首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hematopoiesis     
Chronic myeloid leukemia (CML) is a hematological neoplasia that results from the transformation of a hematopoietic stem cell. It is characterized by the expansion of the myeloid lineage, which results in the accumulation of mature and immature granulocytes in peripheral blood and bone marrow. However, when CML marrow cells are cultured in Dexter-type long-term cultures (LTMC) hematopoiesis is defective and can be sustained for only a few weeks. One possible explanation for the deficient growth of hematopoietic cells in CML LTMC is that some factors that act as key regulators of hematopoiesis are absent in this experimental system. Thus, we tested this hypothesis by adding recombinant cytokines to these cultures. As a first approach, we added recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF), rhGranulocyte-CSF (rhG-CSF) and rhErythropoietin (rhEPO); each factor was added individually once a week. Addition of rhGM-CSF and rhG-CSF resulted in a significant increase in the levels of nucleated cells and myeloid progenitors; the highest effects were seen in the presence of rhGM-CSF. Interestingly, such a cytokine also induced a significant decrease in the levels of erythroid progenitors. Recombinant hEPO had no significant effects on nucleated cells or myeloid progenitors, however, it induced a significant, although transient, increase in the levels of erythroid cells. The above results indicate that the hematopoietic regulators used here (rhGM-CSF, rhG-CSF and rhEPO) are capable of stimulating the growth of hematopoietic cells in LTMC from CML patients. Thus, this study demonstrates that it is, indeed, possible to manipulate CML LTMC by the addition of recombinant cytokines; this observation may be of particular relevance, since this in vitro experimental system has already been used as a method for purging of leukemic cells in autologous transplant settings. By using specific recombinant hematopoietic modulators it might be possible to make LTMC a more efficient system for such a clinical purpose.  相似文献   

2.
We have characterized the proliferation kinetics of hematopoietic cells in long-term marrow cultures (LTMC) from five normal children and seven children with congenital bone marrow failure (four with Fanconi anemia [FA] and three with congenital pure red cell aplasia [PRCA]). Total nonadherent and adherent cells, as well as nonadherent progenitors, were determined weekly in the presence or in the absence of rhGM-CSF (10 ng/ml) or rhEPO (3 U/ml). As compared to normal LTMC, hematopoiesis was drastically reduced in cultures from FA patients. Myeloid and erythroid progenitor cells reached undetectable levels after only 3 and 1 weeks of culture, respectively. This was observed even in cultures supplemented with rhGM-CSF, in which no response to this cytokine occurred. In LTMC from PRCA children, the growth of erythroid and multipotent progenitors was also drastically reduced. Myelopoiesis, on the other hand, showed normal levels during the first three weeks of culture; however, from week 4, there was a significant decrease in the levels of both progenitor and mature cells, reaching undetectable levels several weeks before normal cells did. Response to rhGM-CSF and rhEPO was transient and deficient. Our results suggest that in FA, alterations at the level of primitive progenitor cells are so severe that myeloid, erythroid and multipotent progenitors are unable to proliferate in LTMC, even in the presence of rhGM-CSF. In patients with PRCA the erythroid arm of hematopoiesis is preferentially affected and addition of rhGM-CSF and/or rhEPO to these cultures had little or no effect on erythroid cell production. Interestingly, myelopoiesis in this culture system was deficient as well and response to rhGM-CSF was defective, suggesting that the myeloid lineage is also altered in congenital PRCA.  相似文献   

