首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.?The aim of this work was to examine the differences in the inhibitory potency of individual enantiomers and racemic mixtures of selected chiral drugs on human liver microsomal cytochromes P450.

2.?The interaction of enantiomeric forms of six drugs (tamsulosin, tolterodine, citalopram, modafinil, zopiclone, ketoconazole) with nine cytochromes P450 (CYP3A4, CYP2E1, CYP2D6, CYP2C19, CYP2C9, CYP2C8, CYP2B6, CYP2A6, CYP1A2) was examined. HPLC methods were used to estimate the extent of the inhibition of specific activity in vitro.

3.?Tamsulosin (TAM) and tolterodine (TOL) inhibited CYP3A4 activity with an enantiospecific pattern. The inhibition of CYP3A4 activity differed for R-TAM (Ki 2.88?±?0.12?µM) and S-TAM (Ki 14.22?±?0.53?µM) as well as for S-TOL (Ki 1.71?±?0.03?µM) and R-TOL (Ki 4.78?±?0.17?µM). Also, the inhibition of CYP2C19 by ketoconazole (KET) cis-enantiomers exhibited enantioselective behavior: the (+)-KET (IC50 23.64?±?6.25?µM) was more potent than (?)-KET (IC50 66.12?±?12.6?µM). The inhibition of CYP2C19 by modafinil (MOD) enantiomers (R-MOD IC50?=?51.79?±?8.58?µM, S-MOD IC50?=?48.62?±?9.74?µM) and the inhibition of CYP2D6 by citalopram (CIT) enantiomers (R-CIT IC50?=?68.17?±?5.70?µM, S-CIT IC50?=?62.63?±?7.89?µM) was not enantiospecific.

4.?Although enantiospecific interactions were found (TAM, TOL, KET), they are probably not clinically relevant as the plasma levels are generally lower than the drug concentration needed for prominent inhibition (at least 50% of CYP activity).  相似文献   

2.
The metabolism of 3′,4′-methylenedioxy-α-pyrrolidinopropiophenone (MDPPP), a novel designer drug, to its demethylenated major metabolite 3′,4′-dihydroxy-pyrrolidinopropiophenone (di-HO-PPP) was studied in pooled human liver microsomes (HLM) and in cDNA-expressed human hepatic cytochrome P450 (CYP) enzymes. CYP2C19 catalysed the demethylenation with apparent Km and Vmax values of 120.0?±?13.4?µM and 3.2?±?0.1?pmol/min/pmol?CYP, respectively (mean?±?standard deviation). CYP2D6 catalysed the demethylenation with apparent Km and Vmax values of 13.5?±?1.5?µM and 1.3?±?0.1 pmol/min/pmol?CYP, respectively. HLM exhibited a clear biphasic profile with an apparent Km,1 value of 7.6?±?9.0 and a Vmax,1 value of 11.1?±?3.6?pmol/min/mg?protein, respectively. Percentages of intrinsic clearances of MDPPP by specific CYPs were calculated using the relative activity factor (RAF) approach with (S)-mephenytoin-4′-hydroxylation or bufuralol-1′-hydroxylation as index reactions for CYP2C19 or CYP2D6, respectively. MDPPP, di-HO-PPP and the standard 4′-methyl-pyrrolidinohexanophenone (MPHP) were separated and analysed by liquid chromatography-mass spectrometry in the selected-ion monitoring (SIM) mode. The CYP2D6-specific chemical inhibitor quinidine (3?µM) significantly (p?相似文献   

3.
  1. The objective of this study was to investigate the interaction between glycyrrhizin and omeprazole and observe the effects of glycyrrhizin on CYP2C19 and CYP3A4 activities in healthy Chinese male volunteers with different CYP2C19 genotypes.

  2. Eighteen healthy subjects (six CYP2C19*1/*1, five CYP2C19*1/*2, one CYP2C19*1/*3, five CYP2C19*2/*2 and one CYP2C19*2/*3) were enrolled in a two-phase randomized crossover trial. In each phase, all subjects received placebo or glycyrrhizin salt tablet 150?mg twice daily for 14 consecutive days. The pharmacokinetics of omeprazole (20?mg orally on day 15) was determined for up to 12?h following administration by high-performance liquid chromatography.

