首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In animal models of acute ischemic stroke, intravenous dehydroascorbic acid (DHAA), unlike ascorbic acid (AA), readily enters brain and is converted in both normal and ischemic brain into protective ascorbic acid. When given parenterally DHAA minimizes infarct volume and facilitates functional recovery. I hypothesize the same effect will occur in humans with acute ischemic stroke. Efficacy in reducing infarct volume is demonstrable in mice and rats even when DHAA is infused three hours after the experimental infarct. Moreover, there is fivefold mechanistic rational for DHA beside excellent pharmacokinetics and rapid penetration of brain and conversion to protective AA: (1) in ischemic brain, there is a precipitous decline in AA which can be reversed by intravenous DHAA; (2) after reduction of DHAA to AA in both normal and ischemic brain, AA can reduce oxidized vitamin E and glutathione, other protectors of brain against damaging reactive oxygen species which build up in ischemic brain; (3) AA itself can protect brain against damaging reactive oxygen species; (4) AA is an essential cofactor for several enzymes in brain including ten-eleven translocase-2 which upregulates production of protective molecules like brain-derived neurotrophic factor; and (5) DHAA after conversion to AA prevents both lipid oxidation and presumably oxidation of other labile substances (e.g., dopamine) in ischemic brain. In terms of safety, based on all available animal information, DHAA is safe in the proposed dosing regimen. For human clinical trials, the methodology for conducting the proposed animal safety, clinical pharmacology and phase II efficacy studies is straightforward. Finally, if DHAA preserved brain substance and function in humans, it could be employed in pre-hospital stroke patients.  相似文献   

7.
8.
Despite presence of circulating retina-specific T cells in healthy individuals, ocular immune privilege usually averts development of autoimmune uveitis. To study the breakdown of immune privilege and development of disease, we generated transgenic (Tg) mice that express a T cell receptor (TCR) specific for interphotoreceptor retinoid-binding protein (IRBP), which serves as an autoimmune target in uveitis induced by immunization. Three lines of TCR Tg mice, with different levels of expression of the transgenic R161 TCR and different proportions of IRBP-specific CD4+ T cells in their peripheral repertoire, were successfully established. Importantly, two of the lines rapidly developed spontaneous uveitis, reaching 100% incidence by 2 and 3 months of age, respectively, whereas the third appeared “poised” and only developed appreciable disease upon immune perturbation. Susceptibility roughly paralleled expression of the R161 TCR. In all three lines, peripheral CD4+ T cells displayed a naïve phenotype, but proliferated in vitro in response to IRBP and elicited uveitis upon adoptive transfer. In contrast, CD4+ T cells infiltrating uveitic eyes mostly showed an effector/memory phenotype, and included Th1, Th17 as well as T regulatory cells that appeared to have been peripherally converted from conventional CD4+ T cells rather than thymically derived. Thus, R161 mice provide a new and valuable model of spontaneous autoimmune disease that circumvents the limitations of active immunization and adjuvants, and allows to study basic mechanisms involved in maintenance and breakdown of immune homeostasis affecting immunologically privileged sites such as the eye.  相似文献   

9.
10.
Multidrug resistance (MDR) is a phenomenon expressed by many tumors affecting the chemotherapy efficacy, treatment decision, and the disease prognosis. Considering its great implication, non-invasive approaches are needed to identify this phenomenon in early stages of the disease. This article discusses the potential of the emerging non-invasive bacterium-mediated imaging of cancer in diagnosis of MDR. This potential is derived from the effect of cancer MDR on the pharmacokinetics of certain antibiotics, which are substrates of the MDR proteins. Since MDR proteins actively pump their substrates outside the resistant cancer cells, the elimination of the employed reporter bacteria, proliferating within MDR cancer cells, would require a larger dose of these antibiotics compared to those inside non-MDR cancer cells. These bacteria bear reporter genes that produce specific signals such as bioluminescent, fluorescent, magnetic, or radioactive signals that can be detected by non-invasive imaging modalities. Therefore, the presence, degree, and mechanism of MDR can be estimated by comparing the concentration of the employed antibiotic, required to cease these signals (reflecting the elimination of the bacteria), to a pre-determined reference. The real time imaging of MDR cancer and the early diagnosis of MDR, offered by this approach, would provide a better tool for preclinical studies of MDR, and allow a prompt choice of the most appropriate therapy.  相似文献   