3.
The hematopoietic system in patients with aplastic anemia (AA) shows both quantitative and qualitative deficiencies, i.e., reduced numbers of hematopoietic progenitor cells (HPC) and impaired HPC proliferation in long-term marrow cultures (LTMC). Since recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) has been shown to be a potent stimulator of normal hematopoiesis, both in vivo and in vitro, in the present study we wanted to assess the possibility of stimulating hematopoiesis in LTMC from 17 patients with AA, by weekly addition of rhGM-CSF (10 ng/ml). In LTMC from 11 patients (group of responders), rhGM-CSF induced a significant increase (4.8-fold, compared with untreated cultures) in the levels of myeloid progenitor cells; in contrast, in six patients (group of nonresponders), myeloid progenitors were refractory to this cytokine. In the group of responders, rhGM-CSF also induced a pronounced increment in the levels of nonadherent and adherent cells (5.99- and 5.18-fold, respectively, compared with untreated cultures). Among the different myelopoietic lineages, rhGM-CSF preferentially stimulated the macrophagic lineage; this was evident both at the progenitor and mature cell levels. Interestingly, the effect of rhGM-CSF in LTMC from AA patients was only transient. Indeed, the effects mentioned above were observed only during the first three weeks of culture; afterwards, myeloid progenitor and nonadherent cell levels in treated cultures declined, practically reaching the levels observed in untreated cultures. At the moment, we do not know whether this transient stimulatory effect is due to the production of inhibitory cytokines, by macrophages generated in response to rhGM-CSF, or to the exhaustion of the HPC pool in AA cultures. In all 17 patients, rhGM-CSF had no effect on the kinetics of erythroid or multipotent progenitor cells. These results are in keeping with clinical studies in which it has been observed that most AA patients treated with rhGM-CSF show increments in circulating monocytes and granulocytes, as well as in bone marrow cellularity. However, little or no effect is observed on erythropoiesis. The actual mechanisms involved in the in vitro effects of rhGM-CSF on myeloid progenitor cells from AA bone marrow are still not completely understood. Future studies on this issue should be encouraged, since they may help to understand the in vivo (clinical) effects of this cytokine.  相似文献   

4.
We have previously shown that the levels of hematopoietic progenitors in long-term marrow cultures (LTMC) from patients with aplastic anemia (AA) are drastically reduced, as compared to normal LTMC. We have also reported that when LTMC from AA patients are supplemented with recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) there is an increase in colony-forming cell (CFC) levels. However, such a stimulation is only transient and it is followed by an inhibition in CFC growth. Based on these observations, in the present study we have tested the hypothesis that the levels of tumor necrosis factor-alpha (TNF-alpha), an inhibitor of hematopoiesis, are increased in AA LTMC and that such levels are further increased after rhGM-CSF has been added to the cultures for several weeks. Accordingly, we have determined the levels of TNF-alpha in the supernatant of LTMC established from normal (n = 8) and AA (n = 6) bone marrow and in AA LTMC supplemented with rhGM-CSF (n = 6). At the time of culture initiation, TNF-alpha levels were below detection in all the samples analyzed. After 5 weeks of culture, TNF-alpha levels in normal LTMC were very low, with a median of 7.3 pg/mL. In contrast, AA LTMC contained higher levels of TNF-alpha (median of 49.6 pg/mL). In keeping with our hypothesis, addition of rhGM-CSF to AA LTMC resulted in a significant further increase of TNF-alpha levels (median of 135.4 pg/mL). Our results demonstrate an inverse correlation between reduced hematopoiesis in AA LTMC and increased levels of TNF-alpha in this culture system. Based on the results presented here, together with previous reports indicating that TNF-alpha is a potent inducer of apoptosis in hematopoietic progenitor cells, it seems reasonable to suggest that TNF-alpha is implicated in the pathophysiology of AA.  相似文献   

5.
Long-term bone marrow cultures (LTMC) have provided a useful in vitro system to study stem cell self-renewal and myeloid differentiation. However, standard murine LTMC are devoid of erythroid differentiation within 2 weeks of establishment. In an attempt to develop a model system to study erythropoiesis in vitro, we have used a recombinant retrovirus vector to transfer the erythropoietin cDNA into stromal cells making up the hematopoietic microenvironment of murine LTMC. Three weeks after infection, erythroid differentiation was evident macroscopically, with clumps of hemoglobinized red blood cells present in the infected cultures. Hemoglobinization was confirmed by benzidine staining of nonadherent cells, which showed that up to 70% of nucleated cells were benzidine positive. In combination with LTMC, the use of recombinant retrovirus vectors to transfer growth factor genes may provide useful models to study the interactions of hematopoietic stem cells, hematopoietic microenvironment, and growth factors in vitro.  相似文献   

