that functional deprivation or neuronal hypoactivity facilitates amyloid plaque formation in the forebrain in a transgenic model of AD, which operates synergistically with age effect. The data also implicate an intrinsic association of amyloid accumulation and plaque formation with progressive axonal pathology.  相似文献   

2.
CONTEXT: Amyloid plaques, a major pathological feature of Alzheimer disease (AD), are composed of an internal fragment of amyloid precursor protein (APP): the 4-kd amyloid-beta protein (Abeta). The metabolic processing of APP that results in Abeta formation requires 2 enzymatic cleavage events, a gamma-secretase cleavage dependent on presenilin, and a beta-secretase cleavage by the aspartyl protease beta-site APP-cleaving enzyme (BACE). OBJECTIVE: To test the hypothesis that BACE protein and activity are increased in regions of the brain that develop amyloid plaques in AD. METHODS: We developed an antibody capture system to measure BACE protein level and BACE-specific beta-secretase activity in frontal, temporal, and cerebellar brain homogenates from 61 brains with AD and 33 control brains. RESULTS: In the brains with AD, BACE activity and protein were significantly increased (P<.001). Enzymatic activity increased by 63% in the temporal neocortex (P =.007) and 13% in the frontal neocortex (P =.003) in brains with AD, but not in the cerebellar cortex. Activity in the temporal neocortex increased with the duration of AD (P =.008) but did not correlate with enzyme-linked immunosorbent assay measures of insoluble Abeta in brains with AD. Protein level was increased by 14% in the frontal cortex of brains with AD (P =.004), with a trend toward a 15% increase in BACE protein in the temporal cortex (P =.07) and no difference in the cerebellar cortex. Immunohistochemical analysis demonstrated that BACE immunoreactivity in the brain was predominantly neuronal and was found in tangle-bearing neurons in AD. CONCLUSIONS: The BACE protein and activity levels are increased in brain regions affected by amyloid deposition and remain increased despite significant neuronal and synaptic loss in AD.  相似文献   

3.
The goal of this study was to investigate the spatial organization of olfactory glomeruli and of substances relevant to olfactory sensory neuron activity in the developing agnathan, the sea lamprey Petromyzon marinus. A 45-kD protein immunoreactive to G(olf), a cAMP-dependent olfactory G protein, was present in the ciliary fraction of sea lamprey olfactory epithelium and in olfactory sensory neurons of larval and adult sea lampreys. This result implies that G(olf) expression was present during early vertebrate evolution or evolved in parallel in gnathostome and agnathostome vertebrates. Serial sectioning of the olfactory bulb revealed a consistent pattern of olfactory glomeruli stained by GS1B(4) lectin and by anterograde labeling with fluorescent dextran. These glomerular territories included the dorsal cluster, dorsal ring, anterior plexus, lateral chain, medial glomeruli, ventral ring, and ventral cluster. The dorsal, anterior, lateral, and ventral glomeruli contained olfactory sensory axon terminals that were G(olf)-immunoreactive. However, a specific subset, the medial glomeruli, did not display this immunoreactivity. Olfactory glomeruli in the dorsal hemisphere of the olfactory bulb, the dorsal cluster, dorsal ring, anterior plexus, lateral chain, and medial glomeruli, were seen adjacent to 5HT-immunoreactive fibers. However, glomeruli in the ventral hemisphere, the ventral ring, and ventral cluster did not display this association. The presence of specific glomerular territories and discrete glomerular subsets with substances relevant to olfactory sensory neuron activity suggest a spatial organization of information flow in the lamprey olfactory pathway.  相似文献   

4.
Littermate rat pups underwent either unilateral surgical occlusion of the right external naris or sham surgery on postnatal Day 1. At 4-, 8-, 12-, 20- or 30-days postpartum, olfactory bulb sections were histochemically reacted to reveal either succinate dehydrogenase (SDH) or cytochrome oxidase (CO) activity. Microdensitometry was used to determine levels of staining in glomeruli and the external plexiform layer at standardized locations within the bulb. In experimental subjects asymmetries in left/right bulb SDH staining patterns were detected as early as Day 4, suggesting that the deprivation procedure resulted in quite rapid changes in the metabolic function of olfactory bulb cells. Control animals did not exhibit left/right differences in bulb staining, but inter-glomerular and regional variations in staining were observed throughout the early developmental period. Understanding these early variations in metabolic activity may be important for a complete understanding of olfactory bulb maturation.  相似文献   