11.
《Medical hypotheses》2014,82(6):1059-1062
Idiopathic intracranial hypertension is a common disorder affecting mainly healthy, young, overweight women. The pathogenesis of this condition is unknown, but it has been shown to follow treatment with several compounds including corticosteroids and vitamin A derivatives. This paper will offer a novel hypothesis and insight on the pathogenesis of drug induced intracranial hypertension following a review and analysis of the literature. Both corticosteroids and vitamin A derivatives have been shown to upregulate the expression of aquaporin 1, a water channel protein. Aquaporin 1 is widely distributed in the human brain and is associated with water secretion into the subarachnoid space. Aquaporin 1 was also shown to participate in the regulation of weight. Agents used for treating idiopathic intracranial hypertension reduce aquaporin 1 expression. Based on these observations, we propose that aquaporin 1 has a pathogenetic role in drug induced idiopathic intracranial hypertension. Over expression of this gene causes increased intracranial pressure, and downregulation reduces pressure and alleviates the symptomatology and complications of idiopathic intracranial hypertension.  相似文献   

12.
13.
14.
15.
16.
The present study describes the organization of the nuclei of the cholinergic, catecholaminergic, serotonergic and orexinergic systems in the brains of two members of Euarchontoglires, Lepus capensis and Tupaia belangeri. The aim of the present study was to investigate the nuclear complement of these neural systems in comparison to previous studies on Euarchontoglires and generally with other mammalian species. Brains were coronally sectioned and immunohistochemically stained with antibodies against choline acetyltransferase, tyrosine hydroxylase, serotonin and orexin-A. The majority of nuclei revealed in the current study were similar between the species investigated and to mammals generally, but certain differences in the nuclear complement highlight potential phylogenetic interrelationships within the Euarchontoglires and across mammals. In the northern tree shrew the nucleus of the trapezoid body contained neurons immunoreactive to the choline acetyltransferase antibody with some of these neurons extending into the lamellae within the superior olivary nuclear complex (SON). The cholinergic nature of the neurons of this nucleus, and the extension of cholinergic neurons into the SON, has not been noted in any mammal studied to date. In addition, cholinergic neurons forming the medullary tegmental field were also present in the northern tree shrew. Regarding the catecholaminergic system, the cape hare presented with the rodent specific rostral dorsal midline medullary nucleus (C3), and the northern tree shrew lacked both the ventral and dorsal divisions of the anterior hypothalamic group (A15v and A15d). Both species were lacking the primate/megachiropteran specific compact portion of the locus coeruleus complex (A6c). The nuclei of the serotonergic and orexinergic systems of both species were similar to those seen across most Eutherian mammals. Our results lend support to the monophyly of the Glires, and more broadly suggest that the megachiropterans are more closely related to the primates than are any other members of Euarchontoglires studied to date.  相似文献   

17.
18.
The design of randomized controlled clinical studies can greatly benefit from iterative assessments of population representativeness of eligibility criteria. We propose a multi-trait metric - GIST 2.0 that can compute the a priori generalizability based on the population representativeness of a clinical study by explicitly modeling the dependencies among all eligibility criteria. We evaluate this metric on twenty clinical studies of two diseases and analyze how a study’s eligibility criteria affect its generalizability (collectively and individually). We statistically analyze the effects of trial setting, trait selection and trait summarizing technique on GIST 2.0. Finally we provide theoretical as well as empirical validations for the expected properties of GIST 2.0.  相似文献   

19.
《Medical hypotheses》2014,82(6):662-666
Despite widespread use of antioxidants, reactive oxygen species have important functions in normal tissues. Herein, we present an example of a physiological role for free radicals, and in particular, reactive oxygen species, that are suppressed by anti-oxidants. Free radicals catalyze the degradation of hyaluronan in synovial fluid, a tissue in which hyaluronidase activity is barely detectable. Articular cartilage requires a low oxygen environment. The process of hyaluronan peroxidation consumes significant amounts of molecular oxygen, thus keeping the tension of oxygen in the joint at a low but physiologically critical level. One concern is the change in physical activity between day and night, with periods of joint hyperemia and ischemia, respectively. Increased oxygen and the resulting oxidative stress would lead to chondrocyte dysfunction and cartilage damage. A mechanism for keeping oxygen levels low is required. We postulate that a mechanism indeed exists for the removal of excess oxygen. High-molar-mass hyaluronan turnover in synovial fluid utilizes peroxidative degradation, during which oxygen is massively consumed. The peroxidation itself may be initiated by hydrogen peroxide, which is produced by chondrocyte mitochondria, that can diffuse into the synovial fluid. The resulting decrease in available oxygen down-regulates hyaluronan peroxidation. This in turn prevents excessive oxygen consumption. It appears that free radicals and reactive oxygen species may be components of normal physiology, particularly in the synovial fluid of joints and articular cartilage. It is suggested therefore that indiscriminate use of anti-oxidants, vigorously promoted currently by health professionals and the health industry, be approached with caution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号