  3. After 14-day treatment of glycyrrhizin, plasma omeprazole significantly decreased, and those of omeprazole sulfone significantly increased. However, plasma concenetrations of 5-hydroxyomeprazole did not significantly change. The ratio of AUC0–∞ of omeprazole to omeprazole sulfone decreased by 43.93% ± 13.56% (p?=?0.009) in CYP2C19*1/*1, 44.85% ± 14.84% (p?=?0.002) in CYP2C19*1/*2 or *3 and 36.16% ± 7.52% (p?<?0.001) in CYP2C19*2/*2 or *3 while those of omeprazole to 5-hydroxyomeprazole did not change significantly in all three genotypes. No significant differences in glycyrrhizin response were found among CYP2C19 genotypes.

  4. Glycyrrhizin induces CYP3A4-catalyzed sulfoxidation of omeprazole and leads to decreased omeprazole plasma concentrations, but has no significant impact on CYP2C19-dependent hydroxylation of omeprazole.

  相似文献   

4.

Objectives

Pantoprazole is metabolized by cytochrome P450 2?C19, which shows genetic polymorphism. The effect of CYP2C19 polymorphism on single-dose pharmacokinetics of oral pantoprazole in healthy volunteers was evaluated.

Methods

Pantoprazole pharmacokinetics was determined in 32 healthy volunteers after a 40-mg single oral dose of the drug.

Results

Carriers of CYP2C19*2/*2 (n?=?2) were characterized by higher, starting from 3.5?h post dose, plasma concentrations of pantoprazole in comparison to wild-type (CYP2C19*1/*1, n?=?6) volunteers. In subjects with CYP2C19*17/*17 genotype (n?=?6) significantly lower plasma concentrations of the drug vs CYP2C19*1/*1 carriers, were observed from 3.0?h after oral pantoprazole administration. Carriers of CYP2C19*1/*17 (n?=?6) and CYP2C19*2/*17 (n?=?6) displayed concentration–time profiles comparable to wild-type subjects. CYP2C19*2/*2 volunteers showed a decrease in terminal elimination rate constant (λz) by 83.3%, prolongation of terminal half-life (t?) by 572%, a rise in area under the concentration–time curve (AUC) and mean residence time (MRT) by 506% and 259% respectively. Heterozygotes, i.e.. CYP2C19*1/*2 vs CYP2C19*1/*1 were characterized by higher AUC (4.38?±?1.00?mg?h/L vs 3.00?±?1.02 mg?h/L, p?max (2.13?±?0.42?mg/L vs 1.61?±?0.35?mg/L, p?p?CYP2C19*17/*17 vs CYP2C19*1/*1 genotypes was observed. Population modeling confirmed the influence of *1/*2, *2/*2, and *17/*17 genotypes on the pharmacokinetics of pantoprazole. The lowest population oral clearance was assessed in the carriers of genotype *2/*2 (3.68?L/h) and the highest value in subjects with genotype *17/*17 (31.13?L/h).

Conclusion

These data suggest that CYP2C19 polymorphism is an important determinant of pantoprazole pharmacokinetics.  相似文献   

5.
  1. An intraoral annihilation enteric-coated preparation of lansoprazole is often administered via intestinal fistula. The purpose of this study was to determine the plasma concentrations of lansoprazole enantiomers after enteral administration in subjects with cytochrome P4502C19 (CYP2C19) and ABCB1 C3435T genotypes.

  2. Fifty-one patients who underwent a curative oesophagectomy for oesophageal cancer were enrolled in this study. After a single enteral dose of racemic lansoprazole (30?mg), plasma concentrations of lansoprazole enantiomers were measured 4?h post-dose (C4h).

