首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new steroidal saponins, pallidiflosides A (1), B (2), and C (3), have been isolated from the dry bulbs of Fritillaria pallidiflora Schrenk. Their structures were elucidated as 26-O-β-d-glucopyranosyl-(25R)-furost-5,20(22)-dien-3β,26-diol-3-O-β-d-xylopyranosyl(1 → 4)-[α-l-rhamnopyranosyl(1 → 2)]-β-d-glucopyranoside (1); 26-O-β-d-glucopyranosyl-3β,26-dihydroxyl-20,22-seco-25(R)-furost-5-en-20,22-dione-3-O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside (2); and (25R)-spirost-5-ene-3β,17α-diol-3-O-β-d-glucopyranosyl(1 → 4)-β-d-galactopyranoside (3) by spectroscopic techniques and chemical means.  相似文献   

2.
Four new furostanol glycosides were isolated from the flowers of Hosta plantaginea (Lam.) Aschers. On the basis of spectroscopic methods including 1D and 2D NMR experiments, their structures were elucidated as 26-O-β-d-glucopyranosyl-(25R)-22-O-methyl-5α-furostan-2α,3β,22ξ,26-tetrol 3-O-α-l-rhamnopyranosyl-(1 → 4)-O-β-d-xylopyranosyl-(1 → 3)-[O-β-d-glucopyranosyl-(1 → 2)]-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (hostaplantagineoside A, 1), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-20(22)-ene-2α,3β,26-triol-3-O-β-d-glucopyranosyl-(1 → 2)-[O-β-d-xylopyranosyl-(1 → 3)]-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (hostaplantagineoside B, 2), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-22(23)-ene-2α,3β,20α,26-tetraol-3-O-β-d-glucopyranosyl-(1 → 2)-[O-β-d-xylopyranosyl-(1 → 3)]-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-galactopyranoside (hostaplantagineoside C, 3), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-20(22)-ene-2α,3β,26-triol-3-O-α-l-rhamnopyranosyl-(1 → 4)-O-β-d-xylopyranosyl-(1 → 3)-[O-β-d-glucopyranosyl-(1 → 2)]-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (hostaplantagineoside D, 4).  相似文献   

3.
Four new triterpenoid saponins (14) were isolated from the seed residue of Hippophae rhamnoides subsp. sinensis, named 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-13-ene-19-one-28-oic acid 28-O-β-d-glucopyranosyl ester (1), 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-d-glucopyranosyl ester (2), 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranosyl-13-ene-19-one-28-oic acid 28-O-β-d-glucopyranosyl ester (3), and 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-d-glucopyranosyl ester (4), and their structures were elucidated on the basis of spectroscopic and chemical methods.  相似文献   

4.
Three new oleanane-type triterpenoid saponins named celosins H (1), I (2), and J (3) were isolated from the seeds of Celosia argentea L. Their structures were characterized as 3-O-β-d-xylopyranosyl-(1 → 3)-β-d-glucuronopyranosyl-polygalagenin 28-O-β-d-glucopyranosyl ester, 3-O-β-d-glucuronopyranosyl-medicagenic acid 28-O-β-d-xylcopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-β-d-fucopyranosyl ester, and 3-O-β-d-glucuronopyranosyl-medicagenic acid 28-O-α-l-arabinopyranosyl-(1 → 3)-[β-d-xylcopyranosyl-(1 → 4)]-α-l-rhamnopyranosyl-(1 → 2)-β-d-fucopyranosyl ester by NMR, MS, and chemical evidences, respectively. In our opinion, celosins H–J could be used as chemical markers for the quality control of C. argentea seeds.  相似文献   

5.
Two new flavone glycosides were isolated from the seeds of Impatiens balsamina L. and their structures were determined as quercetin-3-O-[α-l-rhamnose-(1 → 2)-β-d-glucopyranosyl]-5-O-β-d-glucopyranoside (1), and quercetin-3-O-[(6?-O-caffeoyl)-α-l-rhamnose-(1 → 2)-β-d-glucopyranosyl]-5-O-β-d-glucopyranoside (2) on the basis of various spectral and chemical studies.  相似文献   

