首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High cervical spinal cord injury (SCI) interrupts bulbospinal respiratory pathways innervating phrenic motoneurons, and induces an inactivation of phrenic nerves (PN) and diaphragm. We have previously shown that the ipsilateral (ipsi) PN was inactivated following a lateral C2 SCI, but was spontaneously partially reactivated 7 days post - SCI. This phrenic reactivation depended on contralateral (contra) descending pathways, located laterally, that cross the spinal midline. We analysed here whether long-term post-lesional changes may occur in the respiratory network. We showed that ipsi PN reactivation was greater at 3 months compared with 7 days post-SCI, and that it was enhanced after acute contra phrenicotomy (Phx), which also induced a substantial reactivation of the ipsi diaphragm (not detected at 7 days post-SCI). At 3 months post-SCI (compared with 7 days post-SCI), ipsi PN activity was only moderately affected by ipsi Phx or by gallamine treatment, a nicotinic neuromuscular blocking agent, indicating that it was less dependent on ipsi sensory phrenic afferents. After an additional acute contra SCI (C1) performed laterally, ipsi PN activity was abolished in rats 7 days post-SCI, but persisted in rats 3 months post-SCI. This activity thus depended on new functional descending pathways located medially rather than laterally. These may not involve newly recruited neurons as retrograde labelling showed that ipsi phrenic motoneurons were innervated by a similar number of medullary respiratory neurons after a short and long post-lesional time. These results show that after a long post-lesional time, phrenic reactivation is reinforced by an anatomo-functional reorganization of spinal respiratory pathways.  相似文献   

2.
Immediate postlesion reorganization of the somatosensory cortical representation was examined in adult rats. Response properties of small clusters of neurons were recorded in the area of the primary somatosensory cortex (SI) devoted to the contralateral forepaw representation. Electrophysiological maps were elaborated on the basis of the sensory 'submodality' (cutaneous or noncutaneous) and the location of the peripheral receptive fields (RFs) of layer IV neurons. Recordings were made prior to, and from 1 to 12 h after, induction of a focal neurovascular lesion to the SI cortex that initially destroyed a part (8.5%) of the cutaneous representation. Moreover, the influence of an anti-ischaemic substance (piracetam) on lesion-induced changes was analysed. The main observations were: (i) a gradual outward expansion of the area of the functional lesion, which was smaller in the piracetam-treated (PT) rats than in the control, placebo-treated (PL) rats; (ii) a substantial remodelling of the spared representational zones, both in cortical sectors adjoining the site of injury and those remote from the site; (iii) a significant postlesion increase in the size of cutaneous RFs in the PT rats, but not in the PL rats; (iv) a better preservation of RF submodality and topographic organization in the PT maps than in the PL maps; and (v) a decrease in neuronal responsiveness to cutaneous stimulation which was less pronounced in the PT than in the PL rats. Our results can be ascribed to a rapid change in the balance of excitatory and inhibitory connections which leads to unmasking of subthreshold inputs converging onto cortical neurons. Our findings also indicate that acute piracetam treatment exerts a protective function on the physiological response properties of cortical neurons after focal injury.  相似文献   

3.
Functional imaging studies, using blood oxygen level-dependent signals, have demonstrated cortical reorganization of forearm muscle maps towards the denervated leg area following spinal cord injury (SCI). The extent of cortical reorganization was predicted by spinal atrophy. We therefore expected to see a similar shift in the motor output of corticospinal projections of the forearm towards more denervated lower body parts in volunteers with cervical injury. Therefore, we used magnetic resonance imaging-navigated transcranial magnetic stimulation (TMS) to non-invasively measure changes in cortical map reorganization of a forearm muscle in the primary motor cortex (M1) following human SCI. We recruited volunteers with chronic cervical injuries resulting in bilateral upper and lower motor impairment and severe cervical atrophy and healthy control participants. All participants underwent a T1-weighted anatomical scan prior to the TMS experiment. The motor thresholds of the extensor digitorum communis muscle (EDC) were defined, and its cortical muscle representation was mapped. The centre of gravity (CoG), the cortical silent period (CSP) and active motor thresholds (AMTs) were measured. Regression analysis was used to investigate relationships between trauma-related anatomical changes and TMS parameters. SCI participants had increased AMTs (P = 0.01) and increased CSP duration (P = 0.01). The CoG of the EDC motor-evoked potential map was located more posteriorly towards the anatomical hand representation of M1 in SCI participants than in controls (P = 0.03). Crucially, cord atrophy was negatively associated with AMT and CSP duration (r(2) ≥ 0.26, P < 0.05). In conclusion, greater spinal cord atrophy predicts changes at the cortical level that lead to reduced excitability and increased inhibition. Therefore, cortical forearm motor representations may reorganize towards the intrinsic hand motor representation to maximize output to muscles of the impaired forearm following SCI.  相似文献   