  3. There were significant differences in the C4h of (R)- and (S)-lansoprazole and the R/S-enantiomer ratio for three CYP2C19 genotype groups (*1/*1, *1/*2 ± *1/*3, and *2/*2 ± *2/*3 ± *3/*3 (poor metabolizers (PMs)), but not the ABCB1 C3435T genotypes. In a stepwise forward selection multiple regression analysis, the C4h of (R)- and (S)-lansoprazole were associated with CYP2C19 PMs (p?=?0.0005 and < 0.0001 respectively) and age (p?=?0.0040 and 0.0121 respectively), while the R/S-enantiomer ratio was associated with CYP2C19*1/*1 (p?=?0.0191) and CYP2C19 PMs (p?=?0.0426).

  4. Direct administration to the jejunum is unaffected by residence time in the stomach and the gastric emptying rate. With enteral administration, CYP2C19 phenotyping of patients using the lansoprazole R/S enantiomer index at C4h could be possible.

  相似文献   

6.
The role of the major drug-metabolizing cytochrome P450 (CYP) enzymes as well as P-glycoprotein (PGP) was investigated in the disposition of ketobemidone in vitro. Formation of norketobemidone from ketobemidone was studied and compared with the activities of 11 major CYP enzymes in human liver microsomes. The formation of norketobemidone from ketobemidone (1?µM) correlated best with CYP2C9 activity, measured as losartan oxidation (rs?=?0.82, n?=?19, p?p?相似文献   

7.

Purpose

Icotinib hydrochloride {4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-4-quinazoline hydrochloride}, a novel epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), was designed for the treatment of non-small cell lung cancer (NSCLC). In the present study, we investigated the influence of the CYP2C19*2 and CYP2C19*3 alleles on the pharmacokinetics of icotinib in healthy Chinese volunteers.

Methods

In a single-dose pharmacokinetic study, 12 healthy Chinese volunteers received an oral dose of 600?mg of icotinib. Plasma was sampled for up to 72?h post-dose, followed by quantification of icotinib by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS-MS).

Results

Five subjects genotyped as homozygous extensive metabolizers (CYP2C19*1/*1), 6 subjects genotyped as heterozygous extensive metabolizers (CYP2C19*1/*2 or CYP2C19*1/*3), and 1 subject genotyped as a poor metabolizer (CYP2C19*2/*3) and was withdrawn from the research because of urticaria. The mean icotinib AUC0-∞ and Cmax (14.56 ±5.31?h?mg/L and 2.32?±?0.49?μg/mL) in homozygous EMs was 1.56 and 1.41-fold lower than that in heterozygous EMs (22.7?±?6.11 and 3.28?±?0.48, P?=?0.046 and 0.047). The mean CL/F (44.18?±?12.17?L/h) in homozygous EMs was 1.55-fold higher than that in heterozygous EMs (28.42?±?9.23?L/h, P?=?0.013).

Conclusions

The data showed that the pharmacokinetics of icotinib differ significantly between homozygous EMs and heterozygous EMs in CYP2C19.  相似文献   

8.
The aim of this study is to evaluate the association of the CYP3A4*18B genotype with the cyclosporine metabolism in healthy subjects. We employed PCR–RFLP assays for analysis of the CYP3A4*18B genotype. Each of 26 subjects, comprising 12 CYP3A4*1/*1, 12 CYP3A4*1/*18B and 2 CYP3A4*18B/*18B, was given a single oral dose of cyclosporine (4?mg?kg?1). The plasma concentrations of cyclosporine were measured for up to 24?h post dose by high-performance liquid chromatography–electrospray mass spectrometry. We found that the mean Cmax (95% confidence intervals) of cyclosporine were 2237 (2905, 1859) (*1/*1), 2247 (2916, 1869) (*1/*18B), and 905 (1192, 506) ng?ml?1 (*18B/*18B) (p?=?0.037) and the mean AUC0-4 were 5026 (6181, 4372) (*1/*1), 4434 (5481, 3841) (*1/*18B) and 2561 (3155, 1736) ng ml-1?h (*18B/*18B) (p?=?0.021). The CL in the *18B/*18B group was significantly higher than in the *1/*1 group. However, Tmax exhibited no difference among the three genotypes. *18B/*18B group showed 50% reduction in concentration at 2?h post dose compared with *1/*18B (p?=?0.062) or *1/*1 (p?=?0.047), but no statistical significance was detected between*1/*1 and *1/*18B groups (p?>?0.05). The data suggest that the CYP3A4*18B genotype affects cyclosporine pharmacokinetics probably resulting from a higher enzymatic activity of this mutation in healthy subjects.  相似文献   

