首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We tested in the in vivo rat heart the hypothesis that although ischemic preconditioning can employ different signal transduction pathways, these pathways converge ultimately at the level of the mitochondrial respiratory chain. Infarct size produced by a 60-min coronary artery occlusion (69%+/-2% of the area at risk) was limited by a preceding 15-min coronary occlusion (48%+/-4%). Cardioprotection by this stimulus was triggered by adenosine receptor stimulation, which was followed by protein kinase C and tyrosine kinase activation and then mitochondrial K(+)(ATP)-channel opening. In contrast, cardioprotection by 3 cycles of 3-min coronary occlusions (infarct size 27%+/-5% of the area at risk) involved the release of reactive oxygen species, which was followed by protein kinase C and tyrosine kinase activation, but was independent of adenosine receptor stimulation and K(+)(ATP)-channel activation. However, both pathways decreased respiratory control index (RCI; state-3/state-2, using succinate as complex-II substrate) from 3.1+/-0.2 in mitochondria from sham-treated hearts to 2.4+/-0.2 and 2.5+/-0.1 in hearts subjected to a single 15-min and triple 3-min coronary occlusions, respectively (both P<0.05). The decreases in RCI were due to an increase in state-2 respiration, whereas state-3 respiration was unchanged. Abolition of cardioprotection by blockade of either signal transduction pathway was paralleled by a concomitant abolition of mitochondrial uncoupling. These observations are consistent with the concept that mild mitochondrial uncoupling contributes to infarct size limitation by various ischemic preconditioning stimuli, despite using different signal transduction pathways. In conclusion, in the in vivo rat heart, different ischemic preconditioning (IPC) stimuli can activate highly different signal transduction pathways, which seem to converge at the level of the mitochondria where they increase state-2 respiration.  相似文献   

2.
3.
4.
Neuroblastoma is a malignant pediatric tumor with poor survival. The phosphatidylinositol 3'-kinase/AKT pathway is a crucial regulator of cellular processes including apoptosis. Thioredoxin 1, an inhibitor of tumor-suppressor phosphatase and tensin homolog, is overexpressed in many tumors. The objective of this study was to explore phosphatidylinositol 3'-kinase/AKT pathway activation and regulation by thioredoxin 1 to identify potential therapeutic targets. Immunohistochemical analysis was done on tissue microarrays from tumor samples of 101 patients, using antibodies against phosphatidylinositol 3'-kinase, AKT, activated AKT, phosphatase and tensin homolog, phosphorylated phosphatase and tensin homolog, thioredoxin 1, epidermal growth factor receptor, vascular endothelial growth factor and receptors (vascular endothelial growth factor 1 and vascular endothelial growth receptor 2), platelet-derived growth factor receptors, insulin-like growth factor 1 receptor, neurotrophic tyrosine kinase receptor type 2, phosphorylated 70-kd S6 protein kinase, 4E-binding protein 1, and phosphorylated mammalian target of rapamycin. Using 3 neuroblastoma cell lines, we investigated cell viability with AKT-specific inhibitors (LY294002, RAD001) and thioredoxin 1 alone or in combination. We found activated AKT and AKT expressed in 97% and 98%, respectively, of neuroblastomas, despite a high expression of phosphatase and tensin homolog correlated with thioredoxin 1. AKT expression was greater in metastatic than primary tumors. Insulin-like growth factor 1 receptor, tyrosine kinase receptor type 2, vascular endothelial growth receptor 1, and downstream phosphorylated 70-kd S6 protein kinase were correlated with activated AKT. LY294002 and RAD001 significantly reduced AKT activity and cell viability and induced a G(1) cell cycle arrest. Thioredoxin 1 decreased cytotoxicity of AKT inhibitors and doxorubicin, up-regulated AKT activation, and induced cell growth. Thus, vascular endothelial growth receptor 1, tyrosine kinase receptor type 2, insulin-like growth factor 1 receptor, and thioredoxin 1 emerged as preferentially committed to phosphatidylinositol 3'-kinase/AKT pathway activation as observed in neuroblastoma. Thioredoxin 1 is a potential target for therapeutic intervention.  相似文献   

5.
采用文献资料研究法,分析运动预适应动物模型对心脏的保护作用及其细胞信号转导的研究现状,探讨运动预适应的心脏保护作用机制,提出运动预适应可能是通过触发心脏释放多种内源性活性物质,与细胞膜上受体结合而激活蛋白激酶C信号转导通路,使ATP敏感性钾通道开放并诱导保护性蛋白的合成,从而对心脏产生保护作用.  相似文献   