4.
Cortical excitability and cortico-cortical inhibition were examined in twenty-one patients suffering from idiopathic rotational cervical dystonia. Polymyography of cervical muscles, somatosensory evoked potential recordings, and paired transcranial magnetic stimulation were used to assess the dystonic disorder. The results were compared with those obtained in a group of sixteen healthy age-matched volunteers. Statistically significant differences between the patient group and the control group were found when the amplitude values of the mean P22/N30 component measured at F [3, 4] and C[3, 4]' electrode positions were compared. The mean amplitude of P22/N30 in both of these electrode positions contralaterally to the direction of head deviation was significantly higher in the patient group (p ≤ 0.05). The mean side-to-side P22/N30 amplitude ratio was calculated in both groups in the F[3, 4] and C[3, 4]' electrode positions: there was a significant difference between the two groups. The mean ratio (calculated contralaterally/ipsilaterally in the patient group and left/right side in the control group) was significantly higher in the patient group (p ≤ 0.05). There were statistically significant differences between the two groups when the mean values of MEP amplitudes following paired stimuli at short and medium interstimulus intervals (ISI)) were compared. The percentage of amplitude reduction registered at short ISI was significantly lower in the patient group when both 3 ms ISI and 5 ms ISI were considered, and when the hemisphere contralateral to the direction of head deviation was stimulated. There was also a difference (with the short ISI) when the hemisphere ipsilateral to the direction of head deviation was stimulated, but this difference was not significant (p < 0.5). Almost all of the amplitude changes following the paired stimulus at the longer ISI, i. e. 10, 15, and 20 ms were significantly different when the patient group was compared with control group: when the ipsilateral hemisphere was stimulated, the amplitude of conditioned responses was significantly higher following all three paired stimuli (with 10, 15, and 20 ms ISI) at the p ≤ 0.05 significance level; when the contralateral hemisphere was stimulated, they were significantly higher following the 10 and 20 ms ISI paired stimuli (significance level p ≤ 0.05). The interhemispheric difference in the patient group was significant only for the paired stimuli using 3 and 5 ms (short) ISI and 15 and 20 ms (medium) ISI. There was a significantly decreased inhibition at 3 and 5 ms ISI when the hemisphere contralateral to the direction of head deviation was stimulated, as compared with the hemisphere ipsilateral (p ≤ 0.05). Similarly, there was a significantly increased facilitation at 15 and 20 ms when the hemisphere contralateral to the direction of head deviation was stimulated, as compared with the hemisphere ipsilateral (p ≤ 0.05). The results indicate that a disorder of both cortical excitability and intracortical inhibition exists in patients with cervical dystonia, and that this disorder is lateralized, i. e. it is located within the hemisphere contralateral to the direction of head deviation. Received: 5 March 2002, Received in revised form: 1 August 2002, Accepted: 2 August 2002 Correspondence to Doc. MUDr Petr Kaňovsky, CSc.  相似文献   

5.
Peripheral nerve grafts (PNG) into the rat spinal cord support axon regeneration after acute or chronic injury, with synaptic reconnection across the lesion site and some level of behavioral recovery. Here, we grafted a peripheral nerve into the injured spinal cord of cats as a preclinical treatment approach to promote regeneration for eventual translational use. Adult female cats received a partial hemisection lesion at the cervical level (C7) and immediate apposition of an autologous tibial nerve segment to the lesion site. Five weeks later, a dorsal quadrant lesion was performed caudally (T1), the lesion site treated with chondroitinase ABC 2 days later to digest growth inhibiting extracellular matrix molecules, and the distal end of the PNG apposed to the injury site. After 4-20 weeks, the grafts survived in 10/12 animals with several thousand myelinated axons present in each graft. The distal end of 9/10 grafts was well apposed to the spinal cord and numerous axons extended beyond the lesion site. Intraspinal stimulation evoked compound action potentials in the graft with an appropriate latency illustrating normal axonal conduction of the regenerated axons. Although stimulation of the PNG failed to elicit responses in the spinal cord distal to the lesion site, the presence of c-Fos immunoreactive neurons close to the distal apposition site indicates that regenerated axons formed functional synapses with host neurons. This study demonstrates the successful application of a nerve grafting approach to promote regeneration after spinal cord injury in a non-rodent, large animal model.  相似文献   