6.
Two new steroidal saponins, timosaponin X (1) and timosaponin Y (2), and one new pregnane glycoside, timopregnane B (3), were isolated from the rhizomes of Anemarrhena asphodeloides, as well as three known compounds 25S-timosaponin BII (4), protodesgalactotigonin (5), and timosaponin BII-a (6) isolated from this plant for the first time. By the detailed analysis of 1D, 2D NMR, MS spectra, and chemical evidences, the structures of new compounds were elucidated as 26-O-β-d-glucopyranosyl-(25S)-5β-22-methoxy-furost-3β,26-diol 3-O-d-glucopyranosyl-(1 → 2)-α-l-arabinopyranoside (1), 5β-pseudo-spirost-3β,15α,23α-triol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-galactopyranoside (2), (5β,17α)-Δ16(17)-20-one-pregn-2β,3β-diol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-galactopyranoside (3).  相似文献   

7.
Two new pregnane saponins, solanigroside A (1) and solanigroside B (2), along with two known compounds (3 and 4), were isolated from 60% ethanolic extract of the dried herb of Solanum nigrum L. The structures of 1 and 2 were elucidated as 5α-pregn-16-en-3β-ol-20-one 3-O-β-d-xylopyranosyl-(1 → 3)-O-[α-l-arabinopyranosyl-(1 → 2)]-O-β-d-glucopyranosyl-(1 → 4)-O-[α-l-rhamnopyranosyl-(1 → 2)]-O-β-d-galactopyranoside (1) and 5α-pregn-16-en-3β-ol-20-one 3-O-β-d-glucopyranosyl-(1 → 2)-O-[β-d-glucopyranosyl-(1 → 3)]-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-galactopyranoside (2), respectively, on the basis of extensive spectroscopic analysis as well as comparison with reported spectroscopic data of related compounds. This paper deals with the isolation and structural characterisation of pregnane glycosides from S. nigrum L.  相似文献   

8.
Two new steroidal saponins and two known flavonoid glycosides were isolated from the fruits of Tribulus terrestris. Their structures were assigned by spectroscopic analysis and chemical reaction as 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-12-one-3β,22α,26-triol-3-O-β-d-glucopyranosyl (1 → 2)-β-d-glucopyranosyl(1 → 4)-β-d-galactopyranoside (1), 26-O-β-d-glucopyranosyl-(25S)-5α-furostan-22-methoxy-2α,3β,26-triol-3-O-β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl(1 → 4)-β-d-galactopyranoside (2), kaempferol-3-gentiobioside (3), and isorhamnetin-3-gentiobioside (4).  相似文献   

9.
Two new furostanol saponins, tribufurosides D (1) and E (2), were isolated from the fruits of Tribulus terrestris L. With the help of chemical and spectral analyses (IR, MS, 1D, and 2D NMR), the structures of the two new furostanol saponins were established as 26-O-β-d-glucopyranosyl-(25S)-5α-furost-12-one-2α,3β,22α,26-tetraol-3-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (1) and 26-O-β-d-glucopyranosyl-(25R)-5α-furost-12-one-2α,3β,22α,26-tetraol-3-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (2).  相似文献   

10.
Two new furostanol saponins were isolated from the fruits of Tribulus terrestris L. Their structures were established as 26-O-β-d-glucopyranosyl-(25S)-5α-furost-20(22)-en-3β,26-diol-3-O-α-l-rhamnopyranosyl-(1 → 2)-[β-d-glucopyranosyl-(1 → 4)]-β-d-galactopyranoside (1) and 26-O-β-d-glucopyranosyl-(25S)-5α-furost-20(22)-en-12-one-3β,26-diol-3-O-β-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (2) on the basis of spectroscopic data as well as chemical evidence.  相似文献   