6.
In spite of their ability to support myelopoiesis for several months, human long-term marrow cultures (LTMC) are unable to sustain the production of mature erythroid cells for greater than 4 weeks. Because this preference correlates with the presence of myeloid growth factors and possible absence of erythroid factors in LTMC, we studied the effects of the erythroid growth and differentiation factor erythropoietin (Epo) on both erythropoiesis and myelopoiesis in human LTMC. Either natural or recombinant Epo was added weekly to LTMC for 10 weeks, and total cell number, numbers of hemopoietic progenitors (mixed lineage colony-forming units, CFU-MIX; erythroid burst-forming units, BFU-E; erythroid CFU, CFU-E; granulocyte-macrophage CFU (CFU-GM); granulocyte CFU, CFU-G; and macrophage CFU, CFU-M), erythroblasts (early and late), granulocytes, and macrophages were quantitated separately in the adherent and nonadherent layers of the cultures. In the absence of Epo, mature erythroid cells disappeared within the first 3-4 weeks, whereas in cultures supplemented with Epo, erythropoiesis was supported for up to 8 weeks. Results indicate that erythroid maturation is blocked at the BFU-E stage and that exogenous Epo may act on a mature subpopulation of BFU-E located in the nonadherent fraction of the cultures, promoting its maturation into CFU-E, which in turn develop into erythroblasts. However, despite Epo supplementation, erythropoiesis was not restored to in vivo proportions, suggesting that additional factors or conditions necessary for erythropoiesis are lacking in LTMC. Interestingly, we found that exogenous Epo reduced the numbers of presumably more mature (nonadherent) myeloid CFU (CFU-C), granulocytes, and macrophages compared to controls and did not alter the levels of any of the most primitive hemopoietic progenitors measured (CFU-MIX, adherent BFU-E, and adherent CFU-C). Thus the data show that exogenous Epo modulates hemopoiesis in human LTMC, enhancing erythropoiesis and suppressing myelopoiesis, but that its effects appear limited to modulating levels of the nonadherent (more mature) progenitors, leaving the numbers of the adherent (immature) progenitor cells unchanged.  相似文献   

7.
Using clonogenic assay we investigated the effect of stem cell factor (SCF) on the in vitro growth of clonogenic precursor cells from acute myeloid leukemia (AML) and myelodys-plastic syndromes (MDS) in the presence or absence of recombinant human erythropoietin (rhEpo) or recombinant human granulocyte colony-stimulating factor (rhG-CSF). SCF as a single factor did not induce significant colony formation, and even in the presence of rhEpo or rhG-CSF it very weakly stimulated erythroid colony formation and was rarely capable of inducing myeloid colony formation by clonogenic leukemic cells. In culture dishes supplemented with SCF, both myeloid and erythroid colony formations were dramatically enhanced in MDS, regarding both colony number and size. Cotony-formation abilities by MDS progenitors were improved following costimulation with SCF and rhEpo. These results suggest that SCF may have a therapeutic role in restoring hematopoiesis in patients with MDS. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The effect of recombinant human interleukin 6 (rhIL-6) on the in vitro growth of human bone marrow myeloid progenitors (granulocyte-macrophage colony-forming units, CFU-GM) was investigated. Recombinant human IL-6 by itself did not induce colony formation. When rhIL-6 at various concentrations was added to the CFU-GM colony cultures containing recombinant human granulocyte colony-stimulating factor (rhG-CSF) or recombinant human granulocyte-monocyte/macrophage colony-stimulating factor (rhGM-CSF), rhIL-6 significantly suppressed the colony formation induced by rhG-CSF, but not by rhGM-CSF. This suppressive effect of rhIL-6 on rhG-CSF-induced, but not rhGM-CSF-induced colony formation was confirmed by using an MY10(+)-cell-enriched population. Neither interleukin 3 nor interleukin 1 alpha suppressed the growth of myeloid progenitors. The preincubation of bone marrow cells with rhIL-6 for a short time (30 min) resulted in a reduction of colonies induced by rhG-CSF, but not by rhGM-CSF. The suppressive effect of rhIL-6 on rhG-CSF-induced colony formation was not observed when the cells were preincubated together with rhG-CSF at a high ratio of rhG-CSF to rhIL-6. The rhIL-6-mediated suppressive effect was further confirmed by blocking the effect by the anti-IL-6 antibody. These results suggest antagonistic interaction between IL-6 and G-CSF in the later differentiation of myeloid progenitors.  相似文献   