6.
Sensorimotor activity has been shown to play a key role in functional recovery after partial spinal cord injury (SCI). Most studies in rodents have focused on the rehabilitation of hindlimb locomotor functions after thoracic or lumbar SCI, whereas forelimb motor and somatosensory abilities after cervical SCI remain largely uninvestigated, despite the high incidence of such injuries in humans. Moreover, little is known about the neurophysiological substrates of training‐induced recovery in supraspinal structures. This study was aimed at evaluating the effects of a training procedure combining both motor and sensory stimulation on behavioral performance and somatosensory cortical map remodeling after cervical (C4–C5) spinal hemisection in rats. This SCI severely impaired both sensory and motor capacities in the ipsilateral limbs. Without training, post‐lesion motor capacities gradually improved, whereas forepaw tactile abilities remained impaired. Consistently, no stimulus‐evoked responses were recorded within the forepaw representational zone in the primary somatosensory (S1) cortex at 2 months after the SCI. However, our data reveal that with training started from the 7th day post‐lesion, a nearly complete recovery (characterized by an early and rapid improvement of motor functions) was associated with a gradual compensation of tactile deficits. Furthermore, the recovery of tactile abilities was correlated with the areal extent of reactivation of S1 cortex forepaw representations. Rehabilitative training promoted post‐lesion adaptive plasticity, probably by enhancing endogenous activity within spared spinal and supraspinal circuits and pathways sustaining sensory and motor functions. This study highlights the beneficial effect of sensorimotor training in motor improvement and its critical influence on tactile recovery after SCI.  相似文献   

7.
Li  Xuejing  Chen  Qian  Zheng  Weimin  Chen  Xin  Wang  Ling  Qin  Wen  Li  Kuncheng  Lu  Jie  Chen  Nan 《Brain imaging and behavior》2020,14(6):2367-2377
Brain Imaging and Behavior - The aim of this study was to explore whether there will be any alterations in sensorimotor-related cortex and the possible causes of sensorimotor dysfunction after...  相似文献   

8.
目的通过脊髓半侧横切的方法建立灵长类恒河猴脊髓半横切损伤动物模型,用于神经再生的研究。方法 5只成年恒河猴称重麻醉后,颈部后正中切口显露C3-5脊髓,于C4用虹膜刀切开脊髓左半侧0.5cm,通过体感诱发电位(somatosensory evoked potential SSEP)监测,确保波形改变并观察恒河猴术后24h、7d肢体运动功能和SSEP变化。结果术后24h、7d同侧肢体瘫痪,肢体运动评分由术前的5分降到1分,SSEP显示术前潜伏期(15.88±2.53)毫秒,术后24h(22.26±4.12)毫秒;7d(23.12±3.92)毫秒延长明显(P<0.01),波幅术前(11.92±5.48)μV,术后24h(5.34±3.04) μV,7d(5.78±2.98)μV,降低明显(P<0.01)。结论恒河猴麻醉后用虹膜刀脊髓半横切能损伤皮质脊髓束,引起肢体瘫痪,结果稳定可靠,操作较为简便,可建立脊髓半侧横切损伤动物模型,重复性较好,为脊髓损伤的神经修复实验研究提供了模型基础。  相似文献   

