首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human U-1285 and GLC(4) cell lines, both derived from small cell carcinoma of the lung, are present in doxorubicin-sensitive (U-1285 and GLC(4)) and doxorubicin-resistant MRP-expressing (U-1285dox and GLC(4)/ADR) variants. These sublines were examined here with respect to their susceptibilities to the toxic effects of selenite and compared to the toxic effects of selenite on the promyelocytic leukemia cell line HL-60 and its doxorubicin-resistant P-glycoprotein expressing variant. The drug-resistant U-1285dox and GLC(4)/ADR sublines proved to be 3- and 4-fold, respectively, more sensitive to the cytotoxicity of selenite than the drug-sensitive U-1285 and GLC(4) sublines, whereas no difference was observed between the HL-60 sublines. The presence of doxorubicin at a concentration equal to the IC(10) did not significantly potentiate the toxic effects of selenite. The presence of selenite did not significantly affect the expression of the multi-drug resistant proteins (MRP1, LRP and topoisomerase IIalpha) in the drug-resistant cells. The activities of thioredoxin reductase (TrxR) were higher (50 and 25%, respectively) in the drug resistant cell sublines U-1285dox and GLC(4)/ADR compared to the drug-sensitive parental lines. The activity of glutathione reductase (GR) was essentially the same in the drug-sensitive and -resistant cell lines. Exposure to selenite resulted in a 4-fold increase in both TrxR and GR activities in U-1285 cells, an effect, which was less pronounced in the presence of doxorubicin. Under similar conditions the increase in the TrxR activity in the resistant U-1285dox cell line, was only 30% and the activity of GR was unaltered. Different responses in the activity of the key enzymes in selenium metabolism are one possible mechanism explaining the differential cytotoxicity of selenium in these cells.  相似文献   

2.
Selenium treatment of the doxorubicin-resistant cell line, U-1285dox, derived from human small cell carcinoma of the lung, resulted in massive apoptosis. This effect appeared maximal at 2 days after addition of selenite. The apoptosis was caspase-3 independent as revealed by Western blot analysis, activity measurement and by using caspase inhibitors. Induction of apoptosis was significantly more pronounced and occurred after addition of lower concentrations of selenite in the doxorubicin-resistant cells compared to the parental doxorubicin-sensitive cells. High levels of selenite caused necrosis in the doxorubicin-sensitive cells. Analysis of enzymatic activity (insulin reduction) of thioredoxin reductase (TrxR) and TrxR protein concentration, measured by ELISA, revealed increasing activity and protein levels after treatment with increasing concentrations of selenium. Maximum relative increase was induced up to 1 μM in both sublines and at this selenium level the concentrations of TrxR measured as insulin reducing activity or ELISA immunoreactivity were nearly identical. Increasing concentrations of selenite up to 10 μM resulted in increased activity and concentration of TrxR in the sensitive subline but decreasing levels in the resistant subline. The level of truncated Trx (tTrx) was higher in the resistant U-1285dox cells but the level did not change with increasing selenite concentrations. Our results demonstrate pronounced selective selenium-mediated apoptosis in therapy-resistant cells and suggest that redox regulation through the thioredoxin system is an important target for cancer therapy.  相似文献   

3.
Monomethylarsonous acid (MMAIII), a trivalent metabolite of arsenic, is highly cytotoxic and recent cell culture studies suggest that it might act as a carcinogen. The general consensus of studies indicates that the cytotoxicity of MMAIII is a result of increased levels of reactive oxygen species (ROS). A longstanding relationship between arsenic and selenium metabolism has led to the use of selenium as a supplement in arsenic exposed populations, however the impact of organic arsenicals (methylated metabolites) on selenium metabolism is still poorly understood. In this study we determined the impact of exposure to MMAIII on the regulation of expression of TrxR1 and its activity using a primary lung fibroblast line, WI-38. The promoter region of the gene encoding the selenoprotein thioredoxin reductase 1 (TrxR1) contains an antioxidant responsive element (ARE) that has been shown to be activated in the presence of electrophilic compounds. Results from radiolabeled selenoproteins indicate that exposure to low concentrations of MMAIII resulted in increased synthesis of TrxR1 in WI-38 cells, and lower incorporation of selenium into other selenoproteins. MMAIII treatment led to increased mRNA encoding TrxR1 in WI-38 cells, while lower levels of mRNA coding for cellular glutathione peroxidase (cGpx) were detected in exposed cells. Luciferase activity of TrxR1 promoter fusions increased with addition of MMAIII, as did expression of a rat quinone reductase (QR) promoter fusion construct. However, MMAIII induction of the TRX1 promoter fusion was abrogated when the ARE was mutated, suggesting that this regulation is mediated via the ARE. These results indicate that MMAIII alters the expression of selenoproteins based on a selective induction of TrxR1, and this response to exposure to organic arsenicals that requires the ARE element.  相似文献   

