首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we reported that when cells from the human transitional cell carcinoma cell line 253J B-V growing orthotopically within the bladder of athymic nude mice were treated with the anti-epidermal growth factor receptor monoclonal antibody C225, angiogenesis was inhibited, resulting in regression of the primary tumor and inhibition of metastasis. In this study, we evaluated whether paclitaxel enhanced this therapeutic effect of C225. In vitro, the proliferation of 253J B-V cells was inhibited more by the combination of C225 and paclitaxel than with either agent alone. In vivo therapy with C225 and paclitaxel resulted in significantly greater regression of tumors compared with either agent alone. Median bladder tumor weight was 85 mg (range, 69-133 mg) compared with 168 mg (range, 72-288 mg) after C225 alone (P < 0.05), and 273 mg (range, 83-563 mg) after paclitaxel alone (P < 0.005). The incidence of spontaneous lymph node metastasis was also reduced by the combination of C225 with paclitaxel, although this result did not significantly differ from results after the use of C225 alone. Treatment with paclitaxel and C225 down-regulated the expression of basic fibroblast growth factor, vascular endothelial cell growth factor, interleukin-8, and matrix metalloproteinase type 9 and inhibited tumor-induced neovascularity compared with untreated controls (P < 0.005). Moreover, the combination of C225 and paclitaxel enhanced apoptosis in tumor and endothelial cells compared with either agent alone (P < 0.005). These studies indicate that therapy with paclitaxel increases the ability of C225 to inhibit tumorigenicity and metastasis. This effect is mediated by inhibition of angiogenesis and induction of apoptosis.  相似文献   

2.
PURPOSE: Vascular endothelial growth factor (VEGF), which is produced by tumor cells, is a potent endothelial cell mitogen. The aim of the present study was to evaluate the response of orthotopic prostate cancer xenografts and prostate cancer bone metastasis to anti-VEGF receptor (flk-1) antibody (DC101) treatment. EXPERIMENTAL DESIGN: Orthotopic prostate cancer models (PC-3M-MM2 and LNCaP-LN3 prostate carcinoma cells) and a prostate cancer bone metastasis model (PC-3M-MM2) were used for these experiments. Early and established tumors were treated with saline, paclitaxel, DC101, or a DC101-plus-paclitaxel combination for 5 weeks (PC-3M-MM2) and 12 weeks (LNCaP-LN3). At the end of therapy, tumors were removed and weighed. Apoptosis, tumor cell proliferation, and angiogenesis- and metastasis-related gene expression were evaluated using immunohistochemistry, in situ hybridization, and terminal deoxynucleotidyl transferase-ediated nick end labeling (TUNEL). RESULTS: After treatment of early tumors (PC-3M-MM2), median prostate tumor weights (+/-SE) were 1230 +/- 210 mg in untreated controls, 482 +/- 121 mg in mice treated with paclitaxel (P = 0.009), 148 +/- 27 mg in mice treated with DC101 (P < 0.001), and 48 +/- 10 mg in mice treated with the combination of DC101 and paclitaxel (P < 0.001). Lymph node metastasis occurred in 7 of the 9 control mice, 5 of the 9 paclitaxel-treated animals, 5 of the 12 DC101-treated animals, and 2 of the 11 animals in the combination therapy group. Treatment with DC101 alone or in combination with paclitaxel reduced tumor-induced neovascularity measured by microvessel density and tumor cell proliferation (by proliferating cell nuclear antigen) and enhanced apoptosis (measured by TUNEL) in tumor cells and endothelial cells compared with controls. In the tibial prostate cancer metastasis model, significant inhibition of tumor growth was observed. In the LNCaP-LN3 orthotopic prostate cancer model, tumors occurred in 7 of the 10 control mice, 4 of the 10 paclitaxel-treated animals, 5 of the 10 DC101-treated animals, and 2 of the 11 animals in the combination therapy group (P < 0.05). The efficacy of DC101 was much greater in the treatment of early tumors, which suggests that tumor burden may be a critical factor in determining the response to DC101. In vitro and in vivo analysis of endothelial cell function showed reduced matrix metalloproteinase type 9 production in endothelial cells treated with DC101. CONCLUSIONS: This study confirms the principle of tumor growth inhibition by targeting angiogenesis within tumors and supports the use of anti-VEGF receptor agents.  相似文献   