9.
The area 3b hand cortex of adult squirrel monkeys was mapped during the first minutes to hours after transecting the radial and median nerves to the hand. The objective was to evaluate initial cortical reactions to this injury and to determine whether patterns and extents of cortical change are similar in different individuals. There are 5 main findings. First, cortical aggregates related to ulnar nerve inputs from the hand rapidly expanded to occupy an additional 21% of the cortical hand map. Second, face and forearm inputs, which normally activate areas adjacent to hand cortex, rapidly expanded into areas of 4% and 1% of the hand cortex respectively. Third, cortical changes involved shifts in receptive field locations that were initiated within minutes after injury. Fourth, the spatial patterns and extents of cortical change were similar in different individuals. Finally, the pattern of cortical change produced after this injury differed from the pattern seen after injury of the median and ulnar nerves. These rapid expansions are a beginning point from which further changes must progress; however, in contrast to changes accompanying chronic hand injuries, these initial cortical reactions do not appear dictated by use of uninjured inputs. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Functional magnetic resonance imaging (fMRI) studies were performed for visualizing ongoing brain plasticity in Neurotrophin-3 (NT3)-treated experimental spinal cord injury (SCI). In response to the electrical stimulation of the forepaw, the NT3-treated animals showed extensive activation of brain structures that included contralateral cortex, thalamus, caudate putamen, hippocampus, and periaqueductal gray. Quantitative analysis of the fMRI data indicated significant changes both in the volume and center of activations in NT3-treated animals relative to saline-treated controls. A strong activation in both ipsi- and contralateral periaqueductal gray and thalamus was observed in NT3-treated animals. These studies indicate ongoing brain reorganization in the SCI animals. The fMRI results also suggest that NT3 may influence nociceptive pathways.  相似文献   

11.
Plasticity changes of uninjured nerves can result in a novel neural circuit after spinal cord injury, which can restore sensory and motor functions to different degrees. Although processes of neural plasticity have been studied, the mechanism and treatment to effectively improve neural plasticity changes remain controversial. The present study reviewed studies regarding plasticity of the central nervous system and methods for promoting plasticity to improve repair of injured central nerves. The results showed that synaptic reorganization, axonal sprouting, and neurogenesis are critical factors for neural circuit reconstruction. Directed functional exercise, neurotrophic factor and transplantation of nerve-derived and non-nerve-derived tissues and cells can effectively ameliorate functional disturbances caused by spinal cord injury and improve quality of life for patients.  相似文献   

12.
The capacity of the central nervous system for axonal growth decreases as the age of the animal at the time of injury increases. Changes in the expression of neurotrophic factors within embryonic and early postnatal spinal cord suggest that a lack of trophic support contributes to this restrictive growth environment. We examined neurotrophic factor gene profiles by ribonuclease protection assay in normal neonate and normal adult spinal cord and in neonate and adult spinal cord after injury. Our results show that in the normal developing spinal cord between postnatal days 3 (P3) and P10, compared to the normal adult spinal cord, there are higher levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and glial-derived neurotrophic factor (GDNF) mRNA expression and a lower level of ciliary neurotrophic factor (CNTF) mRNA expression. Between P10 and P17, there is a significant decrease in the expression of NGF, BDNF, NT-3, and GDNF mRNA and a contrasting steady and significant increase in the level of CNTF mRNA expression. These findings show that there is a critical shift in neurotrophic factor expression in normal developing spinal cord between P10 and P17. In neonate spinal cord after injury, there is a significantly higher level of BDNF mRNA expression and a significantly lower level of CNTF mRNA expression compared to those observed in the adult spinal cord after injury. These findings suggest that high levels of BDNF mRNA expression and low levels of CNTF mRNA expression play important roles in axonal regrowth in early postnatal spinal cord after injury.  相似文献   

13.
The present study was designed to assess whether cortical changes after peripheral nerve damage are related to the degree of death of primary sensory neurons in the damaged nerve. The cytotoxin ricin was injected into the sciatic nerves of adult rats to kill primary sensory neurons with axons through the injection site. Following periods of 6-101 days, the S-I hindpaw map was evaluated with neurophysiological techniques and compared with the hindpaw maps of previously studied normal adult rats and adult rats that had undergone adult or neonatal sciatic section at a comparable level of the nerve. These comparisons allowed evaluation of cortical functional organization following different degrees of sensory neuron loss after sciatic nerve injury. There were three main results. 1) The comparison of ricin-treated and normal adult rats indicated that ricin treatment interrupted inputs from the sciatic skin territory on the hindpaw and caused a limited increase in the size of the cortical area that was activated by stimulation of hindpaw skin innervated by the remaining saphenous nerve. 2) The cortical maps of rats that had undergone adult ricin treatment (relatively large primary neuron loss) or section during adulthood (small to moderate primary neuron loss) were similar. In both groups, only the saphenous hindpaw skin was represented in cortex, and the cortical area that was activated by stimulation of the saphenous hindpaw skin had undergone a comparable limited enlargement. 3) The comparison of ricin-treated adult rats (relatively large primary neuron loss) and adult rats that had undergone neonatal section (relatively large primary neuron loss) indicated that cortical organization differed after these treatments. In particular, after ricin treatment the cortical area that was activated by stimulation of the saphenous hindpaw skin was larger than the comparable area in neonatal denervates, and the topographical progressions between the hindpaw and adjacent body representations were not as variable as after neonatal section. These findings indicate that cortical maps are altered after injection of ricin into a nerve. The similarity in cortical organization after ricin treatment (relatively large sensory neuron loss) and nerve section in adults (relatively small sensory neuron loss) and the differences in cortical organization after ricin treatment and nerve section in neonates (both relatively large sensory neuron loss) indicate cortical changes do not covary as a simple function of the degree of peripheral neuron death.  相似文献   