4.
5.
6.
Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes up and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels.  相似文献   

7.
Gold(I) complexes with 1,3-substituted imidazole-2-ylidene and benzimidazole-2-ylidene ligands of the type NHC-Au-L (NHC = N-heterocyclic carbene L = Cl or 2-mercapto-pyrimidine) have been synthesized and structurally characterized. The compounds were evaluated for their antiproliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), as well in the nontumorigenic human embryonic kidney cell line (HEK-293T), showing in some cases important cytotoxic effects. Some of the complexes were comparatively tested as thioredoxin reductase (TrxR) and glutathione reductase (GR) inhibitors, directly against the purified proteins or in cell extracts. The compounds showed potent and selective TrxR inhibition properties in particular in cancer cell lines. Remarkably, the most effective TrxR inhibitors induced extensive oxidation of thioredoxins (Trxs), which was more relevant in the cancerous cells than in HEK-293T cells. Additional biochemical assays on glutathione systems and reactive oxygen species formation evidenced important differences with respect to the classical cytotoxic Au(I)-phosphine compound auranofin.  相似文献   

8.
Weiller M  Latta M  Kresse M  Lucas R  Wendel A 《Toxicology》2004,201(1-3):21-30
The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.  相似文献   

9.
Exposure to methylmercury (MeHg), an important environmental toxicant, may lead to serious health risks, damaging various organs and predominantly affecting the brain function. The toxicity of MeHg can be related to the inhibition of important selenoenzymes, such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Experimental studies have shown that selenocompounds play an important role as cellular detoxifiers and protective agents against the harmful effects of mercury. The present study investigated the mechanisms by which diphenyl diselenide [(PhSe)2] and ebselen interfered with the interaction of mercury (MeHg) and selenoenzymes (TrxR and GPx) in an in vitro experimental model of cultured human neuroblastoma cells (SH‐SY5Y). Our results established that (PhSe)2 and ebselen increased the activity and expression of TrxR. In contrast, MeHg inhibited TrxR activity even at low doses (0.5 μm ). Coexposure to selenocompounds and MeHg showed a protective effect of (PhSe)2 on both the activity and expression of TrxR. When selenoenzyme GPx was evaluated, selenocompounds did not alter its activity or expression significantly, whereas MeHg inhibited the activity of GPx (from 1 μm ). Among the selenocompounds only (PhSe)2 significantly protected against the effects of MeHg on GPx activity. Taken together, these results indicate a potential use for ebselen and (PhSe)2 against MeHg toxicity. Furthermore, for the first time, we have demonstrated that (PhSe)2 caused a more pronounced upregulation of TrxR than ebselen in neuroblastoma cells, likely reflecting an important molecular mechanism involved in the antioxidant properties of this compound. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Möller M  Weiss J  Wink M 《Planta medica》2006,72(12):1121-1126
The cytotoxicity of the alkaloid emetine was determined in six human cell lines that differ in the expression of ABC transporters, such as multiple drug resistance protein 1 (MDR1/ABCB1) and multidrug resistance associated protein 1 (MRP1/ABCC1). Emetine reveals a substantial cytotoxicity due to apoptosis that is inversely correlated with the expression of MDR1. Confluent Caco-2 cells with high MDR1 activity and the MDR1 over-expressing leukemia cell line CEM/ADR5000 are more resistant towards emetine (EC (50) 250 microM and 2 microM, respectively) than cells with a low expression of MDR1 (Jurkat cells, CCRF-CEM cells, HL-60 cells) or cells which over-express MRP1 (HL-60/AR) (EC (50) between 0.05 microM for CCRF-CEM and 0.17 microM for Jurkat cells). Apparently emetine is a substrate for MDR1 but not for MRP1. Furthermore, emetine is able to up-regulate the expression of MDR1 as shown IN VITRO by real-time PCR and transport activity studies.  相似文献   