3.
BACKGROUND: Recent studies have suggested that vascular endothelial growth factor (VEGF), in addition to its proangiogenic properties, also functions as a survival factor for endothelial cells. The authors hypothesized that inhibition of VEGF activity by blockade of VEGF receptor-2 (R-2) function prevents angiogenesis and decreases tumor growth in colon carcinoma liver metastases. METHODS: Spleens of mice were injected with human colon carcinoma cells producing liver metastases. After 7 days of tumor growth, groups of mice received either antibody to VEGFR-2 (DC101) or phosphate-buffered saline (control). In a follow-up experiment, a similar treatment regimen was followed except that mice were sacrificed at 1-week intervals to assess the time course of endothelial cell and tumor cell apoptosis. RESULTS: After 21 days of therapy, the authors observed a significant decrease in vessel counts in liver metastases from human colon carcinoma in nude mice after therapy with VEGFR-2 antibody. Tumor cell apoptosis was increased significantly in the tumors of mice receiving DC101. Temporal studies with immunofluorescent double staining for the microvasculature and apoptotic cells revealed an increase in endothelial cell apoptosis that preceded an increase in tumor cell apoptosis. In vitro, treatment of human umbilical vein endothelial cells with antibody to VEGFR-2 produced a > 2.5-fold increase in endothelial cell apoptosis. CONCLUSIONS: Therapy targeting the VEGFR-2 inhibited tumor growth in a murine model of colon carcinoma liver metastasis. Surprisingly, this therapy did not only inhibit angiogenesis but also led to endothelial cell death. These findings suggest that VEGF, via VEGFR-2 signaling, functions as a survival factor for tumor endothelial cells in liver metastases from colon carcinoma.  相似文献   

4.
PURPOSE: Inhibition of angiogenesis can influence tumor cell invasion and metastasis. We previously showed that blockade of vascular endothelial growth factor receptor-2 (VEGFR-2) with the monoclonal antibody DC101 inhibited intracerebral glioblastoma growth but caused increased tumor cell invasion along the preexistent vasculature. In the present study, we attempted to inhibit glioma cell invasion using a monoclonal antibody against the epidermal growth factor receptor (EGFR), which in the context of human glioblastomas, has been implicated in tumor cell invasion. In addition, we analyzed whether blockade of vascular endothelial (VE)-cadherin as a different antiangiogenic target could also inhibit glioblastoma angiogenesis and growth. EXPERIMENTAL DESIGNS: Nude mice who received intracerebral glioblastoma xenografts were treated using monoclonal antibodies against VEGFR-2 (DC101), EGFR (C225), and VE-cadherin (E4G10) either alone or in different combinations. RESULTS: Increased tumor cell invasion provoked by DC101 monotherapy was inhibited by 50% to 66% by combined treatment with C225 and DC101. C225 inhibited glioblastoma cell migration in vitro, but had no effect on the volume of the main tumor mass or on tumor cell proliferation or apoptosis in vivo, either alone or in combination with DC101. The anti-VE-cadherin monoclonal antibody E4G10 was a weaker inhibitor of tumor angiogenesis and growth than DC101, and also caused a weaker increase in tumor cell invasion. CONCLUSIONS: Inhibition of angiogenesis achieved by blocking either VEGFR-2 or VE-cadherin can cause increased glioma cell invasion in an orthotopic model. Increased tumor cell invasion induced by potent inhibition of angiogenesis with DC101 could be inhibited by simultaneous blockade of EGFR.  相似文献   

