首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
Usnic acid is a component of nutritional supplements promoted for weight loss that have been associated with liver-related adverse events including mild hepatic toxicity, chemical hepatitis, and liver failure requiring transplant. To determine if metabolism factors might have had a role in defining individual susceptibility to hepatotoxicity, in vitro metabolism studies were undertaken using human plasma, hepatocytes, and liver subcellular fractions. Usnic acid was metabolized to form three monohydroxylated metabolites and two regio-isomeric glucuronide conjugates of the parent drug. Oxidative metabolism was mainly by cytochrome P450 (CYP) 1A2 and glucuronidation was carried out by uridine diphosphate-glucuronosyltransferase (UGT) 1A1 and UGT1A3. In human hepatocytes, usnic acid at 20 µM was not an inducer of CYP1A2, CYP2B6, or CYP3A4 relative to positive controls omeprazole, phenobarbital, and rifampicin, respectively. Usnic acid was a relatively weak inhibitor of CYP2D6 and a potent inhibitor of CYP2C19 (the concentration eliciting 50% inhibition (IC50)?=?9 nM) and CYP2C9 (IC50?=?94 nM), with less potent inhibition of CYP2C8 (IC50?=?1.9 µM) and CYP2C18 (IC50?=?6.3 µM). Pre-incubation of microsomes with usnic acid did not afford any evidence of time-dependent inhibition of CYP2C19, although evidence of slight time-dependent inhibition of CYP2C9 (KI?=?2.79 µM and Kinact?=?0.022 min?1) was obtained. In vitro data were used with SimCYPRto model potential drug interactions. Based on usnic acid doses in case reports of 450 mg to >1 g day?1, these in vitro data indicate that usnic acid has significant potential to interact with other medications. Individual characteristics such as CYP1A induction status, co-administration of CYP1A2 inhibitors, UGT1A1 polymorphisms, and related hyperbilirubinaemias, or co-administration of low therapeutic index CYP2C substrates could work alone or in consort with other idiosyncrasy risk factors to increase the risk of adverse events and/or hepatotoxicity. Thus, usnic acid in nutritional supplements might be involved as both victim and/or perpetrator in clinically significant drug–drug interactions.  相似文献   

2.
  1. The involvement of cytochrome P450 2B6 (CYP2B6) to the in vitro and in vivo metabolism of bupropion has been well studied. In these investigations we performed a detailed in vitro phenotyping study to characterize isoforms other than CYP2B6.

  2. A total of nine metabolites were identified (M1–M9) in the incubations with cDNA-expressed P450s (rhCYP) and human liver microsomes (HLM).

  3. Incubations in rhCYP identified CYP2B6 as the isoform responsible for the formation of hydroxybupropion (M3). CYP2C19 was involved in bupropion metabolism primarily through alternate hydroxylation pathways (M4–M6) with higher activity at lower substrate concentrations, near 1 µM.

  4. The results from HLM inhibition studies using CYP2B6 and CYP2C19 inhibitory antibodies indicated that CYP2B6 contributed to approximately 90% of M3 formation, and CYP2C19 contributed to approximately 70–90% of M4, M5, and M6 formation.

  5. Studies using single donor HLM with varying degrees of CYP2B6 and CYP2C19 activities showed a good relationship between M3 formation and CYP2B6 activity and M4/M5 formation and CYP2C19 activity.

  6. These results confirmed the principle role of CYP2B6 in hydroxybupropion formation, as a selective CYP2B6 probe. In addition, the new findings revealed that CYP2C19 also contributes to bupropion metabolism through alternate hydroxylation pathways.