9.
The aim of the present study was to further investigate a previously identified metabolic interaction between losartan and paclitaxel, which is one of the marker substrates of CYP2C8, by using human liver microsomes (HLMs) from donors with different CYP2C8 and CYP2C9 genotypes. Although CYP2C8 and CYP2C9 exhibit genetic linkage, previous studies have yet to determine whether losartan or its active metabolite, EXP‐3174 which is specifically generated by CYP2C9, is responsible for CYP2C8 inhibition. Concentrations of 6α‐hydroxypaclitaxel and EXP‐3174 were measured by high‐performance liquid chromatography after incubations with paclitaxel, losartan or EXP‐3174 in HLMs from seven donors with different CYP2C8 and CYP2C9 genotypes. The half maximal inhibitory concentration (IC50) values were not fully dependent on CYP2C8 genotypes. Although the degree of inhibition was small, losartan significantly inhibited the production of 6α‐hydroxypaclitaxel at a concentration of 1 μmol/L in only HL20 with the CYP2C8*3/*3 genotype. HLMs with either CYP2C9*2/*2 or CYP2C9*1/*3 exhibited a lower losartan intrinsic clearance (Vmax/Km) than other HLMs including those with CYP2C9*1/*1 and CYP2C9*1/*2. Significant inhibition of 6α‐hydroxypaclitaxel formation by EXP‐3174 could only be found at levels that were 50 times higher (100 μmol/L) than the maximum concentration generated in the inhibition study using losartan. These results suggest that the metabolic interaction between losartan and paclitaxel is dependent on losartan itself rather than its metabolite and that the CYP2C8 inhibition by losartan is not affected by the CYP2C9 genotype. Further study is needed to define the effect of CYP2C8 genotypes on losartan–paclitaxel interaction.  相似文献   

10.
  1. The aim of the study was to determine the pharmacokinetics of losartan in relation to the CYP2C9*13 allele.

  2. A single oral dose of 50?mg losartan was administrated to each of the 16 healthy male volunteers with a different genotype (CYP2C9*1/*1, n?=?6; CYP2C9*1/*13, n?=?4; and CYP2C9*1/*3, n?=?6). Blood samples were collected from pre-dose up to 24?h after the drug administration. Plasma losartan and E3174 (an active metabolite of losartan) were assayed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

  3. All the subjects finished the study without adverse drug effects. In the present study, the frequencies of CYP2C9*13 and *13 alleles were 0.6% and 2.6% in Chinese healthy volunteers, respectively, and both alleles were in Hardy–Weinberg equilibrium. Compared with the subjects in the CYP2C9*1/*1 group, individuals carrying the CYP2C9*1/*13 genotype showed significantly a longer t1/2 of losartan and E3174 and markedly increased the area under the curve (AUC) of losartan. Meanwhile, the CYP2C9*1/*3 genotype group had significant differences in t1/2 and Cmax of E3174 compared with the CYP2C9*1/*1 group. The ratio of AUCE3174/AUClosartan after losartan administration in the CYP2C9*1/*13 and CYP2C9*1/*3 groups was also statistically different from that in the CYP2C9*1/*1 group.

  4. The data indicate that the presence of the CYP2C9*13 allele results in poor metabolism of losartan after a single oral dose.

  相似文献   

11.
1. Imatinib is widely used for the treatment of hematologic malignancies. It is common that imatinib is clinically co-prescribed with azole antifungal agents since these patients are more prone to invasive antifungal infection. The present study was to investigate the effects of azole antifungal drugs, including ketoconazole, fluconazole, voriconazole, itraconazole and posaconazole on imatinib metabolism.