11.
4-Amino-4-methyl-pent-2-ynthioc acid S-methyl ester (ampal thiolester: ATE) was used as a lead compound to synthesise new amino-substituted derivatives of alpha, beta acetylenic thiolester compounds as inhibitors of aldehyde dehydrogenase 1, (ALDH1). Of these compounds, the dimethyl derivative (DIMATE) was a competitive irreversible inhibitor (K(i) approximately 280 microM) of baker's yeast ALDH1 in vitro showing 80% inhibition at 400 microM when preincubated with the enzyme for 30min, whereas the trimethyl ammonium and the morpholine derivatives showed only 15% inhibition at 600 microM even after 60min preincubation. ATE inhibited ALDH1 activity in ALDH1-transfected L1210 T cells resistant to hydroperoxycyclophosphamide (HCPA) and inhibited growth synergistically in the presence of HCPA. In non-transfected L1210 counterparts ATE did not potentiate growth inhibition by HCPA. DIMATE was a 30-100-fold more effective growth inhibitor than ATE. Endogenous ALDH1 activities of BAF(3) cells over-expressing different levels of bcl(2) (0-100%) were similar (16-20mU/mg protein) and were all inhibited by DIMATE, reaching 20-30% at 4 microM. Up to 4 microM no apoptosis, as measured by DNA-fragmentation was observed, but at 8 and 10 microM DIMATE, DNA-fragmentation increased concomitantly with ALDH1 inhibition. No DNA-fragmentation was observed with ALDH1 irreversible inhibitors devoid of a thiolester group or with thiolesters which were not inhibitors of ALDH1. It was seen only with competitive irreversible inhibitors having the methanethiol and enzyme-inhibitory moieties. The methanethiol putatively released from DIMATE by ALDH1 esterase activity plays a role, albeit undefined, in lowering intramitochondrial glutathione levels which decreased by 47% as DNA-fragmentation increased.  相似文献   

12.
Organotins display high biological activity and are toxic to animals and humans. Besides carcinogenic effects, they have been shown to have highly immunotoxic and/or neurotoxic activity; however, the molecular mechanism of their toxicity is not fully understood. The ability of chemicals to inhibit communication via gap junctions has been associated with their toxicological properties. The aim of this study was to determine whether diphenyltin (DPhT) affects the gap junctional intercellular communication (GJIC) and whether thioredoxin reductase (TrxR1) is involved in the regulation of this process. We found that DPhT inhibits GJIC in HEK-293 cells. The inhibition of GJIC depends on the activation of PKC delta and is associated with the induction of Cx43 phosphorylation at Ser262. Moreover, we found that GJIC inhibited by DPhT in HEK-293 cells is fully re-established as a result of TrxR1 overexpression.  相似文献   

13.
Three new hopane saponins, lotoidosides A - C (1 - 3), and four new oleanane saponins, lotoidosides D - G (4 - 7), were isolated from the roots of Glinus lotoides L. (Molluginaceae). Their structures were determined by extensive 1D- and 2D-NMR spectroscopy and ESI-MS analysis. The antiproliferative activity of compounds 1 - 7 was evaluated using three continuous murine and human culture cell lines J774.A1, HEK-293, WEHI-164. Compounds 1 and 3 - 7 showed significant cytotoxicity against the three cancer cell lines with IC50 values ranging from 0.018 to 0.62 microM, while compound 2 exerted a weak activity only against the cell line HEK-293.  相似文献   

14.
目的:探讨丙泊酚对布比卡因诱导的PC12细胞毒性的保护作用及内源性硫氧还蛋白(Trx)系统在其中的作用。方法:培养的PC12细胞分成四组,正常对照组、丙泊酚组、布比卡因组、丙泊酚+布比卡因(PB)组,每组6孔。培养6h和24h后,用MTT比色微量分析细胞存活率,测定上清液乳酸脱氢酶(LDH)活性和细胞内硫氧还蛋白还原酶(TrxR)、活性氧(ROS)活性,RT-PCR检测Trx-1 mRNA和TrxR-1 mRNA表达。结果:与正常PC12细胞相比,布比卡因可显著降低细胞存活率(P〈0.01)和细胞内TrxR活性(P〈0.05),增加上清液中LDH活性和细胞内ROS活性(P〈0.05,P〈0.01),明显降低Trx mRAN和Trx mRAN表达(P〈0.05);丙泊酚对正常PC12细胞无明显影响;与布比卡因组相比,PB组细胞存活率(P〈0.01)和细胞内Trx活性(P〈0.05)明显增加,上清液中LDH活性和细胞内ROS活性显著降低(P〈0.05,P〈0.01),Trx mRAN和Trx mRAN表达明显增加(P〈0.05)。结论:布比卡因对PC12细胞具有毒性作用可能与降低细胞内TrxR活性、增加ROS活性有关,丙泊酚通过保护细胞内Trx系统的活性及清除ROS来减轻布比卡因诱导的PC12细胞毒性。  相似文献   