  相似文献   

3.
Amiodarone is a class III antiarrhythmic drug with potentially life-threatening hepatotoxicity. Recent in vitro investigations suggested that the mono-N-desethyl (MDEA) and di-N-desethyl (DDEA) metabolites may cause amiodarone's hepatotoxicity. Since cytochrome P450 (CYP) 3A4 is responsible for amiodarone N-deethylation, CYP3A4 induction may represent a risk factor. Our aim was therefore to investigate the role of CYP3A4 in amiodarone-associated hepatotoxicity. First, we showed that 50 μM amiodarone is more toxic to primary human hepatocytes after CYP induction with rifampicin. Second, we overexpressed human CYP3A4 in HepG2 cells (HepG2 cells/CYP3A4) for studying the interaction between CYP3A4 and amiodarone in more detail. We also used HepG2 wild type cells (HepG2 cells/wt) co-incubated with human CYP3A4 supersomes for amiodarone activation (HepG2 cells/CYP3A4 supersomes). Amiodarone (10–50 μM) was cytotoxic for HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes, but not for HepG2 cells/wt or less toxic for HepG2 cells/wt incubated with control supersomes without CYP3A4. Co-incubation with ketoconazole, attenuated cytotoxicity of amiodarone incubated with HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes. MDEA and DDEA were formed only in incubations containing HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes but not by HepG2 cells/wt or HepG2 cells/wt with control supersomes. Metabolized amiodarone triggered the production of reactive oxygen species, induced mitochondrial damage and cytochrome c release, and promoted apoptosis/necrosis in HepG2 cells/CYP3A4, but not HepG2 cells/wt. This study supports the hypothesis that a high CYP3A4 activity is a risk factor for amiodarone's hepatotoxicity. Since CYP3A4 inducers are used frequently and amiodarone-associated hepatotoxicity can be fatal, our observations may be clinically relevant.  相似文献   

4.
The in vitro metabolism of (?)-fenchone was examined in human liver microsomes and recombinant enzymes. The biotransformation of (?)-fenchone was investigated by gas chromatography-mass spectrometry. (?)-Fenchone was found to be oxidized to 6-exo-hydroxyfenchone, 6-endo-hydroxyfenchone and 10-hydroxyfenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on gas chromatography (GC). CYP2A6 and CYP2B6 were major enzymes involved in the hydroxylation of (?)-fenchone by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 and CYP2B6 catalysed the oxidation of (?)-fenchone. Second, oxidation of (?)-fenchone was inhibited by thioTEPA and (+)-menthofuran. Finally, there was a good correlation between CYP2A6, CYP2B6 contents and (?)-fenchone hydroxylation activities in liver microsomes of 11 human samples. CYP2A6 may be more important than CYP2B6 in human liver microsomes. Kinetic analysis showed that the Vmax/Km values for (?)-fenchone 6-endo-, 6-exo- and 10-hydroxylation catalysed by liver microsomes of human sample HG-03 were 24.3, 44.0 and 1.3?nM?1?min?1, respectively. Human recombinant CYP2A6 and CYP2B6 catalysed (?)-fenchone 6-exo-hydroxylation with Vmax values of 2.7 and 12.9?nmol?min?1?nmol?1 P450 and apparent Km values of 0.18 and 0.15?mM and (?)-fenchone 6-endo-hydroxylation with Vmax values of 1.26 and 5.33?nmol?min?1?nmol?1 P450 with apparent Km values of 0.29 and 0.26?mM. (?)-Fenchone 10-hydroxylation was catalysed by CYP2B6 with Km and Vmax values of 0.2?mM and 10.66?nmol?min?1?nmol?1 P450, respectively.  相似文献   