5.
Epidermal growth factor receptor (EGFR) regulates the growth and progression of human transitional cell carcinoma (TCC) of the bladder. We have shown that therapy targeting EGFR inhibited the growth of human TCC established orthotopically in nude mice. The purpose of this study was to evaluate whether EGFR-directed therapy affects angiogenesis associated with the growth and metastasis of human TCC. We determined the cytostatic effect and the effect on production of angiogenic factors after in vitro treatment of the human TCC cell line 253J B-V with MAb C225, a chimerized monoclonal anti-EGFR antibody. The 253J B-V cells were implanted orthotopically into athymic nude mice, and established tumors (4 weeks) were treated with i.p. MAb C225. Expression of the angiogenic factors vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and basic fibroblast growth factor (bFGF) was evaluated by immunohistochemistry and in situ mRNA hybridization analyses and correlated with microvessel density evaluated after immunohistochemical staining with anti-CD31. In vitro treatment with MAb C225 inhibited mRNA and protein production of VEGF, IL-8, and bFGF by 253J B-V cells in a dose-dependent manner. MAb C225 therapy of nude mice with established TCCs growing orthotopically resulted in inhibition of growth and metastasis compared with controls (P <0.0005). VEGF, IL-8, and bFGF expression was significantly lower in treated tumors than in controls. The down-regulation of these angiogenic factors preceded the involution of blood vessels. These studies indicate that therapy with anti-EGFR MAb C225 has a significant antitumor effect mediated, in part, by inhibition of angiogenesis.  相似文献   

6.
PURPOSE: The angiogenic inhibitor TNP-470 (AGM-1470, O-chloracetyl-carbamoyl fumagillol) has been reported to inhibit the growth of human transitional cell carcinoma (TCC) in the urinary bladder. However, it is still unknown whether TNP-470 inhibits metastasis of TCC. Here, we identify an efficient protocol using TNP-470, and optimize its antitumor and antimetastatic effects on human TCC in the urinary bladder. EXPERIMENTAL DESIGN: In vitro, the human metastatic TCC cell line 253J B-V and human umbilical vascular endothelial cells were treated with TNP-470, and examined for cell growth and protein production of angiogenic factors. To study in vivo effects of TNP-470, 253J B-V cells were implanted orthotopically into athymic nude mice. TNP-470 was administered in several dosing and scheduling regimens, and its effects on tumor growth, metastasis, intratumor neovascularization, and mRNA expression of angiogenic factors were determined in both nonestablished and established tumors. RESULTS: In vitro treatment with TNP-470 inhibited cell growth and production of basic fibroblast growth factor protein in 253J B-V and human umbilical vascular endothelial cells in a dose-dependent manner. In vivo daily administration of TNP-470 significantly inhibited tumor growth (P < 0.001), metastasis (P < 0.05), intratumor neovascularization (P < 0.005), and mRNA expression of basic fibroblast growth factor and MMP-9 (P < 0.005), in both nonestablished and established tumors. Increasing the daily dose did not increase the effect on tumor growth, metastasis, and angiogenesis; however, the drug-induced toxicity did increase in a dose-dependent manner. CONCLUSIONS: Frequent administration of TNP-470 at an optimal biological dose provided maximal antitumor and antimetastatic effects of human TCC of the urinary bladder. It may function by down-regulating angiogenic factors.  相似文献   

7.
8.
PURPOSE: Both nitric oxide (NO) and vascular endothelial growth factor (VEGF) mediate tumor vascular function. Because these molecules regulate one another's expression, we hypothesized that NO synthase (NOS) inhibition produces effects comparable to those of anti-VEGF therapy on human pancreatic cancer xenografts. EXPERIMENTAL DESIGN: L3.6pl human pancreatic cancer cells were s.c. implanted in nude mice. On day 6, mice were randomized to receive (a) PBS (control), (b) DC101 [VEGF receptor 2 (VEGFR-2) antibody] by i.p. injection, (c) N-nitro-l-arginine (NNLA; NOS inhibitor) in the drinking water, or (d) both DC101 and NNLA. Mice were killed on day 20. RESULTS: DC101 and NNLA as single agents inhibited tumor growth by approximately 50% to 60% (P < 0.008 for both). Furthermore, combined therapy inhibited mean tumor growth by 89% (P < 0.008). Combined inhibition of VEGFR-2 and NOS also decreased mean vessel counts by 65% (P < 0.03) and vessel area by 80% versus controls (P < 0.001). In contrast to DC101 where vessel diameter was similar to control, NNLA decreased mean vessel diameter by 42% (P < 0.001). NNLA also led to a 54% (P < 0.03) decrease in tumor uptake of the perfusion marker Hoechst 33342 versus controls whereas DC101 decreased Hoechst 33342 staining by 43% (P < 0.03). The combination of inhibitors decreased perfusion by 73% (P < 0.03). CONCLUSIONS: Although VEGFR-2 can mediate NOS activity, the combination of VEGFR-2 and NOS inhibition significantly increased the antivascular effect over single agent therapy. The addition of NOS inhibition led to an even further alteration of tumor vessel morphology and vascular perfusion compared with VEGFR-2 blockade, suggesting that NO and VEGFR-2 have distinct but complementary effects on the tumor vasculature.  相似文献   