2. The main metabolites, 1-OH midazolam and N-desmethyl imatinib, were determined in the absence and in the presence of various levels of ketoconazole, fluconazole, voriconazole, itraconazole and posaconazole. The relevant assay was also performed to screen mechanism-based inhibitors (MBI).

3. The inhibition ability of 1-OH midazolam formation from midazolam based on IC50 values was ketoconazole (0.09?µM)>itraconazole (0.31?µM)>?posaconazole (0.68?µM)>voriconazole (2.10?µM)?>?fluconazole (8.90?µM). Similarly, the rank order of inhibitory effects on formation of N-desmethyl imatinib from imatinib was ketoconazole (4.58?µM)>itraconazole (17.45?µM)>?posaconazole (31.02?µM)>?voriconazole (367.9?µM)?>fluconazole (1.11?mM). Posaconazole and itraconazole displayed evidence of MBI. Additionally, imatinib was also shown as a MBI of CYP3A with IC50 value of 5.40?µM against the midazolam.

4. The significant difference in IC50 values of midazolam and imatinib inhibited by azole antifungal agents was observed. The role of CYP2C8 in imatinib metabolism and imatinib autoinhibits CYP3A activity may explain this difference. Our findings suggest that the azole antifungal agents might have limited impacts on imatinib exposure by CYP3A activity.  相似文献   


12.
Abstract

Objective: Acrylamide (AA), a probable human carcinogen, is present in fried and baked starch-rich food. In vivo, the substance is partly biotransformed to glycidamide (GA), which may account for carcinogenic effects. Existing data suggest an important but not exclusive contribution of CYP2E1 to GA formation. The aim of this project was to derive respective enzyme kinetic parameters for CYP2E1 and to assess a possible role of other important human CYPs for this reaction in vitro.

Methods: AA (0.2–20?mM) was incubated with human liver microsomes (HLM) and human cytochrome P450 enzymes (supersomes?). GA was quantified by a specific LC-MS/MS method. Enzyme kinetic parameters were estimated assuming a single binding site. Furthermore, inhibition experiments were performed with diethyldithiocarbamate (DDC), a potent inhibitor of CYP2E1.

Results: The mean?±?SD maximum formation rate (Vmax) and Michaelis–Menten constant (Km) for GA formation in HLM were 199?±?36?pmol GA/mg protein/min and 3.3?±?0.5?mM, respectively. In AA incubations with supersomes?, only for CYP2E1 measurable GA formation was detected in all tested AA concentrations (Vmax and Km were 5.4?nmol GA/nmol CYP2E1/min and 1.3?mM, respectively). Inhibition constant (IC50) of DDC was 3.1?±?0.5?µM for HLM and 1.2?±?0.2?µM for CYP2E1 supersomes?. Therefore, relevant participation of CYPs other than CYP2E1 in the metabolism of AA to GA in humans does not seem likely.

Conclusion: Our results confirm the major role of CYP2E1 in GA formation from AA, albeit with low affinity and low capacity. Further studies are needed to identify other pathways of GA formation.  相似文献   

13.
1.?Polymorphisms of cytochrome P450 2C19 (CYP2C19) is an important factor contributing to variability of voriconazole pharmacokinetics. Polymorphisms of CYP3A4, CYP3A5, CYP2C9 and non-genetic factors such as age, gender, body mass index (BMI), transaminase levels, concomitant medications might also affect voriconazole initial steady serum trough concentration (VICmin) in haematological patients, but the effects were not clear.

2.?Eighteen single-nucleotide polymorphisms in CYP2C19, CYP3A4, CYP3A5, CYP2C9 were genotyped. Patients were stratified into two groups according to CYP2C19 genotype. Group 1 were patients with CYP2C19*2 or CYP2C19*3, and Group 2 were homozygous extensive metabolizers. The effects were studied in different groups. VICmin was adjusted on daily dose (VICmin/D) for overcoming effect of dose.

3.?A total of 106 blood samples from 86 patients were included. In final optimal scaling regression models, polymorphisms of rs4646437 (CYP3A4), age, BMI was identified to be factors of VICmin/D in Group 1 (R2?=?.255, p?<?.001). Only age was confirmed as a factor of VICmin/D in Group 2 (R2?=?0.144, p?=?.021).