5.
The in vitro metabolism of (‐)‐cis‐ and (‐)‐trans‐rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9‐oxidized metabolite were determined using gas chromatography‐mass spectrometry (GC‐MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (‐)‐cis‐ and (‐)‐trans‐rose oxide. CYP1A2 also efficiently oxidized (‐)‐cis‐rose oxide at the 9‐position but not (‐)‐trans‐rose oxide. α‐Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti‐CYP2B6 antibody inhibited (‐)‐cis‐rose oxide 9‐hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (‐)‐trans‐rose oxide was suppressed by thioTEPA and anti‐CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (‐)‐9‐hydroxy‐cis‐ and (‐)‐9‐hydroxy‐trans‐rose oxide formations correlated with (S)‐mephenytoin N‐demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (‐)‐cis‐ and (‐)‐trans‐rose oxide in human liver microsomes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Objective Rabeprazole is metabolized mainly non-enzymatically to rabeprazole-thioether. This in vitro study was designed to clarify the stereoselective oxidation mechanism and to identify the enzyme(s) involved in the metabolic breakdown of rabeprazole-thioether to rabeprazole. Methods Rabeprazole-thioether was incubated with human liver microsomes and several recombinant cytochrome P450 (CYP) enzymes (CYPs 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4). High-performance liquid chromatography was used for identification and quantification of each rabeprazole enantiomer. Results The K m and V max values for the formation of (R)-rabeprazole from rabeprazole-thioether in human liver microsomes were 6.6 μM and 92 pmol/min/mg protein, respectively, whereas those for the formation of (S)-rabeprazole were 5.1 μM and 21 pmol/min/mg protein, respectively. CYP3A4 was found to be the major enzyme responsible for (R)- and (S)-rabeprazole formation from rabeprazole-thioether. The intrinsic clearance (V max /K m ) for the oxidation by CYP3A4 of (R)-rabeprazole was 3.5-fold higher than that for the (S)-enantiomer (81 nl/min/pmol of P450 vs. 23 nl/min/pmol of P450). On the other hand, CYP2C19 and CYP2D6 were the main enzymes catalyzing the formation of desmethylrabeprazole-thioether from rabeprazole-thioether. The mean K m and V max values of desmethylrabeprazole-thioether formation for CYP2C19 were 5.1 μM and 600 pmol/min/nmol of P450, respectively, whereas those for CYP2D6 were 15.1 μM and 736 pmol/min/nmol of P450, respectively. Discussion Rabeprazole is reduced mainly non-enzymatically to rabeprazole-thioether, which is further stereoselectively re-oxidized by CYP3A4 mainly to (R)-rabeprazole. The difference in the enantioselective disposition of rabeprazole is determined by stereoselectivity in CYP3A4-mediated metabolic conversion from rabeprazole-thioether to rabeprazole.  相似文献   

7.
Nicotine C-oxidation by recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes was investigated using a convenient high-performance liquid chromatographic method. Experiments with recombinant human P450 enzymes in baculovirus systems, which co-express human nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-P450 reductase, revealed that CYP2A6 had the highest nicotine C-oxidation activities followed by CYP2B6 and CYP2D6; the K m values by these three P450 enzymes were determined to be 11.0, 105, and 132 μM, respectively, and the V max values to be 11.0, 8.2, and 8.6 nmol/min per nmol P450, respectively. CYP2E1, 2C19, 1A2, 2C8, 3A4, 2C9, and 1A1 catalysed nicotine C-oxidation only at high (500 μM) substrate concentration. CYP1B1, 2C18, 3A5, and 4A11 had no measurable activities even at 500 μM nicotine. In liver microsomes of 16 human samples, nicotine C-oxidation activities were correlated with CYP2A6 contents at 10 μM substrate concentration, whereas such correlation coefficients were decreased when the substrate concentration was increased to 500 μM. Contribution of CYP2B6 (as well as CYP2A6) was demonstrated by experiments with the effects of orphenadrine (and also coumarin and anti-CYP2A6) on the nicotine C-oxidation activities by human liver microsomes at 500 μM nicotine. CYP2D6 was found to have minor roles since quinidine did not inhibit microsomal nicotine C-oxidation at both 10 and 500 μM substrate concentrations. These results support the view that CYP2A6 has major roles for nicotine C-oxidation at lower substrate concentration and both CYP2A6 and 2B6 play roles at higher substrate concentrations in human liver microsomes. Received: 27 October 1998 / Accepted: 11 January 1999  相似文献   

