首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Asghar Amiri 《Toxin reviews》2016,35(3-4):116-120
Recent studies have reported that metal oxide nanoparticles had potential adverse effects. In this research, the tissue distribution and toxic effects of administered InCl3 (bulk) and indium (III) oxide Nanoparticles (In2O3-NPs < 45?nm, BET of 43.6 m2/g and average hydrodynamic diameter of 79.97?nm) were investigated. Male Wistar rats were treated with a single intraperitoneal injection of InCl3 (bulk) and In2O3-NPs (2?mg/kg body weight, daily) for four consecutive weeks. Indium, copper and iron concentrations were measured by using ICP-OES. The indium levels were highest in the liver, followed in decreasing order by the levels in the spleen, kidney and intestine. The concentration of indium in In2O3-NPs exposed rats was more than InCl3 group and indium exposure caused significant decrease on Hb, RBC levels, PLT count and copper and iron concentrations in organs, which is probably due to an interference that could take place by indium (III) through iron (III) uptake mechanism.  相似文献   

2.
Usnic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken to evaluate the interactive toxicity, if any, of UA with lipopolysaccarides (LPS), a potential contaminant of food, at low non‐toxic concentrations. The human hepatoblastoma HepG2 cells were treated with the vehicle control and test agents, separately and in a binary mixture, for 24 h at 37 0C in 5% CO2. After the treatment period, the cells were evaluated by the traditional biochemical endpoints of toxicity in combination with the toxicogenomic endpoints that included cytotoxicity, oxidative stress, mitochondrial injury and changes in pathway‐focused gene expression profiles. Compared with the controls, low non‐toxic concentrations of UA and LPS separately showed no effect on the cells as determined by the biochemical endpoints. However, the simultaneous mixed exposure of the cells to their binary mixture resulted in increased cytotoxicity, oxidative stress and mitochondrial injury. The pathway‐focused gene expression analysis resulted in the altered expression of several genes out of 84 genes examined. Most altered gene expressions induced by the binary mixture of UA and LPS were different from those induced by the individual constituents. The genes affected by the mixture were not modulated by either UA or LPS. The results of the present study suggest that the interactions of low nontoxic concentrations of UA and LPS produce toxicity in HepG2 cells. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

3.
The association of kava products with liver-related health risks has prompted regulatory action in many countries. We used a genome-wide gene expression approach to generate global gene expression profiles from the livers of male B6C3F1 mice administered kava extract by gavage for 14 weeks, and identified the differentially expressed drug metabolizing genes in response to kava treatments. Analyses of gene functions and pathways reveal that the levels of significant numbers of genes involving drug metabolism were changed and that the pathways involving xenobiotics metabolism, Nrf2-mediated oxidative stress response, mitochondrial functions and others, were altered. Our results indicate that kava extract can significantly modulate drug metabolizing enzymes, potentially leading to herb–drug interactions and hepatotoxicity.  相似文献   

4.
Saltwater bivalves of the genus Mytilus are among the most copper sensitive taxa listed in both the current and recently proposed U.S. EPA ambient saltwater copper criteria documents. The copper saltwater quality criteria are somewhat unique in that the criteria were set specifically to protect Mytilus. However, there is considerable uncertainty in the reported taxonomy of Mytilus species in the criteria database and it has recently been demonstrated the copper toxicity to M. galloprovincialis is dependent on the organic matter content of the test water. A review of the toxicity and biogeography literature was conducted to rationalize the existing criteria database. Elimination of some data is suggested due to the uncertainty of test organism genotype. Moreover, due to the lack of reported dissolved organic matter content of the test waters in tests included in the criteria database, it is impossible to determine if the difference in species mean acute values reported in the criteria documents for Mytilus was due to differences in water chemistry or differences in species sensitivity. Experiments were designed and conducted with M. galloprovincialis and M. edulis (genetically confirmed) to determine if copper toxicity is a function of organic matter content for these two species and if there is a significant difference in species copper sensitivity. Results showed that copper toxicity is a function of organic matter concentration for both species and copper sensitivity of each species was statistically similar. Results support the normalization of the saltwater copper criteria database with respect to dissolved organic matter when developing ambient saltwater copper criteria. The USEPA toxicity database would benefit from future testing of M. trossulus and M. californianus. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009.  相似文献   