6.
Kiss A  Li L  Gettemeier T  Venkatesh LK 《Virology》2003,314(2):591-600
Human immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export of viral RNAs involves the interaction of its leucine-rich nuclear export sequence (NES) with nuclear cofactors. In yeast two-hybrid screens of a human lymph node derived cDNA expression library, we identified the human nucleoporin Nup98 as a highly specific and potent interactor of the Rev NES. Using an extensive panel of nuclear export positive and negative mutants of the functionally homologous NESs of the HIV-1 Rev, human T cell leukemia virus type 1 (HTLV-1) Rex, and equine infectious anemia virus (EIAV) Rev proteins, physiologically significant interaction of hNup98 with the various NESs was demonstrated. Missense mutations in the yeast nuclear export factor Crm1p that abrogated Rev NES interaction with the XXFG repeat-containing nucleoporin, Rab/hRIP, had minimal effects on the interaction of GLFG repeat-containing hNup98. Functional analysis of Nup98 domains required for nuclear localization demonstrated that the entire ORF was required for efficient incorporation into the nuclear envelope. A putative nuclear localization signal was identified downstream of the GLFG repeat region. Whereas overexpression of both full-length Nup98 and the amino-terminal GLFG repeat region, but not the unique carboxy-terminal region, induced significant suppression of HIV unspliced RNA export, lower levels of exogenous Nup98 expression resulted in a relatively modest increase in unspliced RNA export. These results suggest a physiological role for hNup98 in modulating Rev-dependent RNA export during HIV infection.  相似文献   

7.
Rabies virus P protein is a co-factor of the viral RNA polymerase. It has been shown previously that P mRNA directs the synthesis of four N-terminally truncated P products P2, P3, P4, and P5 due to translational initiation by a leaky scanning mechanism at internal Met codons. Whereas P and P2 are located in the cytoplasm, P3, P4, and P5 are found in the nucleus. Here, we have analyzed the molecular basis of the subcellular localization of these proteins. Using deletion mutants fused to GFP protein, we show the presence of a nuclear localization signal (NLS) in the C-terminal part of P (172-297). This domain contains a short lysine-rich stretch ((211)KKYK(214)) located in close proximity with arginine 260 as revealed by the crystal structure of P. We demonstrate the critical role of lysine 214 and arginine 260 in NLS activity. In the presence of Leptomycin B, P is retained in the nucleus indicating that it contains a CRM1-dependent nuclear export signal (NES). The subcellular distribution of P deletion mutants indicates that the domain responsible for export is the amino-terminal part of the protein. The use of fusion proteins that have amino terminal fragments of P fused to beta-galactosidase containing the NLS of SV40 T antigen allows us to identify a NES between residues 49 and 58. The localization of NLS and NES determines the cellular distribution of the P gene products.  相似文献   

8.
9.
目的:探讨TRAP1蛋白对膀胱癌细胞迁移和侵袭的影响及机制。方法:采用Western blot从膀胱癌细胞株中挑选出高表达TRAP1的细胞系BIU-87;使用TRAP1沉默慢病毒(LV3-TRAP1)沉默TRAP1,使用GFP荧光及PCR检测LV3-TRAP1沉默效率;Transwell和划痕实验分别检测沉默TRAP1蛋白表达后对膀胱癌细胞侵袭和迁移能力的影响;CM-H2DCFDA荧光染色细胞检测膀胱癌细胞内活性氧水平;Western blot检测相关信号通路TGF/Smad3蛋白的表达情况。结果:LV3-TRAP1慢病毒可以有效地抑制TRAP1蛋白的表达;沉默TRAP1蛋白的表达可以有效抑制膀胱癌细胞的侵袭和迁移能力、降低膀胱癌细胞内活性氧水平;同时TGF/Smad3信号通路中的TGF、Smad2及Smad3蛋白表达也相应降低。结论:沉默TRAP1蛋白可以通过调控TGF/Smad3信号通路来抑制膀胱癌细胞的侵袭和迁移能力。  相似文献   

10.
Tissue microarray technology facilitates rapid assessment of expression of molecular markers by enabling the simultaneous analysis of hundreds of tissue specimens. We have applied this technology to establish a microarray composed of cell pellets derived from 40 human lymphoma/leukemia-derived cell lines harboring a variety of molecular abnormalities. The application of cell line microarrays to the assessment of biologic marker evaluation was validated by studying the immunohistochemical expression of PTEN and phosphorylated AKT, two mediators of the phosphatidylinositol (PI)-3-kinase pathway. In addition to the high throughout analysis of protein expression in lymphoma/leukemia cells, this methodology also enables the evaluation of subcellular localization of protein expression. Cytoplasmic PTEN expression was observed in the majority of cell lines (87%), whereas a minor subset demonstrated nuclear expression. Phosphorylated AKT was also expressed predominantly within the cytoplasm in 65% of cell lines, whereas nuclear expression was seen in a minority. An inverse relationship between PTEN and phosphorylated AKT was observed in 63% of cell lines. No cell lines showed absence of PTEN expression, whereas 50% of cell lines showed low PTEN expression. Our data support the integrity of the PI-3-kinase-PTEN-AKT pathway in a majority of cell lines derived from hematologic malignancies and clearly demonstrates the utility of microarray technology in the in situ assessment of expression of molecular markers in tumor-derived cell lines.  相似文献   