8.
1. Studies using human liver microsomes and recombinant human cytochrome P450 (P450) enzymes and flavin-containing monooxygenase (FMO) were performed to identify the enzymes responsible for the formation of zotepine metabolites in man. 2. Human liver microsomes produced four metabolites and a tentative order of importance was: norzotepine, 3-hydroxyzotepine, zotepine S-oxide and 2-hydroxyzotepine. Zotepine N-oxide was also detected, but it could not be quantified. 3. The rates of formation of the major metabolite, norzotepine, and zotepine S-oxide (at a substrate concentration of 20 μM) were significantly correlated with the testosterone 6β-hydroxylase activities and CYP3A4 contents of the 12 different human liver microsomal samples. Inhibition studies with P450 enzyme selective inhibitors and anti-rat CYP3A2 antibodies also indicated a predominant role of CYP3A4 in the formation of norzotepine and zotepine S-oxide. Furafylline and sulphaphenazole inhibited the N-demethylation of zotepine by up to ~ 30%. 4. Correlation and inhibition data for the 2- and 3-hydroxylation of zotepine were consistent with the predominant role of CYP1A2 and 2D6 in the formation of these metabolites, respectively. 5. Recombinant CYP1A1, 1A2, 2B6, 2C19, 3A4 and 3A5 efficiently catalysed N-demethylation of zotepine. CYP1A1, 1A2, 2B6 and 3A4 were also active for S-oxidation. CYP1A2 and 2D6*1-Val374 efficiently produced 2-hydroxyzotepine and 3-hyroxyzotepine, respectively. Recombinant human FMO3 did not catalyse zotepine S-oxidation. 6. These results suggest that both the N-demethylation and S-oxidation of zotepine are mediated mainly by CYP3A4, and that CYP1A2 and 2D6 play an important role in the 2- and 3-hydroxylation of zotepine, respectively.  相似文献   

9.
  1. The roles of human cytochrome P450 (P450 or CYP) 2A6 in the oxidation of flavanone [(2R)- and (2S)-enantiomers] and flavone were studied in human liver microsomes and recombinant human P450 enzymes.

  2. CYP2A6 was highly active in oxidizing flavanone to form flavone, 2′-hydroxy-, 4′-, and 6-hydroxyflavanones and in oxidizing flavone to form mono- and di-hydroxylated products, such as mono-hydroxy flavones M6, M7, and M11 and di-hydroxy flavones M3, M4, and M5.

  3. Liver microsomes prepared from human sample HH2, defective in coumarin 7-hydroxylation activity, were very inefficient in forming 2′-hydroxyflavanone from flavanone and a mono-hydroxylated product, M6, from flavone. Coumarin and anti-CYP2A6 antibodies strongly inhibited the formation of these metabolites in microsomes prepared from liver samples HH47 and 54, which were active in coumarin oxidation activities.

  4. Molecular docking analysis showed that the C2′-position of (2R)-flavanone (3.8 Å) was closer to the iron center of CYP2A6 than the C6-position (10 Å), while distances from C2′ and C6 of (2S)-flavanone to the CYP2A6 were 6.91 Å and 5.42 Å, respectively.

  5. These results suggest that CYP2A6 catalyzes site-specific oxidation of (racemic) flavanone and also flavone in human liver microsomes. CYP1A2 and CYP2B6 were also found to play significant roles in some of the oxidations of these flavonoids by human liver microsomes.