9.
In human androgen-independent prostate cancer (PCa), epidermal growth factor receptor (EGFR) regulates angiogenesis, tumor growth, and progression. In this study, we evaluated whether the blockade of EGFR by the anti-EGFR antibody ImClone C225 (IMC-C225) inhibited tumor growth and metastasis by inhibiting angiogenesis, and whether paclitaxel enhanced the results of therapy in androgen-independent PCa. PC-3M-LN4 PCa cells were implanted orthotopically in athymic nude mice and treated with i.p. IMC-C225 (1 mg twice a week) and/or paclitaxel (200 microg once a week). In vitro treatment of PC-3M-LN4 with IMC-C225 inhibited EGFR autophosphorylation without any significant antiproliferative effect. In contrast, in vivo therapy with IMC-C225 alone (P < 0.05) or in combination with paclitaxel (P < 0.005) significantly inhibited PCa growth and metastasis. Serum levels of interleukin (IL) 8 were lower after therapy, and IL-8 mRNA expression was down-regulated within the tumors after therapy. The down-regulation of IL-8 correlated with reduced microvessel density. IMC-C225 reduced tumor cell proliferation, enhanced p27(kip1) expression, and induced tumor and endothelial cell apoptosis. These studies indicate that IMC-C225 has significant antitumor effect in this murine model, mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. The simultaneous administration of paclitaxel enhanced this effect.  相似文献   

10.
Vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) regulate colon cancer growth and metastasis. Previous studies utilizing antibodies against the VEGF receptor (DC101) or EGF receptor (C225) have demonstrated independently that these agents can inhibit tumour growth and induce apoptosis in colon cancer in in vivo and in vitro systems. We hypothesized that simultaneous blockade of the VEGF and EGF receptors would enhance the therapy of colon cancer in a mouse model of peritoneal carcinomatosis. Nude mice were given intraperitoneal injection of KM12L4 human colon cancer cells to generate peritoneal metastases. Mice were then randomized into one of four treatment groups: control, anti-VEGFR (DC101), anti-EGFR (C225), or DC101 and C225. Relative to the control group, treatment with DC101 or with DC101+C225 decreased tumour vascularity, growth, proliferation, formation of ascites and increased apoptosis of both tumour cells and endothelial cells. Although C225 therapy did not change any of the above parameters, C225 combined with DC101 led to a significant decrease in tumour vascularity and increases in tumour cell and endothelial cell apoptosis (vs the DC101 group). These findings suggest that DC101 inhibits angiogenesis, endothelial cell survival, and VEGF-mediated ascites formation in a murine model of colon cancer carcinomatosis. The addition of C225 to DC101 appears to lead to a further decrease in angiogenesis and ascites formation. Combination anti-VEGF and anti-EGFR therapy may represent a novel therapeutic strategy for the management of colon peritoneal carcinomatosis.  相似文献   