9.
The cDNA for human stem cell factor (hSCF) has been cloned and expressed in mammalian and bacterial hosts and recombinant protein purified. We have examined the stimulatory effect of recombinant human SCF (rhSCF) on human bone marrow cells alone and in combination with recombinant human colony stimulating factors (CSFs) and erythropoietin (rhEpo). RhSCF alone resulted in no significant colony formation, however, in the presence of rhGM-CSF, rhG-CSF or rhIL-3, rhSCF stimulated a synergistic increase in colony numbers. In addition, increased colony size was stimulated by all combinations. The morphology of cells in the colonies obtained with the CSFs plus rhSCF was identical to the morphology obtained with rhGM-CSF, rhG-CSF or rhIL-3 alone. RhEpo also synergised with rhSCF to stimulate the formation of large compact hemoglobinized colonies which stained positive for spectrin and transferrin receptor and had a morphological appearance consistent with normoblasts. RhSCF stimulation of low density non-adherent, antibody depleted, CD34+ cells suggests that rhSCF directly stimulates progenitor cells capable of myeloid and erythroid differentiation.  相似文献   

10.
Human marrow cells that express the CD34 antigen but lack CD33 are able to initiate sustained, multilineage in vitro hematopoiesis in long-term Dexter cultures and are believed to include the primitive stem cells responsible for effecting long-term hematopoietic reconstitution in vivo following marrow transplantation. In studies described in this report we investigated the effects of a novel anti-CD33 immunotoxin on the clonogenic potential of normal human CD34+ marrow cells and on the ability of these cells to initiate hematopoiesis in two-stage Dexter cultures (long-term marrow cultures, LTMC). This immunotoxin (anti-CD33-bR), shown previously to kill both clonogenic myelogenous leukemia cells and normal mature myeloid progenitor cells (granulocyte-macrophage colony-forming units, CFU-GM), consists of an anti-CD33 monoclonal antibody conjugated to purified ricin that has been modified by blocking the carbohydrate binding domains of the ricin B-chain to eliminate nonspecific binding. For our studies, normal CD34+ human marrow cells were isolated from the light-density (less than 1.070 g/ml) cells of aspirated marrow by positive selection with immunomagnetic beads linked to the monoclonal antibody K6.1. These cell isolates were highly enriched with both multipotential and lineage-restricted clonogenic, hematopoietic progenitors (mixed lineage colony-forming units, CFU-Mix; CFU-GM; and erythroid burst-forming units, BFU-E) which constituted greater than or equal to 20% of the cells. Recovery of clonogenic progenitors from these CD34+ cell preparations, following treatment with anti-CD33-bR (10 nM), was reduced by greater than or equal to 85% for CFU-GM and 20%-40% for CFU-Mix and BFU-E. However, the capacity of these cells to initiate hematopoietic LTMC was preserved. Indeed, the production of high proliferative potential (HPP) CFU-GM, BFU-E, and CFU-Mix in cultures seeded with 10(5) anti-CD33-bR-treated CD34+ marrow cells was substantially greater than that observed in LTMC seeded with equivalent numbers of untreated CD34+ cells. Moreover, concentrations of long-term culture initiating cells in CD34+ cell isolates, quantified by a limiting dilution technique, were found to be increased following anti-CD33-bR treatment. These findings support the potential usefulness of anti-CD33-bR for in vitro marrow purging or in vivo treatment to eliminate CD33+ leukemic clones, while sparing normal CD34+/CD33- stem cells that support normal hematopoiesis and hematopoietic reconstitution in vivo.  相似文献   

11.
The first blood cells observed in the embryo are large nucleated erythroblasts generated in blood islands of the extraembryonic yolk sac. These unique red cells have been termed primitive because of their resemblance to nucleated erythroblasts of nonmammalian species. It is now widely assumed that hematopoiesis in the yolk sac is "primitive" and that "definitive" hematopoiesis has its origins in the aorta/gonad/mesonephros (AGM) region. Recent studies of yolk sac hematopoiesis have challenged several aspects of this paradigm. First, primitive erythropoiesis in mammals shares many features with definitive erythropoiesis, including progressive erythroblast maturation leading to the circulation of enucleated erythrocytes. Second, the emergence of primitive erythroid progenitors in the yolk sac prior to somitogenesis may be associated with the macrophage and megakaryocyte lineages, raising the possibility that "primitive" hematopoiesis may be multilineage in nature. Third, a second wave of hematopoietic progenitors emerge from the yolk sac during early somitogenesis that consists of multiple myeloid lineages that are temporally and spatially associated with definitive erythroid progenitors. These "definitive" hematopoietic progenitors expand in numbers in the yolk sac and are thought to seed the fetal liver and generate the first definitive blood cells that rapidly emerge from the liver. Recent findings support a model of hematopoietic ontogeny in which the conceptus' first maturing blood cells and committed progenitors are provided by the yolk sac, allowing survival until AGM-derived hematopoietic stem cells can emerge, seed the liver and differentiate into mature blood cells.  相似文献   