  相似文献   

10.
11.
Clozapine (CLZ) was reported to be associated with hepatotoxicity. Glycyrrhetinic acid (GA) has a liver protective effect. Our preliminary experiments showed that GA aggravated rather than attenuated CLZ-induced hepatotoxicity in primary cultured rat hepatocytes. The study aimed to describe the enhancing effect of GA on CLZ-induced hepatotoxicity in vivo and in vitro. Data from primary cultured rat hepatocytes showed the decreased formation of metabolites demethylclozapine (nor-CLZ) and clozapine N-oxide (CLZ N-oxide). The results in vivo showed that 7-day CLZ treatment led to marked accumulation of triglyceride (TG) and increase in γ-glutamyl transpeptidase (γ-GT) activity, liver weight, and serum AST in rats. Co-administration of GA enhanced the increases in hepatic TG, γ-GT, liver weight, and serum total cholesterol induced by CLZ. GA decreased plasma concentrations of nor-CLZ and CLZ N-oxide. Compared with control rats, hepatic microsomes of GA rats exhibited the decreased formations of nor-CLZ and CLZ N-oxide, accompanied by decreases in activities of CYP2C11 and CYP2C19 and increased activity of CYP1A2. QT-PCR analysis demonstrated that GA enhanced expression of CYP1A2, but suppressed expression of CYP2C11 and CYP2C13. All these results support the conclusion that GA aggravated CLZ-induced hepatotoxicity, which was partly via inhibiting CYP2C11 and CYP2C13 or inducing CYP1A2.  相似文献   

12.
The purpose of this paper is to characterize the cytochrome P450 (CYP) enzymes involved in the metabolism of a new oral erectogenic, mirodenafil, to a major circulating active metabolite, N-dehydroxyethyl-mirodenafil, and to investigate the inhibitory potential of mirodenafil on seven CYP enzymes in human liver microsomes. CYP3A4 was identified as the major enzyme and CYP2C8 as a minor enzyme responsible for mirodenafil N-dealkylation based on correlation analysis, inhibition studies, and cDNA-expressed CYP enzyme activities. Plasma concentrations of mirodenafil and its N-dealkylated metabolite could therefore change with co-administration of known CYP3A4 inducers or inhibitors. Mirodenafil inhibited CYP3A4, CYP2C19 and CYP2D6 activities with IC50 values of 15.6, 38.2 and 77.0 µM, respectively, in human liver microsomes. However, it is very unlikely that mirodenafil will significantly alter the clearance of other compounds metabolized by CYPs 1A2, 2A6, 2C8, 2C9, 2C19, 2D6 and 3A4 because the maximum plasma concentration of mirodenafil is 0.55 µM after oral dosing of mirodenafil (100 mg) in male volunteers.  相似文献   

13.
The metabolism of (+)-fenchol was investigated in vitro using liver microsomes of rats and humans and recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human/rat P450 and NADPH-P450 reductase cDNAs had been introduced. The biotransformation of (+)-fenchol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Fenchol was oxidized to fenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on GC. Several lines of evidence suggested that CYP2A6 is a major enzyme involved in the oxidation of (+)-fenchol by human liver microsomes. (+)-Fenchol oxidation activities by liver microsomes were very significantly inhibited by (+)-menthofuran, a CYP2A6 inhibitor, and anti-CYP2A6. There was a good correlation between CYP2A6 contents and (+)-fenchol oxidation activities in liver microsomes of ten human samples. Kinetic analysis showed that the Vmax/Km values for (+)-fenchol catalysed by liver microsomes of human sample HG03 were 7.25?nM?1?min?1. Human recombinant CYP2A6-catalyzed (+)-fenchol oxidation with a Vmax value of 6.96?nmol?min?1?nmol?1 P450 and apparent Km value of 0.09?mM. In contrast, rat CYP2A1 did not catalyse (+)-fenchol oxidation. In the rat (+)-fenchol was oxidized to fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol by liver microsomes of phenobarbital-treated rats. Recombinant rat CYP2B1 catalysed (+)-fenchol oxidation. Kinetic analysis showed that the Km values for the formation of fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol in rats treated with phenobarbital were 0.06, 0.03 and 0.03?mM, and Vmax values were 2.94, 6.1 and 13.8?nmol?min?1?nmol?1 P450, respectively. Taken collectively, the results suggest that human CYP2A6 and rat CYP2B1 are the major enzymes involved in the metabolism of (+)-fenchol by liver microsomes and that there are species-related differences in the human and rat CYP2A enzymes.  相似文献   