5.
Rigorous scientific research has identified multiple interactive mechanisms that parallel and are likely causative of the development of Alzheimer's disease (AD). Causative mechanisms include genomics, the creation of amyloid beta (Abeta), factors inhibiting the Abeta removal process, the transformation of Abeta to its toxic forms (various forms of Abeta aggregation), and lastly the oxidative, inflammatory, and other effects of toxic Abeta. Fibrillar beta-amyloid peptide, a major component of senile plaques in AD brain, is known to induce microglial-mediated neurotoxicity under certain conditions, but some recent studies support the notion that Abeta oligomers are the primary neurotoxins. Abeta-42 oligomers that are soluble and highly neurotoxic, referred to as Abeta-derived diffusible ligands (ADDLs), assemble under conditions that block fibril formation. These oligomers bind to dendrite surfaces in small clusters with ligand-like specificity and are capable of destroying hippocampal neurons at nanomolar concentrations. Evidence is presented that AD is triggered by these soluble, neurotoxic assemblies of Abeta rather than the late stage pathology landmarks of amyloid plaques and tangles. The premise is that AD symptoms stem from aberrant nerve cell signaling and synaptic failure rather than nerve cell death, which nevertheless follows and exacerbates the initial pathologies of AD. The defective clearance of amyloid leads to amyloid angiopathy that in turn perpetuates hypoperfusion that affects formation as well as absorption of CSF thereby altering clearance of amyloid and promoting vascular and parenchymal deposition[1]. Hypoperfusion, the defective clearance of amyloid, and resultant increase in amyloid deposition thus represent a vicious cycle. Chronic vascular hypoperfusion-induced mitochondrial failure results in oxidative damage, which drives caspase 3-mediated Abeta peptide secretion and enhances amyloidogenic APP processing. Intracellular Abeta accumulation in turn promotes a significant oxidative and inflammatory mechanism that generates a vicious cycle of Abeta generation and oxidation, each accelerating the other. Abeta activates astrocytes that add to the oxidative imbalance, upregulate the expression of APP via TGF-beta, and are capable of expressing BACE1. Each of these 3 actions accelerates the larger cycle of cholinergic neuron destruction. As oxidative stress induces lesions of cholinergic nuclei producing a reduction in cholinergic neurotransmission, a subsequent increase in cortical APP involving PKCepsilon leads to accelerated amyloidogenic APP metabolism. The linkage of cholinergic activation and APP metabolism completes an additional feedback loop wherein the damage wrought by Abeta accelerates further Abeta production. A comprehensive vision of the neuropathophysiologic mechanisms that result in AD reveals several vicious cycles within a larger vicious cycle, that is to say, a number of interactive systems that each, once set in motion, amplify their own processes, thus accelerating the development of AD.  相似文献   

6.
Polymorphism in the BACE gene influences the risk for Alzheimer's disease   总被引:4,自引:0,他引:4  
Pathological characteristics of Alzheimer's disease (AD) are neurofibrillary tangles and amyloid-beta (Abeta) plaques. Abeta is generated by cleavage of the amyloid precursor protein by beta- and gamma-secretases. BACE (beta-site APP cleaving enzyme) was identified as the beta-secretase. Variations of the BACE gene might influence activity and function of the protein and, thus, might influence the pathogenesis of AD. Consequently, we investigated the association of different BACE polymorphisms with AD. BACE exon 5 polymorphism influenced the risk of AD. This effect was most pronounced in apolipoprotein E4 allele carriers. Furthermore, Abeta(42) CSF levels were influenced by BACE genotype. It appears that BACE polymorphism plays a more important role in the development of AD than previously assumed, possibly by influencing Abeta(42) levels.  相似文献   

7.
Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. We describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function.  相似文献   