12.
Cashman  JD; Eaves  AC; Raines  EW; Ross  R; Eaves  CJ 《Blood》1990,75(1):96-101
Long-term marrow cultures (LTMC) allow the proliferation and differentiation of primitive human hematopoietic progenitor cells to be maintained for many weeks in the absence of exogenously provided hematopoietic growth factors. Previous investigations focused on defining various types of cells that are present in this culture system and on measuring the cycling behavior of the different subpopulations of colony-forming cells maintained within it. These studies suggested that mesenchymal stromal elements derived from the input marrow play a key role in regulating the turnover of the most primitive, high- proliferative potential erythroid and granulopoietic colony-forming cells that are found almost exclusively in the adherent layer of LTMC. In this study we show that the re-entry into S-phase of these primitive hematopoietic progenitors that occurs after each weekly medium change is due to an as yet undefined constituent of horse serum, which is absent from fetal calf serum. However, this effect is not unique to the factor present in horse serum. It is also elicited by the addition to LTMC of several well-defined growth regulatory molecules, ie, platelet- derived growth factor (PDGF), interleukin-1 (IL-1), transforming growth factor alpha (TGF-alpha), and IL-2. None of these was able to stimulate hematopoietic colony-forming cells in methylcellulose assays, although all have known actions on mesenchymal cells including, in some cases, the ability to increase production of growth factors that can stimulate primitive high-proliferative potential hematopoietic progenitors in clonogenic assays. Interestingly, a stimulating effect was not obtained after addition of endotoxin to LTMC. TGF-beta, a direct-acting negative regulator that acts selectively on primitive hematopoietic progenitor cells if added to LTMC simultaneously with new medium or IL-1, blocked their stimulating activity. These results suggest a model in which indirect, local modulation of both positive and negative regulatory factors via effects on mesenchymal elements determines the rate of turnover of adjacent populations of very primitive hematopoietic cells that are normally maintained in a quiescent state in vivo.  相似文献   

13.
The effects of recombinant human macrophage colony-stimulating factor (rhCSF-1) in long-term marrow cultures (LTMC) established from normal bone marrow cells were examined. When added during the first 3 weeks of culture (every second day, at 15 ng/mL), rhCSF-1 strongly inhibited the growth of all hematopoietic progenitors analyzed (colony-forming unit-MIX [CFU-MIX], CFU-granulocyte macrophage [CFU-GM], CFU-M, CFU-G, burst-forming unit-erythroid). Paralleling the inhibition of progenitors was the complete loss of adipocytes from the stromal layer of rhCSF-1-treated cultures. The inhibitory effect of rhCSF-1 correlated in all instances with the accumulation in the supernatants of these cultures of an activity (different from CSF-1) that inhibited colony formation in semisolid cultures. When addition of rhCSF-1 was delayed 3 weeks, its inhibitory effects were significantly reduced, which correlated with reduced inhibitory activity detected in the supernatants. Analysis of CSF-1 concentration by radioreceptor assay confirmed that added rhCSF-1 increased culture CSF-1 levels and showed that the decreased inhibition observed when rhCSF-1 is added later in culture was not due to decreased CSF-1 levels at that point. In contrast, the ability of rhCSF-1 to inhibit hematopoiesis and accumulate inhibitory activity in LTMC correlated with its rate of utilization, much higher in the first 2 weeks of culture, when the stromal layer was being established, than later. These observations document the inhibitory effect of rhCSF-1 on all aspects of hematopoiesis conducted in cultures that simulate the hematopoietic microenvironment, demonstrate the importance of accessory/stromal cells in mediating the effects of rhCSF-1 in LTMC, and point to an inhibitory activity as the mediating agent.  相似文献   