14.
Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. Results: The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 M and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 M and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6-hydroxylation (rs=0.797; P<0.05). Conclusion: CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug interactions with LOP. However, the clinical significance of potential interaction of LOP metabolism by CYP2C8 and CYP3A4 inhibitors should be studied further.  相似文献   

15.
Cytochrome P450 (CYP) 2E1 was suggested to be the major enzyme involved in trichloroethylene (TRI) metabolism and TRI-induced hepatotoxicity, although the latter molecular mechanism is not fully understood. The involvement of CYP2E1 in TRI-induced hepatotoxicity and its underlying molecular mechanism were studied by comparing hepatotoxicity in cyp2e1+/+ and cyp2e1−/− mice. The mice were exposed by inhalation to 0 (control), 1000, or 2000 ppm of TRI for 8 h a day, for 7 days, and TRI-hepatotoxicity was assessed by measuring plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histopathology. Urinary metabolites of trichloroethanol and trichloroacetic acid (TCA) were considerably greater in cyp2e1+/+ compared to cyp2e1−/− mice, suggesting that CYP2E1 is the major P450 involved in the formation of these metabolites. Consistent with elevated plasma ALT and AST activities, cyp2e1+/+ mice in the 2000 ppm group showed histopathological inflammation. TRI significantly upregulated PPARα, which might function to inhibit NFκB p50 and p65 signalling. In addition, TRI-induced NFκB p52 mRNA, and significantly positive correlation between NFκB p52 mRNA expression and plasma ALT activity levels were observed, suggesting the involvement of p52 in liver inflammation. Taken together, the current study directly demonstrates that CYP2E1 was the major P450 involved in the first step of the TRI metabolism, and the metabolites produced may have two opposing roles: one inducing hepatotoxicity and the other protecting against the toxicity. Intermediate metabolite(s) from TRI to chloral hydrate produced by CYP2E1-mediated oxidation may be involved in the former, and TCA in the latter.  相似文献   

16.
Cytochrome P450 2E1 (CYP2E1) is a microsomal enzyme that generates reactive oxygen species during its catalytic cycle. We previously found an important role for calcium in CYP2E1-potentiated injury in HepG2 cells. The possibility that CYP2E1 may oxidatively damage and inactivate the microsomal Ca2+-ATPase in intact liver cells was evaluated, in order to explain why calcium is elevated during CYP2E1 toxicity. Microsomes were isolated by differential centrifugation from two liver cell line: E47 cells (HepG2 cells transfected with the pCI neo expression vector containing the human CYP2E1 cDNA, which overexpress active microsomal CYP2E1), and control C34 cells (HepG2 cells transfected with the pCI neo expression vector alone, which do not express significantly any cytochrome P450). The Ca2+-dependent ATPase activity was determined by measuring the accumulation of inorganic phosphate from ATP hydrolysis. CYP2E1 overexpression produced a 45% decrease in Ca2+-dependent ATPase activity (8.6 nmol Pi/min/mg protein in C34 microsomes versus 4.7 nmol Pi/min/mg protein in microsomes). Saturation curves with Ca2+ or ATP showed that CYP2E1 overexpression produced a decrease in Vmax but did not affect the Km for either Ca2+ or ATP. The decrease in activity was not associated with a decrease in SERCA protein levels. The ATP-dependent microsomal calcium uptake was evaluated by fluorimetry using fluo-3 as the fluorogenic probe. Calcium uptake rate in E47 microsomes was 28% lower than in C34 microsomes. Treatment of E47 cells with 2 mM N-acetylcysteine prevented the decrease in microsomal Ca2+-ATPase found in E47 cells. These results suggest that CYP2E1 overexpression produces a decrease in microsomal Ca2+-ATPase activity in HepG2 cells mediated by reactive oxygen species. This may contribute to elevated cytosolic calcium and to CYP2E1-potentiated injury.  相似文献   