11.
We demonstrated recently that chronic frequent administration of an adequate biological dose of the angiogenesis inhibitor TNP-470 (AGM-1470, O-chloracetyl-carbamoyl fumagillol) completely inhibits spontaneous lymph node metastasis but does not have a complete response on tumor growth of nonestablished or established human metastatic transitional cell carcinoma (TCC) 253J B-V growing orthotopically into athymic nude mice. Therefore, in this study, we evaluated whether docetaxel (Taxotere) enhances the therapeutic effect of TNP-470, especially on tumor growth. Docetaxel enhanced in vitro antiproliferation but not basic fibroblast growth factor down-regulation by TNP-470 in 253J B-V and human umbilical vascular endothelial cells. Docetaxel significantly enhanced in vitro apoptosis by TNP-470 in human umbilical vascular endothelial cells but not in 253J B-V. In vivo combination was most effective when docetaxel was administered before TNP-470, and increased significantly the complete response on tumor growth of nonestablished and established TCCs growing orthotopically into athymic nude mice compared with either therapy alone (P < 0.05). The incidence of spontaneous lymph node metastasis was inhibited completely by the combination therapy (P < 0.05). Drug-induced body weight loss was not significantly different in any treatment groups. The combination of TNP-470 and docetaxel inhibited intratumor neovascularization, the expression of bFGF and matrix metalloproteinases type-9 compared with controls (P < 0.005), and enhanced apoptosis in tumors compared with each therapy alone (P < 0.005). These studies indicate that docetaxel markedly enhances the ability of TNP-470 to inhibit tumorigenicity and metastasis in both nonestablished and established TCCs. These effects are mediated, in part, by the complementary cytotoxicities of angiogenesis inhibition, down-regulation of bFGF and matrix metalloproteinases type-9, and induction of apoptosis.  相似文献   

12.
Inhibition of vascular endothelial growth factor (VEGF) signaling, a key regulator of tumor angiogenesis, through blockade of VEGF receptor (VEGFR)-2 by the monoclonal antibody DC101 inhibits angiogenesis, tumor growth, and invasion. In a surface xenotransplant assay on nude mice using a high-grade malignant squamous cell carcinoma cell line (A-5RT3), we show that DC101 causes vessel regression and normalization as well as stromal maturation resulting in a reversion to a noninvasive tumor phenotype. Vessel regression is followed by down-regulation of expression of both VEGFR-2 and VEGFR-1 on endothelial cells and increased association of alpha-smooth muscle actin-positive cells with small vessels indicating their normalization, which was further supported by a regular ultrastructure. The phenotypic regression of an invasive carcinoma to a well-demarcated dysplastic squamous epithelium is accentuated by the establishment of a clearly structured epithelial basement membrane and the accumulation of collagen bundles in the stabilized connective tissue. This normalization of the tumor-stroma border coincided with down-regulated expression of the stromal matrix metalloproteinases 9 and 13, which supposedly resulted in attenuated turnover of extracellular matrix components permitting their structural organization. Thus, in this mouse model of a human squamous cell carcinoma cell line, blockade of VEGF signaling resulted in the reversion of the epithelial tumor phenotype through stromal normalization, further substantiating the crucial role of stromal microenvironment in regulating the tumor phenotype.  相似文献   

13.
PURPOSE: We previously showed that bone marrow cells participate in new tumor vessel formation in Ewing's sarcoma, and that vascular endothelial growth factor 165 (VEGF(165)) is critical to this process. The purpose of this study was to determine whether blocking VEGF receptor 2 (VEGFR-2) with DC101 antibody suppresses tumor growth, reduces tumor vessel formation, and inhibits the migration of bone marrow cells into the tumor. EXPERIMENTAL DESIGN: An H-2 MHC-mismatched bone marrow transplant Ewing's sarcoma mouse model was used. Bone marrow cells from CB6F1 (MHC H-2(b/d)) mice were injected into irradiated BALB/cAnN mice (MHC H-2(d)). TC71 Ewing's sarcoma cells were s.c. injected 4 weeks after the bone marrow transplantation. Mice were then treated i.p. with DC101 antibody or immunoglobulin G (control) twice a week for 3 weeks starting 3 days after tumor cell injection. RESULTS: DC101 antibody therapy significantly reduced tumor growth and tumor mean vessel density (P < 0.05) and increased tumor cell apoptosis. Decreased bone marrow cell migration into the tumor was also shown after DC101 therapy as assessed by the colocalization of H-2K(b) and CD31 using immunohistochemistry. DC101 inhibited the migration of both human and mouse vessel endothelial cells in vitro. CONCLUSION: These results indicated that blocking VEGFR-2 with DC101 antibodies may be a useful therapeutic approach for treating patients with Ewing's sarcoma.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is the major pro-angiogenic factor for most tumors. VEGF expression has been shown to be associated with a poor prognosis in human pancreatic cancer. The purpose of our study was to determine the effect of blockade of VEGF receptor-2 activity with or without gemcitabine on tumor growth and metastasis in an orthotopic model of human pancreatic cancer in nude mice. Therapy with gemcitabine or DC101, a VEGF receptor-2 antibody, resulted in a significant reduction of primary pancreatic tumor growth compared to untreated controls. The combination of DC101 and gemcitabine inhibited primary pancreatic tumor growth and lymphatic metastasis to a greater degree than either agent alone. Treatment with DC101 decreased vessel counts and increased the area of hypoxic tumor tissue compared to controls. Immunofluorescent double staining for apoptotic endothelial cells demonstrated a significant increase in the number apoptotic endothelial cells 24 days after initiation of therapy with DC101 plus gemcitabine. DC101 plus gemcitabine also increased tumor cell death and decreased tumor cell proliferation in pancreatic tumors. These findings indicate that blockade of VEGF receptor activation interferes with the survival of tumor endothelial cells, resulting in a reduction of primary pancreatic tumor growth in nude mice. Furthermore, the data demonstrate that anti-VEGF receptor-2 therapy potentiates the tumoricidal effect of gemcitabine in this model. Anti-VEGF receptor-2 therapy in combination with gemcitabine may be a novel therapeutic approach for advanced pancreatic cancer.  相似文献   