14.
Cytokines are essential regulators of hematopoiesis, acting in an instructive or permissive way. Fms-like tyrosine kinase 3 ligand (FLT3L) is an important cytokine for the development of several hematopoietic populations. Its receptor (FLT3) is expressed on both myeloid and lymphoid progenitors and deletion of either the receptor or its ligand leads to defective developmental potential of hematopoietic progenitors. In vivo administration of FLT3L promotes expansion of progenitors with combined myeloid and lymphoid potential. To investigate further the role of this cytokine in hematopoietic development, we generated transgenic mice expressing high levels of human FLT3L. These transgenic mice displayed a dramatic expansion of dendritic and myeloid cells, leading to splenomegaly and blood leukocytosis. Bone marrow myeloid and lymphoid progenitors were significantly increased in numbers but retained their developmental potential. Furthermore, the transgenic mice developed anemia together with a reduction in platelet numbers. FLT3L was shown to rapidly reduce the earliest erythroid progenitors when injected into wild-type mice, indicating a direct negative role of the cytokine on erythropoiesis. We conclude that FLT3L acts on multipotent progenitors in an instructive way, inducing their development into myeloid/lymphoid lineages while suppressing their megakaryocyte/erythrocyte potential.  相似文献   

15.
16.
Recombinant human stem cell factor (rhSCF) and recombinant human granulocyte colony-stimulating factor (rhG-CSF) are synergistic in vitro in stimulating the proliferation of hematopoietic progenitor cells and their precursors. We examined the in vivo synergy of rhSCF with rhG-CSF for stimulating hematopoiesis in vivo in baboons. Administration of low-dose (LD) rhSCF (25 micrograms/kg) alone did not stimulate changes in circulating WBCs. In comparison, administration of LD rhSCF in combination with rhG-CSF at 10 micrograms/kg or 100 micrograms/kg stimulated increases in circulating WBCs of multiple types up to twofold higher than was stimulated by administration of the same dose of rhG-CSF alone. When the dose of rhG-CSF is increased to 250 micrograms/kg, the administration of LD rhSCF does not further increase the circulating WBC counts. Administration of LD rhSCF in combination with rhG-CSF also stimulated increased circulation of hematopoietic progenitors. LD rhSCF alone stimulated less of an increase in circulating progenitors, per milliliter of blood, than did administration of rhG-CSF alone at 100 micrograms/kg. Baboons administered LD rhSCF together with rhG-CSF at 10, 100, or 250 micrograms/kg had 3.5- to 16-fold higher numbers per milliliter of blood of progenitors cells of multiple types, including colony-forming units granulocyte/macrophage (CFU-GM), burst-forming unit-erythroid (BFU-E), and colony-forming and burst-forming units-megakaryocyte (CFU- MK and BFU-MK) compared with animals given the same dose of rhG-CSF without rhSCF, regardless of the rhG-CSF dose. The increased circulation of progenitor cells stimulated by the combination of rhSCF plus rhG-CSF was not necessarily directly related to the increase in WBCs, as this effect on peripheral blood progenitors was observed even at an rhG-CSF dose of 250 micrograms/kg, where coadministration of LD rhSCF did not further increase WBC counts. Administration of very-low- dose rhSCF (2.5 micrograms/kg) with rhG-CSF, 10 micrograms/kg, did not stimulate increases in circulating WBCs, but did increase the number of megakaryocyte progenitor cells in blood compared with rhG-CSF alone. LD rhSCF administered alone for 7 days before rhG-CSF did not result in increased levels of circulating WBCs or progenitors compared with rhG- CSF alone. Thus, the synergistic effects of rhSCF with rhG-CSF were both dose- and time-dependent. The doses of rhSCF used in these studies have been tolerated in vivo in humans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Cyclic hematopoiesis in gray collie dogs is a stem cell disease in which abnormal regulation of cell production in the bone marrow causes cyclic fluctuations of blood cell counts. In vitro studies demonstrated that recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and granulocyte colony stimulating factor (G-CSF) all stimulated increases in colony formation by canine bone marrow progenitor cells. Based on these results, gray collie dogs were then treated with recombinant human (rh) GM-CSF, IL-3, or G-CSF subcutaneously to test the hypothesis that pharmacologic doses of one of these hematopoietic growth factors could alter cyclic production of cells. When recombinant canine G-CSF became available, it was tested over a range of doses. In vivo rhIL-3 had no effect on the recurrent neutropenia but was associated with eosinophilia, rhGM-CSF caused neutrophilia and eosinophilia but cycling of hematopoiesis persisted. However, rhG-CSF caused neutrophilia, prevented the recurrent neutropenia and, in the two animals not developing antibodies to rhG-CSF, obliterated periodic fluctuation of monocyte, eosinophil, reticulocyte, and platelet counts. Recombinant canine G-CSF increased the nadir neutrophil counts and amplitude of fluctuations at low doses (1 micrograms/kg/d) and eliminated all cycling of cell counts at high doses (5 and 10 micrograms/kg/d). These data suggest significant differences in the actions of these growth factors and imply a critical role for G-CSF in the homeostatic regulation of hematopoiesis.  相似文献   