5.
Polybrominated diphenyl ethers (PBDEs), used as flame retardants, have been detected in the environment and in mammalian tissues and fluids. Evidence indicates that PBDE mixtures induce CYPs through aryl hydrocarbon receptor (AhR)-dependent and -independent pathways. The present work has investigated the effects of individual components of a commercial PBDE mixture (DE71) on expression of CYP1A1, a biomarker for activation of the AhR (dioxin-like), and CYP2B and CYP3A, biomarkers for activation of the constitutive androstane and pregnanexreceptors (CAR and PXR), respectively, in the rat. Male F344 rats were dosed orally on three consecutive days with either DE71, PBDE components, 2,2',4,4'-tetraBDE (BDE47), 2,2',4,4',5-pentaBDE (BDE99), 2,2',4,4',5,5'-hexaBDE (BDE153), representative polybrominated dibenzofurans (PBDFs) present in DE71, or reference PCBs. Differential expression of target genes was determined in liver 24 h after the last dose. Quantitative PCR analysis indicated up-regulation of CYP1A1 by DE71; however, the response was weak compared to that for dioxin-like PCB126. Individual PBDE components of DE71 up-regulated CYP1A1 only at the highest administered dose (100 micromol/kg/day). Representative PBDFs efficiently up-regulated CYP1A1; therefore, they, along with other PBDFs and polybrominated dibenzodioxins detected in DE71 and individual PBDE components, may be responsible for most, if not all, dioxin-like properties previously observed for PBDEs. Conversely, PBDEs appear capable of up-regulating CYP2B and CYP3A in rats at doses similar to that for non-dioxin-like PCB153. These results indicate that in vivo PBDE-mediated toxicity would be better categorized by AhR-independent mechanisms, rather than the well-characterized AhR-dependent mechanism associated with exposure to dioxin-like chemicals.  相似文献   

6.
Recent studies show that Janus Fe3O4‐TiO2 nanoparticles (NPs) have potential applications as a multifunctional agent of magnetic resonance imaging (MRI) and photodynamic therapy (PDT) for the diagnosis and therapy of cancer. However, little work has been done on their biological effects. To evaluate the toxicity and underlying molecular mechanisms of Janus Fe3O4‐TiO2 nanoparticles, an in vitro study using a human liver cell line HL‐7702 cells was conducted. For comparison, the Janus Fe3O4‐TiO2 NPs parent material TiO2 NPs was also evaluated. Results showed that both Fe3O4‐TiO2 NPs and TiO2 NPs decreased cell viability and ATP levels when applied in treatment, but increased malonaldehyde (MDA) and reactive oxygen species (ROS) generation. Mitochondria JC‐1 staining assay showed that mitochondrial membrane permeability injury occurred in both NPs treated cells. Cell viability analysis showed that TiO2 NPs induced slightly higher cytotoxicity than Fe3O4‐TiO2 NPs in HL7702 cells. Western blotting indicated that both TiO2 NPs and Fe3O4‐TiO2 NPs could induce apoptosis, inflammation, and carcinogenesis related signal protein alterations. Comparatively, Fe3O4‐TiO2 NPs induced higher signal protein expressions than TiO2 NPs under a high treatment dose. However, under a low dose (6.25 μg/cm2), neither NPs had any significant toxicity on HL7702 cells. In addition, our results suggest both Fe3O4‐TiO2 NPs and TiO2 NPs could induce oxidative stress and have a potential carcinogenetic effect in vitro. Further studies are needed to elaborate the detailed mechanisms of toxicity induced by a high dose of Fe3O4‐TiO2 NPs.  相似文献   

7.
Although parenteral administration of As(2)O(3) is highly effective in the treatment of acute promyelocytic leukemia, cardiac toxicity has been reported. This study employed Langendorff perfusion to determine the direct effects of As(2)O(3) in the electrophysiological properties of rabbit hearts after acute or chronic As(2)O(3) treatment (0.2 mg/kg/day iv for 30 days). Tissue accumulations of arsenicals and pathological changes as well as the reversibility of chronic As(2)O(3) effects were assessed. We found that cardiac conduction and repolarization were not altered whatsoever after acute As(2)O(3) treatment at clinically relevant (1, 3, and 10 microM) and higher (30 microM) doses. Nevertheless, an extremely high concentration of As(2)O(3) (300 microM) prolonged the corrected QT interval. Subsequent to chronic As(2)O(3) administration and with 30 microM As(2)O(3) via Langendorff perfusion, polymorphic ventricular tachycardia was observed (1/7, 14%). Corrected QT interval was prolonged, while basic cycle length was shortened. Significant accumulation of arsenicals in the cardiac tissue was found, but without any pathological changes. After As(2)O(3) was discontinued for 30 days, the chronic As(2)O(3) -induced electrophysiological changes improved, no ventricular arrhythmia was noted, and the tissue concentration of arsenicals decreased considerably. We therefore conclude that, although no immediate cardiac effects were discemable at clinically relevant doses, an extremely high concentration of As(2)O(3) could prolong ventricular repolarization. Chronic As(2)O(3) treatment resulted in a prolonged ventricular repolarization, in association with arsenicals accumulation and with risk of ventricular tachycardia. These chronic cardiac toxicities and the tissue accumulation of arsenicals were, however, partially reversible after cessation of As(2)O(3).  相似文献   