15.
 目前CT在诊断髓母细胞瘤方面虽有经验,但也经常遇到一些非典型CT表现的特殊病例误诊为其他颅内肿瘤。为进一步提高髓母细胞瘤的CT诊断水平,对经CT检查,并经手术病理证实的50例髓母细胞瘤总结如下。  相似文献   

16.
We hypothesised that the combination of anti-angiogenic and anti-epidermal growth factor (EFG)-receptor (R) therapies would more effectively inhibit gastric cancer growth than single-agent therapy. TMK-1 gastric cancer cells were injected into the gastric wall of nude mice to generate tumours. After 4 days, mice were randomly assigned to the following groups: control, DC101 ([vascular endothelial growth factor (VEGF)-receptor (R)-2 antibody], C225 (EGF-R antibody), or a combination of DC101 and C225. The combination therapy significantly inhibited gastric tumour growth compared with the control group, whereas the decrease in tumour growth in mice treated with DC101 or C225 alone did not reach statistical significance. All mice administered DC101 demonstrated decreased tumour vascularity and increased endothelial cell apoptosis. C225 alone did not affect angiogenesis, but inhibited tumour cell proliferation. The combination therapy led to a further decrease in tumour cell proliferation. The combination of anti-VEGF-R and anti-EGF-R therapies was effective in inhibiting gastric cancer growth. These findings support the hypothesis that inhibiting multiple biological pathways that mediate tumour growth may be an effective therapeutic strategy.  相似文献   

17.
PURPOSE: Human tumors are dependent on angiogenesis for growth, and vascular endothelial growth factor (VEGF) is a major regulator of this process. We aimed to study clinical utility of a recombinant humanized monoclonal anti-VEGF antibody (rhu alpha VEGF) in the treatment of the CWR22R androgen-independent xenograft model of prostate cancer. Experimental Design: rhu alpha VEGF has previously shown clinical activity in several xenograft cancer models. We administered 5 mg/kg rhu alpha VEGF i.p. twice weekly as a single agent and together with paclitaxel to established CWR22R xenografts. RESULTS: rhu alphaVEGF inhibited established tumor growth by 85% (P < 0.01 for trajectories of the average tumor volumes of the groups) at 3 weeks, but after cessation of rhu alpha VEGF treatment, tumor regrowth ensued. A paclitaxel dosage of 6.25 mg/kg s.c. five times/week slowed tumor growth (72% compared with controls at 3 weeks, P = 0.02). The combination of paclitaxel and rhu alpha VEGF resulted in greater inhibition of tumor growth than that observed with either agent alone (98% growth inhibition, P = 0.024 versus rhualpha VEGF alone and P = 0.02 versus paclitaxel alone). Paclitaxel alone had no antiangiogenic effects at the dosage studied, whereas rhu alpha VEGF had significant inhibition of angiogenesis, noted by microvessel density and CD34 staining. CONCLUSIONS: rhu alpha VEGF has cytostatic clinical activity in this androgen-independent prostate cancer xenograft model, and the addition of paclitaxel demonstrates increased clinical activity.  相似文献   