15.
Selenium, in the form of selenocysteine, is a critical component of some major redox-regulating enzymes, including thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). TrxR has emerged as an anticancer target for drug development due to its elevated expression level in many aggressive human tumors. Acylfulvenes (AFs) are semisynthetic derivatives of the natural product illudin S and display improved cytotoxic selectivity profiles. AF and illudin S alkylate cellular macromolecules. Compared to AFs, illudin S more readily reacts with thiol-containing small molecules such as cysteine, glutathione, and cysteine-containing peptides. However, a previous study indicates that the reactivity of AFs and illudin S with glutathione reductase, a thiol-containing enzyme, is inversely correlated with the reactivity toward small molecule thiols. In this study, we investigate mechanistic aspects underlying the enzymatic and cellular effects of the AFs and illudin S on thioredoxin reductase. Both AF and HMAF were found to inhibit mammalian TrxR in the low- to submicromolar range, but illudin S was significantly less potent. TrxR inhibition by AFs was shown to be irreversible, concentration- and time-dependent, and mediated by alkylation of C-terminus active site Sec/Cys residues. In contrast, neither AFs nor illudin S inhibits Gpx, demonstrating that enzyme structure-specific small molecule interactions have a significant influence over the inherent reactivity of the Sec residue. In human cancer cells, TrxR activity can be inhibited by low micromolar concentrations of all three drugs. Finally, it was demonstrated that preconditioning cells by the addition of selenite to the cell culture media results in an enhancement in cell sensitivity toward AFs. These data suggest potential strategies for increasing drug activity by combination treatments that promote selenium enzyme activity.  相似文献   

16.
Both selenite and tellurite caused lysis of normal sheep erythrocytes in vitro. GSH-deficient sheep erythrocytes were considerably more resistant to haemolysis than normal cells. This effect was independent of the biochemical lesion responsible for GSH-deficiency (amino acid transport lesion or γ-glutamyl cysteine synthetase deficiency). These and other observations directly implicate intracellular GSH in the lytic mechanism. Selenite and tellurite-induced haemolysis therefore provides a simple method for detecting GSH-deficient cells. The lytic effect of selenite may explain some of the symptoms associated with selenium poisoning.  相似文献   

17.
Intracellular activation of ricin and of the ricin A-chain (RTA) immunotoxins requires reduction of their intersubunit disulfide(s). This crucial event is likely to be catalyzed by disulfide oxidoreductases and precedes dislocation of the toxic subunit to the cytosol. We investigated the role of protein disulfide isomerase (EC 5.3.4.1, PDI), thioredoxin (Trx), and thioredoxin reductase (EC 1.8.1.9, TrxR) in the reduction of ricin and of a ricin A-chain immunotoxin by combining enzymatic assays, SDS-PAGE separation and immunoblotting. We found that, whereas PDI, Trx, and TrxR used separately were unable to directly reduce ricin and the immunotoxin, PDI and Trx in the presence of TrxR and NADPH could reduce both ricin and immunotoxin in vitro. PDI functioned only after pre-incubation with TrxR and the reductive activation of ricin was more efficient in the presence of glutathione. Similar results were obtained with microsomal membranes or crude cell extracts. Pre-incubation with the gold(I) compound auranofin, which irreversibly inactivates TrxR, resulted in a dose-dependent inhibition of ricin and immunotoxin reduction. Reductive activation of ricin and immunotoxin decreased or was abolished in microsomes depleted of TrxR and in cell extracts depleted of both PDI and Trx. Pre-incubation of U-937, Molt-3, Jurkat, and DU145 cells with auranofin significantly decreased ricin cytotoxicity with respect to mock-treated controls (P<0.05). Conversely, auranofin failed to protect cells from the toxicity of pre-reduced ricin which does not require intracellular reduction of disulfide between the two ricin subunits. We conclude that TrxR, by activating disulfide reductase activity of PDI, can ultimately lead to reduction/activation of ricin and immunotoxin in the cell.  相似文献   