4.?Besides polymorphisms of CYP2C19, in individualized medication of voriconazole in haematological patients, polymorphisms of CYP3A4, and non-genetic factors as BMI, age should also be taken into account, especially for individuals with CYP2C19*2 or CYP2C19*3.  相似文献   

14.
Abstract

1.?Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems.

2.?Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2?μM and 669.5?μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8?μM and 0.05?min–1, respectively.

3.?Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products.

4.?In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.  相似文献   

15.
1.?4′-(p-Toluenesulfonylamide)-4-hydroxychalcone (TSAHC) is a synthetic sulfonylamino chalcone compound possessing anti-cancer properties. The aim of this study was to elucidate the metabolism of TSAHC in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of TSAHC.

2.?TSAHC was incubated with HLMs or recombinant P450 isoforms (rP450) in the presence of an nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-regenerating system. The metabolites were identified and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). P450 isoforms, responsible for TSAHC metabolite formation, were characterized by chemical inhibition and correlation studies in HLMs and enzyme kinetic studies with a panel of rP450 isoforms.

3.?Two hydroxyl metabolites, that is M1 and M2, were produced from the human liver microsomal incubations (Km and Vmax values were 2.46?µM and 85.1?pmol/min/mg protein for M1 and 9.98?µM and 32.1?pmol/min/mg protein for M2, respectively). The specific P450 isoforms responsible for two hydroxy-TSAHC formations were identified using a combination of chemical inhibition, correlation analysis and metabolism by expressed recombinant P450 isoforms. The known P450 enzyme activities and the rate of TSAHC metabolite formation in the 15 HLMs showed that TSAHC metabolism is correlated with CYP2C and CYP3A activity. The P450 isoform-selective inhibition study in HLMs and the incubation study of cDNA-expressed enzymes also showed that two hydroxyl metabolites M1 and M2 biotransformed from TSAHC are mainly mediated by CYP2C and CYP3A, respectively. These findings suggest that CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 isoforms are major enzymes contributing to TSAHC metabolism.  相似文献   

16.
  1. The purpose of the study was to elucidate the influence of multidrug resistance gene (MDR1) haplotype and CYP3A5 genotype on cyclosporine (CsA) blood level in Chinese renal transplant recipients.

  2. CsA trough level (C0) and peak level (C2) of 115 patients 1 week and 1 month after renal transplantation were determined. MDR1 C1236T, G2677T/A, C3435T and CYP3A5*3 genotypes were determined by polymerase chain reaction (PCR) assays based on amplification refractory mutation.

  3. Dose-adjusted C0 (C0/D), C2 (C2/D) were 50.5?±?22.5, 267.8?±?110.1 ng·kg·(ml·mg)?1 after 1 week of therapy, and 79.3?±?29.4, 406.0?±?135.3 ng·kg·(ml·mg)?1 after 1 month of therapy. Frequencies of MDR1 haplotype TTT, CGC, and TGC were 27.0%, 25.2% and 20.0%, respectively. After 1 month of therapy, C2/D of TTT/TTT patients were 30% (p = 0.057) and 53% (p = 0.003) higher than CGC/TTT and CGC/CGC patients. C0/D of CYP3A5 *1/*1, *1/*3 and *3/*3 patients after 1 month of therapy were 51.8?±?25.0, 71.5?±?27.6, and 86.7?±?28.6 ng·kg·(ml·mg)?1 (p < 0.05).

  4. MDR1 haplotypes and CYP3A5*3 genotypes can be related to C2 and C0 of CsA, respectively.

  相似文献   

17.
Abstract

1.?Herbal supplements widely used in the US were screened for the potential to inhibit CYP2C8 activity in human liver microsomes. The herbal extracts screened were garlic, echinacea, saw palmetto, valerian, black cohosh and cranberry. N-desethylamodiaquine (DEAQ) and hydroxypioglitazone metabolite formation were used as indices of CYP2C8 activity.