11.
Inner nuclear membrane (INM) proteins are thought to play important roles in modulating nuclear organization and function through their interactions with chromatin. However, these INM proteins share redundant functions in metazoans that pose difficulties for functional studies. The fission yeast Schizosaccharomyces pombe exhibits a relatively small number of INM proteins, and molecular genetic tools are available to separate their redundant functions. In S. pombe, it has been reported that among potentially redundant INM proteins, Lem2 displays a unique genetic interaction with another INM protein, Bqt4, which is involved in anchoring telomeres to the nuclear envelope. Double mutations in the lem2 and bqt4 genes confer synthetic lethality during vegetative growth. Here, we show that Lem2 is retained at the nuclear envelope through its interaction with Bqt4, as the loss of Bqt4 results in the exclusive accumulation of Lem2 to the spindle pole body (SPB). An N‐terminal nucleoplasmic region of Lem2 bears affinity to both Bqt4 and the SPB in a competitive manner. In contrast, the synthetic lethality of the lem2 bqt4 double mutant is suppressed by the C‐terminal region of Lem2. These results indicate that the N‐terminal and C‐terminal domains of Lem2 show independent functions with respect to Bqt4.  相似文献   

12.
13.
14.
Uncoupling protein 3 (UCP3) is a member of the mitochondrial solute carrier superfamily that is enriched in skeletal muscle and controls mitochondrial reactive oxygen species (ROS) production, but the mechanisms underlying this function are unclear. Aims: The goal of this work focused on the identification of mechanisms underlying UCP3 functions. Results: Here we report that the N-terminal, intermembrane space (IMS)-localized hydrophilic domain of mouse UCP3 interacts with the N-terminal mitochondrial targeting signal of thioredoxin 2 (Trx2), a mitochondrial thiol reductase. Cellular immunoprecipitation and in vitro pull-down assays show that the UCP3-Trx2 complex forms directly, and that the Trx2?N-terminus is both necessary and sufficient to confer UCP3 binding. Mutation studies show that neither a catalytically inactivated Trx2 mutant, nor a mutant Trx2 bearing the N-terminal targeting sequence of cytochrome c oxidase (COXMTS-Trx2) bind UCP3. Biochemical analyses using permeabilized mitochondria, and live cell experiments using bimolecular fluorescence complementation show that the UCP3-Trx2 complex forms specifically in the IMS. Finally, studies in C2C12 myocytes stably overexpressing UCP3 (2.5-fold) and subjected to Trx2 knockdown show that Trx2 is required for the UCP3-dependent mitigation of complex III-driven mitochondrial ROS generation. UCP3 expression was increased in mice fed a high fat diet, leading to increased localization of Trx2 to the IMS. UCP3 overexpression also increased expression of the glucose transporter GLUT4 in a Trx2-dependent fashion. Innovation: This is the first report of a mitochondrial protein-protein interaction with UCP3 and the first demonstration that UCP3 binds directly, and in cells and tissues with mitochondrial thioredoxin 2. Conclusion: These studies identify a novel UCP3-Trx2 complex, a novel submitochondrial localization of Trx2, and a mechanism underlying UCP3-regulated mitochondrial ROS production.  相似文献   

15.
EphAs and ephrinAs are expressed in multiple areas of the developing brain in overlapping countergradients, notably in the retina and tectum. Here they are involved in targeting retinal axons to their correct topographic position in the tectum. We have used truncated versions of EphA3, single-amino acid point mutants of ephrinA5 and fluorescence resonance energy transfer technology to uncover a cis interaction between EphA3 and ephrinA5 that is independent of the established ligand-binding domain of EphA3. This cis interaction abolishes the induction of tyrosine phosphorylation of EphA3 and results in a loss of sensitivity of retinal axons to ephrinAs in trans. Our data suggest that formation of this complex transforms the uniform expression of EphAs in the nasal part of the retina into a gradient of functional EphAs and has a key role in controlling retinotectal mapping.  相似文献   