8.
Olfactory receptor cell (ORC) axons terminate in the olfactory bulb glomerular neuropil, where they synapse with dendrites of mitral, tufted, and periglomerular neurons. We investigated the organization of the glomerular neuropil by using antibodies to both single- and double-label constituents for analyses with confocal microscopy. Electron microscopy (EM) was employed to assess the distribution of synaptic appositions within the glomerulus. Adult Sprague-Dawley rats were processed for immunocytochemistry with olfactory marker protein (OMP), synaptophysin, synapsin 1, glial fibrillary acidic protein (GFAP), and/or microtubule-associated protein 2 (MAP2). Equivalent rats were processed for transmission EM. Double labeling for OMP and MAP2 revealed two distinctive subcompartments within glomeruli: an axonal compartment containing predominately primary afferent axons with individual dendritic inserts and a complementary dendritic compartment that excluded primary afferent axons. Areas not occupied by OMP or MAP2 immunoreactivity were either immunoreactive for GFAP, indicating a glial process, or were blood vessels. Synaptophysin and synapsin 1 also showed differential labeling within the glomerulus. Synaptophysin strongly colocalized with OMP, whereas synapsin 1 was associated most strongly with MAP2. Reconstructions of glomeruli from EM montages revealed interdigitating axonal and dendritic subcompartments. The axonal subcompartments were composed primarily of ORC processes with individual or small groups of dendrites interspersed. Dendritic subcompartments were composed predominately of dendritic processes. Primary afferent axodendritic and local-circuit dendrodendritic synapses segregated within the glomerulus into the axonal and dendritic subcompartments, respectively. The results support the hypothesis of subcompartmental organization within olfactory bulb glomeruli.  相似文献   

9.
Accumulation of Abeta peptide in the brain results in the formation of amyloid plaques characteristic of Alzheimer's disease (AD) pathology. Abeta soluble oligomers and protofibrils are neurotoxic and these are believed to be a major cause of neurodegeneration in AD. Abeta is derived from a precursor protein by two sequential cleavage steps involving beta- and gamma-secretases, two proteolytic enzymes that represent rational drug targets. beta-secretase was identified as the membrane-anchored aspartyl protease BACE (or BACE1) and found to be elevated in brain cortex of patients with sporadic Alzheimer's disease. In this review, we summarize current approaches towards the development of BACE inhibitors with focus on bioactive compounds and related patents. Recent reports have described drugs that are effective at inhibiting Abeta production in the brain of transgenic mouse models. The beginning of Phase I clinical trials has been approved for one of them and we can expect that in the near future BACE inhibitors will provide novel effective therapeutics to treat AD.  相似文献   

10.
The formation of Alzheimer's Abeta peptide is initiated when the amyloid precursor protein (APP) is cleaved by the enzyme beta-secretase (BACE1); inhibition of this cleavage has been proposed as a means of treating Alzheimer's disease. (AD) We have previously shown that young BACE1 knockout mice (BACE1 KO) do not generate Abeta but in other respects appear normal. Here we have extended this analysis to include both gene expression profiling and phenotypic assessment of older BACE1 KO animals to evaluate the impact of chronic Abeta deficiency. We did not detect global compensatory changes in neural gene expression in young BACE1 KO mice. In particular, expression of the beta-secretase homolog BACE2 was not upregulated. Furthermore, we found no structural alterations in any organ, including all central and peripheral neural tissues, of BACE1 KO mice up to 14 months of age. Aged BACE1 KO mice engineered to overexpress human APP (BACE1 KO/APPtg) did not develop amyloid plaques. These data provide evidence that neither beta-secretase nor Abeta plays a vital role in mouse physiology and that chronic beta-secretase inhibition could be a useful approach in treating AD.  相似文献   

11.
Young rats exposed to an odor while receiving reinforcing stimulation come to approach that odor upon subsequent presentation. In addition, such pups have increased 14C-2-deoxyglucose (2DG) uptake within focal areas of the glomerular layer in response to that odor, compared to control animals experiencing the odor for the first time. In this study, the morphology of the glomerular areas underlying these 2DG foci was examined to determine whether early olfactory learning imposed local structural changes that could produce the enhanced 2DG uptake. Alternate sections either were processed with a silver and a Nissl stain to label both cell bodies and their processes or were histochemically treated for the mitochondrial enzymes cytochrome oxidase (CO) or succinic dehydrogenase (SDH) to define the glomerular core of the bulb; 2DG autoradiographs were aligned with adjacent stained sections, and regions underlying the high 2DG uptake foci were examined. In odor-familiar animals, large glomerular clusters that protruded into the external plexiform layer or the olfactory nerve layer were associated with the focal areas of increased 2DG uptake. Morphometric analysis of these regions revealed that the glomerular layer underlying the foci of high 2DG uptake was 30% wider in odor-familiar animals than comparable areas in odor-unfamiliar animals; the cross-sectional areas of individual glomeruli were 21% larger in odor-familiar animals. The foci of enhanced 2DG uptake therefore appear to be associated with groups of enlarged glomeruli. These data demonstrate that early olfactory learning influences the morphology of the olfactory bulb.  相似文献   