2.?All herbal extracts showed inhibition of CYP2C8 activity for at least one of three concentrations tested. A volume per dose index (VDI) was calculated to determine the volume in which a dose should be diluted to obtain IC50 equivalent concentration. Cranberry and saw palmetto had a VDI value >5.0?l per dose unit, suggesting a potential for interaction.

3.?Inhibition curves were constructed and the IC50 (mean?±?SE) values were 24.7?±?2.7?μg/ml for cranberry and 15.4?±?1.7?μg/ml for saw palmetto.

4.?The results suggest a potential for cranberry or saw palmetto extracts to inhibit CYP2C8 activity. Clinical studies are needed to evaluate the significance of this interaction.  相似文献   

18.
  1. Paritaprevir (PTV) is a non-structural protein 3/4A protease inhibitor developed for the treatment of hepatitis C disease as a fixed dose combination of ombitasvir (OBV) and ritonavir (RTV) with or without dasabuvir.

  2. The aim of this study was to evaluate the effects of cytochrome P450 (CYP) 3A5 on in vitro PTV metabolism using human recombinant CYP3A4, CYP3A5 (rCYP3A4, rCYP3A5) and human liver microsomes (HLMs) genotyped as either CYP3A5*1/*1, CYP3A5*1/*3 or CYP3A5*3/*3.

  3. The intrinsic clearance (CLint, Vmax/Km) for the production of a metabolite from PTV in rCYP3A4 was 1.5 times higher than that in rCYP3A5. The PTV metabolism in CYP3A5*1/*1 and CYP3A5*1/*3 HLMs expressing CYP3A5 was comparable to that in CYP3A5*3/*3 HLMs, which lack CYP3A5.

  4. CYP3A4 expression level was significantly correlated with PTV disappearance rate and metabolite formation. In contrast, there was no such correlation found for CYP3A5 expression level.

  5. This study represents that the major CYP isoform involved in PTV metabolism is CYP3A4, with CYP3A5 having a minor role in PTV metabolism. The findings of the present study may provide foundational information on PTV metabolism, and may further support dosing practices in HCV-infected patients prescribed PTV-based therapy.

  相似文献   

19.
1.?The possibility of interaction of isoflavonoids with concomitantly taken drugs to determined isoflavonoids safety was studied. Inhibition of nine forms of cytochrome P450 (CYP3A4, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2C9, CYP2D6 and CYP2E1) by 12 isoflavonoids (daidzein, genistein, biochanin A, formononetin, glycitein, equol and six glucosides, daidzin, puerarin, genistin, sissotrin, ononin and glycitin) was studied systematically.

2.?The most potent inhibitors were genistein and daidzein inhibiting noncompetitively the CYP2C9 with Ki of 35.95?±?6.96 and 60.56?±?3.53?μmol/l and CYP3A4 (inhibited by genistein with Ki of 23.25?±?5.85?μmol/l also by a noncompetitive mechanism). Potent inhibition of CYP3A4 was observed also with biochanin A (Ki of 57.69?±?2.36?μmol/l) and equol (Ki of 38.47?±?2.32?μmol/l).

3.?Genistein and daidzein inhibit noncompetitively CYP3A4 and CYP2C9. With plasma levels in micromolar range, a clinically important interaction with concomitantly taken drugs does not seem to be probable.  相似文献   

20.
Abstract

1.?Sophocarpine is a biologically active component isolated from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. However, whether sophocarpine affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

2.?In this study, the inhibitory effects of sophocarpine on the eight human liver CYP isoforms (CYP1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs).

3.?The results indicate that sophocarpine could inhibit the activity of CYP3A4 and 2C9, with the IC50 values of 12.22 and 15.96?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that sophocarpine is not only a noncompetitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2C9, with Ki values of 6.74 and 9.19?μM, respectively. Also, sophocarpine is a time-dependent inhibitor of CYP3A4 with Kinact/KI value of 0.082/21.54?μM?1?min?1.

4.?The in vitro studies of sophocarpine with CYP isoforms suggested that sophocarpine has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号