18.
Using an orthotopic intracerebral model, we investigated whether systemic treatment with DC101, a monoclonal antibody against vascular endothelial growth factor receptor (VEGFR)-2, could inhibit angiogenesis and the growth of human glioblastoma cells in severe combined immunodeficient mice. Intraperitoneal treatment with DC101, control IgG, or PBS was initiated either on day 0 or, in another series, on day 6 after tumor cell implantation, and animals were killed approximately 2 weeks after tumor cell injection. Tumor volumes in animals treated with DC101 were reduced by 59 and 81% compared with IgG and PBS controls, respectively (P < 0.001), when treatment was initiated immediately, and similar results were obtained when treatment started on day 6. Microvessel density in tumors of DC101-treated animals was reduced by at least 40% compared with animals treated with control IgG or PBS (P < 0.01). We observed a reduction in tumor cell proliferation and an increase in apoptosis in DC101-treated animals (P < 0.001). However, in mice treated with DC101, we also noticed a striking increase in the number and total area of small satellite tumors clustered around, but distinct from, the primary. These satellites usually contained central vessel cores, and tumor cells often had migrated over long distances along the host vasculature to eventually reach the surface and spread leptomeningeally. We conclude that systemic antagonization of VEGFR-2 can inhibit glioblastoma neovascularization and growth but can lead to increased cooption of preexistent cerebral blood vessels. Therefore, a combination of different treatment modalities which also include anti-invasive therapy may be needed for an effective therapy against glioblastoma, and the use of an antibody against VEGFR-2 may be one effective component.  相似文献   

19.
Vascular endothelial growth factor (VEGF) is the predominant regulator of colon cancer angiogenesis and is associated with a poor prognosis and the development of metastases. We hypothesized that DC101, an antibody against the VEGF receptor-2 (flk-1), may be efficacious in the therapy of colon cancer peritoneal carcinomatosis in a murine model. BALB/c mice underwent intraperitoneal injection of CT-26 colon cancer cells to generate peritoneal metastases. Mice received control solvent or DC101 for up to 60 days. In parallel studies, mice were sacrificed at sequential time points to determine the effect of DC101 on tumor angiogenesis, tumor cell proliferation and apoptosis, and endothelial cell apoptosis. Mice treated with DC101 demonstrated a 30% increase in mean survival. In addition, DC101 also led to a significant decrease in tumor vascularity, growth and tumor cell proliferation. In sequential studies, anti-VEGF-R therapy led to a progressive increase in endothelial cell apoptosis followed by an increase in tumor cell apoptosis. These findings suggest that anti-flk-1 therapy may prolong survival in patients with colon cancer carcinomatosis. The temporal studies demonstrating that anti-flk-1 therapy lead to an increase in endothelial cell apoptosis that in turn lead to an increase in tumor cell apoptosis confirms the role of VEGF as an endothelial cell survival factor.  相似文献   

20.
Vascular endothelial growth factor (VEGF) and its cellular receptor VEGFR-2 have been implicated as the main endothelial pathway required for tumor neovascularization. However, the importance of the VEGF/VEGFR-2 system for angiogenesis in hematologic malignancies such as AML remains to be elucidated. In 32 patients with newly diagnosed untreated AML, we observed by immunohistochemical analysis of bone marrow biopsies significantly higher levels of VEGF and VEGFR-2 expression than in 10 control patients (P <0.001). In contrast, VEGFR-1 staining levels in AML patients were in the same range as in the controls. Expression of VEGF and VEGFR-2 was significantly higher in patients with a high degree of microvessel density compared to those with a low degree (VEGF: P =0.024; VEGFR-2: P =0.040) and correlated well with bone marrow microvessel density (r(s)=0.566 and 0.609, respectively; P <0.001). Furthermore, in patients who achieved a complete remission following induction chemotherapy VEGFR-2 staining levels decreased into the normal range. In conclusion, our results provide evidence for increased expression of VEGF/VEGFR-2 of leukemic blasts and correlation with angiogenesis in the bone marrow of AML patients. Thus, VEGF/VEGFR-2 might constitute promising targets for antiangiogenic and antileukemic treatment strategies in AML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号