11.
Three new triterpene saponins, ilekudinosides T–V (13), along with six known saponins were isolated from the 70% ethanolic extract of the leaves of Ilex kudingcha. The new saponins were characterized as 3-O-β-d-glucopyranosyl-(1 → 3)-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-3β,19α-dihydroxy-urs-12(13)-en-28,20β-lactone (1), 3-O-β-d-glucopyranosyl-(1 → 3)-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-3β,19α-dihydroxy-12-ethoxy-urs-13(18)-ene-28,20β-lactone (2), 3-O-β-d-glucopyranosyl-(1 → 3)-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-3β,19α-dihydroxy-11-oxo-urs-13(18)-ene-28,20β-lactone (3), respectively. The structures of compounds 13 were elucidated on the basis of the chemical and spectroscopic evidence, and the structures of known compounds were identified by comparison of their spectroscopic data with those reported in the literature.  相似文献   

12.
Two new triterpene saponins, 16-O-acetyl-21-O-angeloyltheasapogenol A 3-O-[β-d-galactopyranosyl(1 → 2)][β-d-xylopyranosyl(1 → 2)-α-l-arabinopyranosyl (1 → 3)]-β-d-glucopyranosiduronic acid (1) and 16,28-O-diacetyl-21-O-tigloyltheasapogenol A 3-O-[β-d-galactopyranosyl(1 → 2)][β-d-xylopyranosyl(1 → 2)-α-l-arabinopyranosyl (1 → 3)]-β-d-glucopyranosiduronic acid (2), together with four known triterpenenes, have been isolated from the dried seedling of Aronia melanocarpa, and their structures established by spectroscopic and chemical evidence.  相似文献   

13.
Phytolacacinoside A (1), a novel triterpenoid saponin, together with the seven known compounds, was isolated from 75% ethanol extract of the root of Phytolacca acinosa Roxb (Phytolaccaceae). Their structures were elucidated on the basis of analysis of spectroscopic data and physicochemical properties as 3-O-β-[(β-d-glucopyranosyl-(1 → 4)-O-β-d-xylopyranosyl)]-11β-methoxy-jaligonic acid 30-methyl ester 28-O-β-d-glucopyranoside (1), 3-O-β-[(β-d-glucopyranosyl-(1 → 4)-O-β-d-xylopyranosyl)]-jaligonic acid 30-methyl ester 28-O-β-d-glucopyranoside (2, esculentoside G), 3-O-β-[(β-d-glucopyranosyl-(1 → 4)-O-β-d-xylopyranosyl)]-jaligonic acid 30-methyl ester (3, phytolaccoside E), 3-O-β-d-xylopyranosyl-jaligonic acid 30-methyl ester (4, phytolaccoside B), hypaphorine (5), palmitic acid monoglyceride (6), β-sitosterol (7), and daucosterol (8).  相似文献   

14.
Two new anthraquinone glycosides, named 1-methyl-8-hydroxyl-9,10-anthraquinone-3-O-β-d-(6′-O-cinnamoyl)glucopyranoside (1) and rhein-8-O-β-d-[6′-O-(3″-methoxyl malonyl)]glucopyranoside (2), have been isolated from the roots of Rheum palmatum, together with seven known compounds, rhein-8-O-β-d-glucopyranoside (3), physcion-8-O-β-d-glucopyranoside (4), chrysophanol-8-O-β-d-glucopyranoside (5), aleo-emodin-8-O-β-d-glucopyranoside (6), emodin-8-O-β-d-glucopyranoside (7), aleo-emodin-ω-O-β-d-glucopyranoside (8), and emodin-1-O-β-d-glucopyranoside (9). Their structures were elucidated on the basis of chemical and spectral analysis.  相似文献   

15.
A new triterpene glycoside mutongsaponin F (1), together with five known saponins and two known lipids, was isolated from the 70% ethanol extract of the stems of Akebia trifoliata (Thunb.) Koidz. var. australis (Diels) Rehd. Their structures were elucidated on the basis of the spectroscopic analysis and physicochemical properties as 3-β-[(β-d-glucopyranosyl-(1 → 2)-O-[β-d-glucopyranosyl-(1 → 3)-O-]-α-l-arabinopyranosyl)oxy]-30-norolean-12-en-28-oic acid α-l-rhamnopyranosyl-(1 → 4)-O-β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranosyl ester (1), 3-β-[(β-d-glucopyranosyl-(1 → 2)-O-[β-d-glucopyranosyl-(1 → 3)-O-]-α-l-arabinopyranosyl)oxy]-30-norolean-12-en-28-oic acid (2), leonticin E (3), collinsonidin (4), arjunolic acid 28-O-glucopyranoside (5), asiatic acid 28-O-glucopyranoside (6), soya-cerebroside I (7), and 1-O-α-l-galactosyl-(1 → 6)-O-β-d-galactosyl-3-O-hexadecanoyl-glycerol (8), respectively.  相似文献   