8.
1.?The individual cytochrome P450 isoforms in dextropropoxyphene N-demethylation to nordextropropoxyphene were determined and the pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in cytochrome P4502D6 (CYP2D6) extensive (EM) and poor (PM) subjects were characterized.

2.?Microsomes from six CYP2D6 extensive metabolizers and one CYP2D6 poor metabolizer were used with isoform specific chemical and antibody inhibitors and expressed recombinant CYP enzymes. Groups of three CYP2D6 EM and PM subjects received a single 65-mg oral dose of dextropropoxyphene, and blood and urine were collected for 168 and 96 h, respectively.

3.?Nordextropropoxyphene formation in vitro was not different between the CYP2D6 extensive metabolizers (Km = 179 ± 74 μM, Clint = 0.41 ± 0.26 ml mg?1 h?1) and the PM subject (Km = 225 μM, Clint = 0.19 ml mg?1 h?1) and was catalysed predominantly by CYP3A4. There was no apparent difference in the pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in CYP2D6 EM and PM subjects.

4.?CYP3A4 is the major CYP enzyme catalysing the major metabolic pathway of dextropropoxyphene metabolism. Hence variability in the pharmacodynamic effects of dextropropoxyphene are likely due to intersubject variability in hepatic CYP3A4 expression and/or drug–drug interactions. Reported CYP2D6 phenocopying is not due to dextropropoxyphene being a CYP2D6 substrate.  相似文献   

9.
ABSTRACT

Rubus rosifolius

Sm. (Rosaceae) is a plant traditionally used in Brazil and some other countries to treat diarrhea, stomach diseases, and as an analgesic, antimicrobial, antihypertensive, and as well as other pharmacological properties. The aim of this study was to examine cytotoxic and genotoxic effects of R. rosifolius leaves extract on HepG2/C3A cells and correlate these findings with the expression of mRNA to underlying mechanisms of action. At concentrations between 0.01 and 100 µg/ml, cytotoxic effects were not detected by the MTT assay. This was confirmed by mRNA induction of the CYP3A4 gene (by RT-qPCR assay). However, genotoxic effects occurred at treatments from 1 µg/ml extract (comet and micronucleus test). An increase in the number of cells in S phase was observed at 100 µg/ml, and an elevation in apoptotic cell number was found for all tested concentrations (10, 20, or 100 µg/ml) (cell cycle and apoptosis analysis by flow cytometry). The genotoxicity induced by the extract was the main cause of the rise in the number of cells undergoing apoptosis, as indicated by rise in mRNA of CASP7 gene, and elevation of cells in the S phase of the cell cycle at the higher tested concentrations, as an attempt to repair genetic damage that occurred. These observations suggest that, despite its pharmacological potential, the use of R. rosifolius leaves extract may pose a risk to the integrity of the genetic material of human cells.  相似文献   

10.
Molecular models were constructed, using the published X-ray structure of rat glutamate receptor 2 (GluR2), for the ligand-binding domains of the human (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA)- and kainate-selective ionotropic glutamate receptors (iGluRs): GluR1-7 and KA1-2. Based on the analysis of the known X-ray structures of GluR2 in complex with glutamate, kainate, and AMPA, we have constructed binding motifs (relative positioning of a ligand in the binding site and the physico-chemical interactions that take place) for selected agonist ligands and found explanations for ligand-binding selectivity to homomeric receptors among the different iGluRs. Even a single sequence difference can explain significant differences in ligand-binding affinities between two receptors. In total, there are seven residues surrounding the binding cavity that affect agonist selectivity: in GluR2, these residues are Pro478, Thr480, Leu650, Ser654, Thr686, Tyr702, and Met708. Each of these seven positions has been shown, or is predicted, to influence the presence of one or more water molecules that, when present, may form bridging hydrogen bonds between particular ligands and receptors. By using this knowledge it should be possible to design new selective agonist ligands with high affinity for any AMPA/kainate receptor.  相似文献   