18.
The function of selenium in an organism is mediated mostly by selenoproteins including glutathione peroxidase. Glutathione peroxidase is a potent anti-oxidative enzyme, scavenging a variety of peroxides. The green alga Scenedesmus quadricauda was used to investigate the relationship between the toxicity of selenium and the glutathione peroxidase activity. Selenium resistant strains SeIV and SeVI were synchronized and grown in high concentrations of Se (selenite or selenate). As a measure of selenium toxicity the EC(50) values were determined. During growth of the untreated wild type, glutathione peroxidase activity increased slightly and then declined gradually until the end of the cell cycle. A similar pattern was observed in untreated resistant strains and when resistant strains were grown in the presence of selenium in the oxidation state to which they were resistant. In the wild type cultivated with 50 mg Se L(-1) (selenite or selenate), activity increased to a high level and slowly declined until the end of the cell cycle. Similarly, activity increased in strains SeIV and SeVI when grown in the presence of selenium in the oxidation state to which they were not resistant. We followed the effect of selenium on the ultrastructure of S. quadricauda. After exposure to selenite, the chloroplast membranes of wild type were reorganized into thick bundles of thylakoids and the stroma became granulose. When selenate was added, the chloroplast of wild type had a fingerprint-like appearance, the stroma became less dense and starch production increased. In selenium resistant strains, when treated with the selenium form to which they were resistant, the chloroplast was affected, but not to such an extent as in the wild type. The activity of glutathione peroxidase in Scenedesmus was affected by selenium in an oxidation state-dependent manner. The most apparent effects of selenium on the ultrastructure involved impairment of the chloroplast and the overproduction of starch.  相似文献   

19.
Selenobetaine (SB) and selenobetaine methyl ester (SBME) are methylated selenonium derivatives that undergo metabolism to release methyl selenide and dimethylselenide, respectively, as primary metabolites. Since methylation of selenium is considered to be detoxifying, the toxicologic activity of SB or SBME may differ from that of inorganic forms of selenium, such as selenite, that undergo reduction and can induce cell damage. In this study, the effects of SB, SBME and selenite on the viability and long-term growth potential of a mouse leukemia cell line (L1210) were compared. Treatment with 20 microM selenite reduced the rate of cell doubling and the long-term growth potential of cells as measured by colony-forming ability. These effects of selenite were accompanied by a reduction in DNA integrity, assessed by alkaline elution analysis for single-strand breaks. Exposure to 500 microM SB or SBME for 24 hr reduced the colony-forming ability of cells in the absence of any effect on dye exclusion or induction of single-strand breaks in DNA. Exposure of cells to 500 microM SB or SBME resulted in levels of intracellular selenium similar to those after exposure to 20 microM selenite. These observations indicate that it is possible to maintain high intracellular levels of selenium, by exposure to methylated selenocompounds, without affecting DNA integrity. These findings also suggest that DNA fragmentation resulting from exposure to selenite occurs during its reductive metabolism and not from the accumulation of a methylated metabolite of selenium. The fact that SB or SBME reduced the ability of L1210 cells to form colonies in agar in the absence of either DNA fragmentation or any effect on the ability of treated cells to exclude a vital dye suggests that both methylated compounds alter the long-term proliferative potential of cells via a mechanism(s) distinct from that associated with cell injury and death by necrosis. Efforts are underway to determine the origin of these effects.  相似文献   

20.
Acrolein is a highly reactive alpha,beta-unsaturated aldehyde produced endogenously during lipid peroxidation and naturally distributed pervasively in living environments, posing serious threats to human health if not properly metabolized. In this study, we report aldose reductase-like-1 (ARL-1) as a novel enzyme that catalyzes the reduction of acrolein and protects cells from their toxicity. Using purified ARL-1 protein, we determined its enzymatic activity in response to acrolein and defined its steady-state kinetics with K(m) and V(max) at 0.110 +/- 0.012 mM and 3122.0 +/- 64.7 nmol/mg protein/min, respectively. By introducing a functional Enhanced Green Fluorescent Protein (EGFP)/ARL-1 fusion protein into 293T cells, we demonstrated that plating efficiency in liquid culture and focus formation in soft agar increased by more than 60% (p < 0.05), compared to the vector control cells. More significantly, at a low dose of 5 microM acrolein, EGFP/ARL-1 expression enhanced both plating efficiency and focus formation by more than threefold, and the foci (in soft agar) of 293T cells expressing EGFP/ARL-1 were significantly larger than those of the vector control cells. At high concentrations of acrolein (25 and 50 microM), EGFP/ARL-1 protein prevented oncotic death of 293T cells induced by acrolein. In summary, our data demonstrated for the first time that the ARL-1 protein protects 293T cells from acrolein toxicity. Due to the high toxicity and wide distribution of acrolein, this finding is important to the understanding of its detoxification mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号