16.
Three new flavone C-glycosides, paraquinins A–C, were isolated from the aerial parts of Paraquilegia microphylla (Royle) Dromm. et Hutch, a Tibetan medicine distributed in the Qinghai-Tibet plateau. On the basis of 1D and 2D NMR evidence, their structures were elucidated as acacetin-6-C-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (1), acacetin-6-C- l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (2), and acacetin-6-C-α-l-rhamnopyranosyl-(1 → 2)-(6?-O-E-feruloyl)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (3).  相似文献   

17.
Two new furostanol saponins ophiopogonins J (1) and K (2) were isolated from the fibrous roots of Ophiopogon japonicus. The structures of 1 and 2 were established as (25R)-26-O-[(β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-14-hydroxy-furost-5,20(22)-diene 3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside (1), and (25R)-26-O-[(β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-furost-5,20(22)-diene 3-O-α-l-rhamnopyranosyl-(1 → 2)[(β-d-xylopyranosyl-(1 → 4)-β-d-glucopyranoside)] (2) on the basis of spectroscopic means including HRESIMS, 1D, and 2D NMR experiments.  相似文献   

18.
A new flavonoid, 5,7,3′-trihydroxy-6-C-β-d-digitoxopyranosyl-4′-O-β-d-glucopyranosyl flavonoside (1), along with four known flavonoids 5,7,4′-trihydroxy-3′,5′-dimethoxy flavone (2), 5,3′,4′-trihydroxy-7-O-β-d-glucopyranosyl flavonoside (3), 5,4′-dihydroxy-3′,5′-dimethoxy-7-O-β-d-glucopyranosyl flavonoside (4), 5,3′,4′-trihydroxy-6-C-[β-d-glucopyranosyl-(1 → 6)]-β-d-glucopyranosyl flavonoside (5) were isolated from 95% EtOH extract of the leaves of Pleioblastus argenteastriatus. Their structures were determined on the basis of spectroscopic techniques and chemical methods.  相似文献   

19.
A new xanthone glycoside (1) has been isolated from Swertia franchetiana together with five known xanthone glycosides. Their structures were elucidated as 7-O-[β-d-xylopyranosyl-(1→2)-β-d-xylopyranosyl]-1,7,8-trihydroxy-3-methoxyxanthone (1), 7-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]-1,7,8-trihydroxy-3-methoxyxanthone (2), 8-O-β-d-glucopyranosyl-1,3,5,8-tetrahydroxyxanthone (3), 1-O-β-d-glucopyranosyl-1-hydroxy-3,7,8-trimethoxyxanthone (4), 1-O-[β-d-xylopyranosyl-(1→6)-β-d-glucopyranosyl]-1-hydroxy-2,3,5-trimethoxyxanthone (5) and 1-O-[β-d-xylopyranosyl-(1→6)-β-d-glucopyranosyl]-1-hydroxy-3,5-dimethoxyxanthone (6) on the basis of spectroscopic evidence.  相似文献   

20.
A new sesquiterpenoid glycoside, cryptomeridiol 11-O-β-d-xylopyranosyl-(1→6)-β-d- glucopyranoside (1), two new phenylpropanoid glycosides, 3,4-dihydroxy-allylbenzene 3-O-β-d-glucopyranosyl-4-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (2), and 3,4,5-trihydroxy-allylbenzene 3-O-β-d-glucopyranosyl-4-O-β-d-glucopyranoside (3), along with four known phenylpropanoid glycosides (4–7), were isolated from the tuber of Ophiopogon japonicus. Compounds 4–7 were obtained from the genus Ophiopogon for the first time. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR and HR-ESI-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号