12.
Proteolysis of beta-amyloid precursor protein (APP) into amyloid beta peptide (Abeta) by beta- and gamma-secretases is a critical step in the pathogenesis of Alzheimer's Disease (AD), but the pathways regulating secretases are not fully characterized. Ubiquitinylation, which is dysregulated in AD, may affect APP processing. Here, we describe a screen for APP processing modulators using an siRNA library targeting 532 predicted ubiquitin ligases. Seven siRNA pools diminished Abeta production. Of these, siRNAs targeting PPIL2 (hCyp-60) suppressed beta-site cleavage. Knockdown of PPIL2 mRNA decreased BACE1 mRNA, while overexpression of PPIL2 cDNA enhanced BACE1 mRNA levels. Microarray analysis of PPIL2 or BACE1 knockdown indicated that genes affected by BACE1 knockdown are a subset of those dependent upon PPIL2; suggesting that BACE1 expression is downstream of PPIL2. The association of PPIL2 with BACE expression and its requirement for Abeta production suggests new approaches to discover disease modifying agents for AD.  相似文献   

13.
Olfactory sensory information is processed and integrated by circuits within the olfactory bulb. Golgi morphology suggests the olfactory bulb contains several major neuronal classes. However, an increasingly diverse collection of neurochemical markers have been localized in subpopulations of olfactory bulb neurons. While the mouse is becoming the animal model of choice for olfactory research, little is known about the proportions of neurons expressing and coexpressing different neurochemical markers in this species. Here we characterize neuronal populations in the mouse main olfactory bulb, focusing on glomerular populations. Immunofluorescent labeling for: 1) calretinin, 2) calbindin D-28K (CB), 3) parvalbumin, 4) neurocalcin, 5) tyrosine hydroxylase (TH), 6) the 67-kDa isoform of GAD (GAD67), and 7) the neuronal marker NeuN was performed in mice expressing green fluorescent protein under the control of the glutamic acid decarboxylase 65kDa (GAD65) promoter. Using unbiased stereological cell counts we estimated the total numbers of cells and neurons in the bulb and the number and percentage of neurons expressing and coexpressing different neurochemical populations in each layer of the olfactory bulb. Use of a genetic label for GAD65 and immunohistochemistry for GAD67 identified a much larger percentage of GABAergic neurons in the glomerular layer (55% of all neurons) than previously recognized. Additionally, while many glomerular neurons expressing TH or CB coexpress GAD, the majority of these neurons preferentially express the GAD67 isoform. These data suggest that the chemospecific populations of neurons in glomeruli form distinct subpopulations and that GAD isoforms are preferentially regulated in different neurochemical cell types.  相似文献   

14.
Evidence suggests that beta-amyloid (Abeta) peptide triggers a pathogenic cascade leading to neuronal loss in Alzheimer's disease (AD). However, the causal link between Abeta and neuron death in vivo remains unclear since most animal models fail to recapitulate the dramatic cell loss observed in AD. We have recently developed transgenic mice that overexpress human APP and PS1 with five familial AD mutations (5XFAD mice) and exhibit robust neuron death. Here, we demonstrate that genetic deletion of the beta-secretase (BACE1) not only abrogates Abeta generation and blocks amyloid deposition but also prevents neuron loss found in the cerebral cortex and subiculum, brain regions manifesting the most severe amyloidosis in 5XFAD mice. Importantly, BACE1 gene deletion also rescues memory deficits in 5XFAD mice. Our findings provide strong evidence that Abeta ultimately is responsible for neuron death in AD and validate the therapeutic potential of BACE1-inhibiting approaches for the treatment of AD.  相似文献   

15.
The adult mammalian brain contains populations of stem cells that can proliferate and then differentiate into neurons or glia. The highest concentration of such neural progenitor cells (NPC) is located in the subventricular zone (SVZ) and these cells can produce new olfactory bulb and cerebral cortical neurons. NPC may provide a cellular reservoir for replacement of cells lost during normal cell turnover and after brain injury. However, neurogenesis does not compensate for neuronal loss in age-related neurodegenerative disorders such as Alzheimer's disease (AD), suggesting the possibility that impaired neurogenesis contributes to the pathogenesis of such disorders. We now report that amyloid beta-peptide (Abeta), a self-aggregating neurotoxic protein thought to cause AD, can impair neurogenesis in the SVZ/cerebral cortex of adult mice and in human cortical NPC in culture. The proliferation and migration of NPC in the SVZ of amyloid precursor protein (APP) mutant mice, and in mice receiving an intraventricular infusion of Abeta, were greatly decreased compared to control mice. Studies of NPC neurosphere cultures derived from human embryonic cerebral cortex showed that Abeta can suppress NPC proliferation and differentiation, and can induce apoptosis. The adverse effects of Abeta on neurogenesis were associated with a disruption of calcium regulation in the NPC. Our data show that Abeta can impair cortical neurogenesis, and suggest that this adverse effect of Abeta contributes to the depletion of neurons and the resulting olfactory and cognitive deficits in AD.  相似文献   