17.
The most prominent adverse effects seen during treatment with dapsone, an antibacterial and antiprotozoal agent, are hemolysis and methemoglobinemia. An in vitro microsomal/cytochrome P450 (CYP)‐linked assay, which allows reactive metabolites generated in situ to react with the co‐incubated human erythrocytes, was employed to profile CYP isoforms responsible for hemotoxicity of dapsone. Dapsone caused a robust generation of methemoglobin in human erythrocytes in the presence of human/mouse liver microsomes, which indicates contribution of CYP‐mediated metabolism for hemotoxicity. The highest methemoglobin formation with dapsone was observed with CYP2C19, with minor contributions from CYP2B6, CYP2D6 and CYP3A4. Cimetidine and chloramphenicol completely abrogated methemoglobin generation by dapsone, thus confirming a predominant contribution of CYP2C19. The results provide useful insights into CYP‐dependent hemotoxicity of dapsone in human erythrocytes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The role of the major drug-metabolizing cytochrome P450 (CYP) enzymes as well as P-glycoprotein (PGP) was investigated in the disposition of ketobemidone in vitro. Formation of norketobemidone from ketobemidone was studied and compared with the activities of 11 major CYP enzymes in human liver microsomes. The formation of norketobemidone from ketobemidone (1?µM) correlated best with CYP2C9 activity, measured as losartan oxidation (rs?=?0.82, n?=?19, p?p?相似文献   

19.
Ipriflavone, a synthetic flavonoid for the prevention and treatment of osteoporosis, has been reported to be extensively metabolized in man to seven metabolites (M1–M7). This study was performed to characterize the human liver cytochrome P450s (CYP) responsible for the metabolism of ipriflavone. Hydroxylation at the β-ring to M3, O-dealkylation to M1 and oxidation at isopropyl group to M4 and M5 are major pathways for ipriflavone metabolism in three different human liver microsome preparations. The specific CYPs responsible for ipriflavone oxidation to the active metabolites, M1, M3, M4 and M5 were identified using a combination of correlation analysis, immuno-inhibition, chemical inhibition in human liver microsomes and metabolism by expressed recombinant CYP enzymes. The inhibitory potencies of ipriflavone and its five metabolites, M1–M5 on seven clinically important CYPs were investigated in human liver microsomes. Our results demonstrate that CYP3A4 plays the major role in O-dealkylation of ipriflavone to M1 and CYP1A2 plays a dominant role in the formation of M3, M4 and M5. Ipriflavone and/or its five metabolites were found to inhibit potently the metabolism of CYPs 1A2, 2C8, 2C9 and 2C19 substrates.  相似文献   

20.
Cytochrome P450 2C19 (CYP2C19) plays an important role in the metabolism of a wide range of therapeutic drugs and exhibits genetic polymorphism with interindividual differences in metabolic activity. We have previously described two CYP2C19 allelic variants, namely CYP2C19*18 and CYP2C19*19 with Arg329His/Ile331Val and Ser51Gly/Ile331Val substitutions, respectively. In order to investigate precisely the effect of amino acid substitutions on CYP2C19 function, CYP2C19 proteins of the wild-type (CYP2C19.1B having Ile331Val) and variants (CYP2C19.18 and CYP2C19.19) were heterologously expressed in yeast cells, and their S-mephenytoin 4′-hydroxylation activities were determined. The Km value of CYP2C19.19 for S-mephenytoin 4′-hydroxylation was significantly higher (3.0-fold) than that of CYP2C19.1B. Although no significant differences in Vmax values on the basis of microsomal and functional CYP protein levels were observed between CYP2C19.1B and CYP2C19.19, the Vmax/Km values of CYP2C19.19 were significantly reduced to 29–47% of CYP2C19.1B. By contrast, the Km, Vmax or Vmax/Km values of CYP2C19.18 were similar to those of CYP2C19.1B. These results suggest that Ser51Gly substitution in CYP2C19.19 decreases the affinity toward S-mephenytoin of CYP2C19 enzyme, and imply that the genetic polymorphism of CYP2C19*19 also causes variations in the clinical response to drugs metabolized by CYP2C19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号