11.
l -Histidyl-l -serine (HSN) trihydrate, C9H14N4O4H2O crystallizes in the orthorhombic space group P212121with a= 4.865(4), b= 15.604(4), c= 18.918(5) and Z= 4. The crystal structure was solved by direct methods and refined to R1 = 0.070 by a full-matrix least-squares method. The peptide exists in a zwitterionic form, with the N-terminus in a protonated form and the C-terminus in an ionized form. The imidazole ring of histidine in its neutral Hise tautomeric state has conformational angles X11 of-53.5(7)° and X211 of-55.4(8)° and the serine hydroxyl group has X12 of 68.2(7)°. The conformational angles deviate significantly from those of the dipeptide complexed with glycyl-l -glutamic acid in which the histidine is protonated. A noteworthy feature of the crystal packing is the occurrence of a Cα-H O=C hydrogen bond motif similar to that observed in collagen triple helix and β-sheets.  相似文献   

12.
The effect of altered physiological conditions on the residence time distributions of sucrose, water, and taurocholate in the rat liver were studied using a bolus injection and quantifying fraction of total outflow per ml-time profiles. Retrograde perfusions increased the residence times of sucrose and water markedly and were associated with very low hepatic availabilities for taurocholate. Resistance by the inlet sinusoids sphincters, which become outlet sphincters during retrograde perfusions, is suggested as the explanation for the observation. Infusions of noradrenaline, propranolol, and lidocaine resulted in relatively small changes in the mean residence times for sucrose and water with no apparent relationship existing between the efficiency number of taurocholate and volumes of either water or sucrose. Taurochenodeoxycholate resulted in an increase in the availability and mean residence time for taurocholate relative to no infusion.This study was supported by the National Health and Medical Research Council of Australia and the Dean's MRC (NZ) Fund.  相似文献   

13.
Novel betulinic acid derivative 5′-chloro-2, 3-didehydroindolo [2′, 3′: 2, 3] betulinic acid (DRF-4012) is a new effective lupane type triterpenes with greater anticancer activity and efficacy than betulinic acid and currently under advanced preclinical investigation phase. In this study, a sensitive and rapid liquid chromatography-electrospray mass spectrometric (LC/MS) method has been developed for the determination of DRF-4012 in tumour-bearing mice plasma, urine, feces and tissues (liver, brain, lungs, heart, spleen, stomach, thigh muscle, kidneys, urinary bladder, small intestine and tumour). Biodistribution and excretion studies were performed for DRF-4012 nanoparticle (30?mg/kg body weight) after intravenous (i.v.) injection in tumour-bearing mice. DRF-4012 rapidly distributed throughout the body. After 0.5?h, tumour showed the second highest concentration, which was nearly half of the liver. After 4 and 24?h, the highest concentration of DRF-4012 was found in tumour indicating its retention in tumour site for a longer time. Excretion studies revealed that very low amount of unchanged DRF-4012 was observed in urine and primarily excreted through fecal route. This study may be useful to explain the manner in which DRF-4012 can inhibit tumour growth without apparent toxicity and preclinical/clinical evaluation of this potential antitumour agent.  相似文献   

14.
15.
1. The absorption, metabolism, and excretion of a single oral 450-mg dose of [14C]-(S)-6-(3-cyclopentyl-2-(4-trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid (PF-04991532), a hepatoselective glucokinase activator, was investigated in humans. Mass balance was achieved with ~94.6% of the administered dose recovered in urine and feces. The total administered radioactivity excreted in feces and urine was 70.6% and 24.1%, respectively. Unchanged PF-04991532 collectively accounted for ~47.2% of the dose excreted in feces and urine, suggestive of moderate metabolic elimination in humans.

2. The biotransformation pathways involved acyl glucuronidation (M1), amide bond hydrolysis (M3), and CYP3A4-mediated oxidative metabolism on the cyclopentyl ring in PF-04991532 yielding monohydroxylated isomers (M2ad). Unchanged PF-04991532 was the major circulating component (64.4% of total radioactivity) whereas M2ad collectively represented 28.9% of the total plasma radioactivity.

3. Metabolites M2ad were not detected systemically in rats and dogs, the preclinical species for the toxicological evaluation of PF-04991532. In contrast, cynomologus monkeys dosed orally with unlabeled PF-04991532 revealed M2ad in circulation, whose UV abundance was comparable to the profile in humans. This observation suggested that monkeys could potentially serve as a non-rodent alternative for studying the toxicity of PF-04991532 and its metabolites M2ad.

4. The present results are in excellent agreement with our previously generated metabolite scouting data, which provided preliminary evidence for the disproportionate metabolism of PF-04991532 in humans.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号