16.
17.
18.
目的 探讨早期生长反应因子(Egr-1)及其信号转导在矽肺发生发展中的作用。方法用细胞免疫荧光、原位杂交方法检测二氧化硅(SiO2)刺激后Egr-1的表达定位,用报道质粒及EMSA检测其活性改变;用激酶活性分析法检测si0:刺激巨噬细胞后ERK1/2活性改变,进一步用激酶抑制剂初步探讨SiO2活化Egr-1的信号转导通路。结果SiO2刺激RAW264.7细胞短时间Egr-1核蛋白表达及转录因子明显增加;且在处理后30~60min,Egr-1核蛋白结合活性明显升高(为未处理组的20倍);在刺激后15min ERK1/2活性开始升高,30min达高峰(活性为对照组的29倍)而后渐降至基础水平;进一步用激酶阻断发现,Egr-1 mRNA及蛋白表达均减少。结论SiO2能激活巨噬细胞中Egr-1,且此过程可能由ERK1/2、p38介导,提示SiO2-ERK1/2、p38-Egr-1通路可能在矽肺发生发展过程中起重要作用。  相似文献   

19.
Preconditioning by brief ischemic episode induces tolerance to a subsequent lethal ischemic insult, and it has been suggested that reactive oxygen species are involved in this phenomenon. Thioredoxin 2 (Trx2), a small protein with redox‐regulating function, shows cytoprotective roles against oxidative stress. Here, we had focused on the role of Trx2 in ischemic preconditioning (IPC)‐mediated neuroprotection against oxidative stress followed by a subsequent lethal transient cerebral ischemia. Animals used in this study were randomly assigned to six groups; sham‐operated group, ischemia‐operated group, IPC plus (+) sham‐operated group, IPC + ischemia‐operated group, IPC + auranofin (a TrxR2 inhibitor) + sham‐operated group and IPC + auranofin + ischemia‐operated group. IPC was subjected to a 2 minutes of sublethal transient ischemia 1 day prior to a 5 minutes of lethal transient ischemia. A significant loss of neurons was found in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischemia‐operated‐group 5 days after ischemia‐reperfusion; in the IPC + ischemia‐operated‐group, pyramidal neurons in the SP were well protected. In the IPC + ischemia‐operated‐group, Trx2 and TrxR2 immunoreactivities in the SP and its protein level in the CA1 were not significantly changed compared with those in the sham‐operated‐group after ischemia‐reperfusion. In addition, superoxide dismutase 2 (SOD2) expression, superoxide anion radical ( ) production, denatured cytochrome c expression and TUNEL‐positive cells in the IPC + ischemia‐operated‐group were similar to those in the sham‐operated‐group. Conversely, the treatment of auranofin to the IPC + ischemia‐operated‐group significantly increased cell damage/death and abolished the IPC‐induced effect on Trx2 and TrxR2 expressions. Furthermore, the inhibition of Trx2R nearly cancelled the beneficial effects of IPC on SOD2 expression, production, denatured cytochrome c expression and TUNEL‐positive cells. In brief, this study shows that IPC conferred neuroprotection against ischemic injury by maintaining Trx2 and suggests that the maintenance or enhancement of Trx2 expression by IPC may be a legitimate strategy for therapeutic intervention of cerebral ischemia.  相似文献   

20.
BACKGROUND: Densin-180, a brain-specific protein highly concentrated at the postsynaptic density (PSD), belongs to the LAP [leucine-rich repeats and PSD-95/Dlg-A/ZO-1 (PDZ) domains] family of proteins, some of which play fundamental roles in the establishment of cell polarity. RESULTS: To identify new Densin-180-interacting proteins, we screened a yeast two-hybrid library using the COOH-terminal fragment of Densin-180 containing the PDZ domain as bait, and we isolated MAGUIN-1 as a Densin-180-binding protein. MAGUIN-1, a mammalian homologue of Drosophila connector enhancer of KSR (CNK), is known to interact with PSD-95 and has a short isoform, MAGUIN-2. The Densin-180 PDZ domain bound to the COOH-terminal PDZ domain-binding motif of MAGUIN-1. Densin-180 co-immunoprecipitated with MAGUIN-1 as well as with PSD-95 from the rat brain. In dissociated hippocampal neurones Densin-180 co-localized with MAGUINs and PSD-95, mainly at neuritic spines. In transfected cells, Densin-180 formed a ternary complex with MAGUIN-1 and PSD-95, whereas no association was detected between Densin-180 and PSD-95 in the absence of MAGUIN-1. MAGUIN-1 formed a dimer or multimer via the COOH-terminal leucine-rich region which is present in MAGUIN-1 but not in -2. Among the PDZ domains of PSD-95, the first was sufficient for interaction with MAGUIN-1. CONCLUSION: These results suggest that the potential to dimerize or multimerize allows MAGUIN-1 to bind simultaneously to both Densin-180 and PSD-95, leading to the ternary complex assembly of these proteins at the postsynaptic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号