18.
Keller  DC; Du  XX; Srour  EF; Hoffman  R; Williams  DA 《Blood》1993,82(5):1428-1435
Interleukin-11 (IL-11) is a bone marrow (BM) stromal-derived growth factor that has been shown to stimulate murine myeloid and lymphoid cells both in vitro and in vivo and to inhibit adipogenesis in a murine fibroblast cell line. We have studied the effects of IL-11 on highly purified human BM stem and progenitor cells and on human long-term marrow cultures (LTMC). Adipocyte differentiation is an integral component of murine and human LTMC. IL-11 stimulates myeloid growth as a single cytokine when added to highly enriched CD34+, HLA-DR+ bone marrow cells. IL-11 stimulated no growth in the more primitive CD34+, HLA-DR- population even in the presence of additional cytokines. IL-11 addition to human LTMC resulted in the expansion of myeloid and mixed, but not erythroid, progenitor populations. IL-11 dramatically increased the adherent cell populations, including both stromal cells and macrophages. Treated cultures also showed marked inhibition of fat accumulation in the adherent cells due in part to a block in the differentiation of preadipocytes to adipocytes, as shown by RNA analysis using adipocyte-specific markers. These data show that IL-11 stimulates a more differentiated, although multipotential, progenitor cell in human BM and that LTMC provide a useful model for studying the effects of this cytokine in the context of the hematopoietic microenvironment.  相似文献   

19.
J P Catlett  J A Leftwich  E H Westin  S Grant  T F Huff 《Blood》1991,78(12):3186-3191
The c-kit proto-oncogene encodes a receptor having tyrosine-specific kinase activity and has been mapped to chromosome 4 in the human and chromosome 5 in the mouse, at the dominant white spotting locus (W). Mutations at the W locus affect various aspects of murine hematopoiesis. The c-kit proto-oncogene has been shown to be expressed by leukemic myeloblasts, but not by normal unseparated human bone marrow cells. The role of this oncogene in differentiation and proliferation of human hematopoietic progenitors is presently undefined. To determine c-kit expression by normal hematopoietic progenitors, CD34+ cells were isolated from disease-free human bone marrow, and RNA-based polymerase chain reaction (PCR) techniques were used to assess expression. By this method, we have demonstrated c-kit expression by CD34+ bone marrow progenitors. To address the functional requirement for c-kit expression in normal human hematopoiesis, CD34+ cells were incubated in the presence of sense, antisense, or missense oligonucleotides to c-kit, and subsequently cultured in the presence of either recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) or recombinant human interleukin-3 (rhIL-3). Exposure of CD34+ cells to c-kit antisense oligonucleotides significantly inhibited colony-forming ability of cells cultured in the presence of rhIL-3, but had no effect on colony formation of cells cultured in rhGM-CSF. Together, these data suggest a possible role for c-kit in hematopoietic proliferation and differentiation that may be linked to some, but not all, stimulatory factors.  相似文献   

20.
5 patients with refractory aplastic anemia (AA) received long-term administration (2-11 + months) of recombinant human G-CSF (rhG-CSF) in doses from 250-500 micrograms/body/day by intravenous infusion or 75-300 micrograms/body/d by subcutaneous injection. All 5 evaluable patients showed a substantial increase in absolute neutrophil count (ANC) with a recovery of myeloid components in the bone marrow after 1 to 2 months of treatment. Interestingly, 2 out of the 5 patients showed a dramatic improvement in severe anemia after 2 to 4 months of treatment accompanying a recovery of erythroid components in the bone marrow. In addition, there was no serious infection before or during therapy. Long-term administration of rhG-CSF was well tolerated because of its minimal toxicity. Clonal assay revealed a recovery of myeloid progenitors in all patients and a recovery of erythroid progenitors in 3 out of the 5 patients. These results suggest that long-term administration of rhG-CSF at least mobilizes residual myeloid as well as erythroid progenitor cells and induces a bilineage response in severe refractory AA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号