16.
17.
Proteolytic processing of the amyloid precursor protein by beta -and gamma-secretases results in the production of Alzheimer's disease (AD) Abeta amyloid peptides. Modulation of secretase activity is being investigated as a potential therapeutic approach. Recent studies with human brain have revealed that the beta-secretase protein, BACE, is increased in cortex of AD patients. Analysis of betaCTF (or C99), the amyloid precursor protein (APP) product of BACE cleavage that is the direct precursor to Abeta, shows it is also elevated in AD, underlying the importance of beta-secretase cleavage in AD pathogenesis. The C-terminal product of gamma-secretase cleavage of APP, epsilonCTF (or AICD), is enriched in human brain cortical nuclear fractions, a subcellular distribution appropriate for a putative involvement of APP cytosolic domain in signal transduction. Analysis of AD cortex samples, particularly that of a carrier of a familial APP mutation, suggests that processing of APP transmembrane domain generates an alternative CTF product. All these particularities observed in the AD brain demonstrate that APP processing is altered in AD. The transgenic mouse model Tg2576 seems to be a promising laboratory tool to test potential modulators of Abeta formation. Indeed, C-terminal products of alpha-, beta-, and gamma-secretase cleavage are readily detectable in the brain of these transgenic mice. Finally, the finding of the same secretase products in platelets and neurons make platelets a potentially useful and easily accessible clinical tool to monitor effects of novel therapies based on inhibition of beta- or gamma-secretase.  相似文献   

18.
Cell surface carbohydrates have been implicated in axon guidance and targeting throughout the nervous system. We have begun to test the hypothesis that, in the olfactory system, a differential distribution of cell surface carbohydrates may influence olfactory sensory neuron (OSN) axon targeting. Specifically, we have examined the spatial distribution of two different plant lectins, Ulex europaeus agglutinin (UEA) and Dolichos biflorus agglutinin (DBA), to determine whether they exhibit differential and reproducible projections onto the main olfactory bulb. Each lectin exhibited a unique spatial domain of glomerular labeling that was consistent across animals. UEA labeling was strongest in the ventral aspect of the olfactory bulb; DBA labeling was strongest in the dorsal aspect of the olfactory bulb. Some evidence for colocalization was present where these two borders intersected. Large areas of the glomerular layer were not labeled by either lectin. To determine whether patterns of lectin labeling were reproducible at the level of individual glomeruli, UEA labeling was assessed relative to M72-IRES-taulacZ- and P2-IRES-taulacZ-labeled axons. Although glomeruli neighboring these two identified glomeruli were consistently labeled with UEA, none of the lacZ positive axons was lectin labeled. Labeling of vomeronasal sensory neuron axons in the accessory olfactory bulb was more uniform for the two lectins. These data are the first to show a differential distribution of UEA vs. DBA labeling in the main olfactory bulb and are consistent with the hypothesis that a differential distribution of cell surface carbohydrates, a glycocode, may contribute to the targeting of OSN axons.  相似文献   

19.
Recently, we showed that oxidative stress activates the expression and activity of the beta-site AbetaPP-cleaving enzyme (BACE), an aspartyl protease responsible for the beta-secretase cleavage of AbetaPP. The identification of compounds able to prevent the induction of this event is an important goal of therapeutic strategies for Alzheimer's disease (AD). Dehydroepiandrosterone (DHEA) is an adrenal steroid that improves a variety of functions in the central nervous system. Moreover, a series of evidence suggests that DHEA displays antioxidant properties in different experimental models. In the present paper we show that pretreatment with DHEA is able to rescue the increase of mRNA expression, protein levels, and activity of BACE, produced by oxidative stress in NT2 neurons. BACE, being the enzyme that initiates the production of Abeta, is a drug target for AD. Our results imply that DHEA administration may slow down the AD pathological process, lowering Abeta accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号