14.
Abstract

Consistently reproducible experimental trauma was inflicted on the rat spinal cord (L3-L4) employing a controlled cortical impact device. The spinal cord was injured with one of three sizes of chips; thick (3 mm diameter), medium (2 mm diameter), thin (1 mm diameter). Each chip was applied at ), 2 and 3 mm deformation depths. The correlations of the magnitude of the primary trauma were examined histopathologically. It was found that the extent and intensity of the trauma could be changed by altering the depth of deformation and the chip diameter at a fixed velocity of 4.6 m per sec. The injury caused by the 2 mm diameter chip at 0.5 mm deformation damaged one to two segments of the perifocal spinal cord. In the surviving animals, the histological changes could be classified as primary, secondary, and late phase changes, and finally the lesion became a cavity. This study reports the application of a controlled cortical impact device to morphological research on a spinal cord injury. We found that the injury by the 2 mm chip at 0.5 mm deformation was the most advantageous and reproducible model for further investigations. [Neurol Res 1999; 21: 313–323]  相似文献   

15.
Peripheral nerve injury-induced structural and chemical modifications of the sensory circuits in the dorsal horn of the spinal cord contribute to the mechanism of neuropathic pain. In contrast to the topographic projection of primary afferents in laminae I-IV in the rat spinal cord, the primary afferents of Macaca mulatta monkeys almost exclusively project into laminae I-II of the spinal cord. After peripheral nerve injury, up-regulation of galanin has been found in sensory neurons in both monkey and rat dorsal root ganglia. However, the nerve injury-induced ultrastructural modification of galanin-containing afferents in the monkey spinal cord remains unknown. Using immunoelectron microscopy, we found that 3 weeks after unilateral sciatic nerve transection, the number of galanin-containing afferents was increased in ipsilateral lamina II of monkey spinal cord. Branching of these galanin-positive afferents was often observed. The afferent terminals contained a large number of synaptic vesicles, peptidergic vesicles and mitochondria, whereas the number of synapses was markedly reduced. Some of the afferents-enriched microtubules were often packed into bundles. Moreover, galanin-labeling could be associated with endosomal structures in many dendrites and axonal terminals of dorsal horn neurons. These results suggest that peripheral nerve injury induces an expansion of the central projection of galanin-containing afferents in lamina II of the monkey spinal cord, not only by increasing galanin levels in primary afferents but also by triggering afferent branching.  相似文献   

16.
After disruption of the descending respiratory pathways induced by unilateral cervical spinal cord injury (SCI) in rats, the inactivated ipsilateral (ipsi) phrenic nerve (PN) discharge may partially recover following some specific experimental procedures [such as contralateral (contra) phrenicotomy (Phx)]. This phrenic reactivation involves normally silent contra pathways decussating at the level of the phrenic nucleus, but the mechanisms of this crossed phrenic activation are still poorly understood. The present study investigates the contribution of sensory phrenic afferents to this process by comparing the acute effects of ipsi and contra Phx. We show that the phrenic discharge (recorded on intact PNs) was almost completely suppressed 0 h and 3 h after a lateral cervical SCI, but was already spontaneously reactivated after 1 week. This ipsi phrenic activity was enhanced immediately after contra Phx and was completely suppressed by an acute contra cervical section, indicating that it is triggered by crossed phrenic pathways located laterally in the contra spinal cord. Ipsi phrenic activity was also abolished immediately after ipsi Phx that interrupts phrenic sensory afferents, an effect prevented by prior acute ablation of the cervical dorsal root ganglia, indicating that crossed phrenic activation depends on excitatory phrenic sensory afferents but also putatively on inhibitory non-phrenic afferents. On the basis of these data, we propose a new model for crossed phrenic activation after partial cervical injury, with an essential role played by ipsi-activating phrenic sensory afferents.  相似文献   

17.
The extent of the cortical somatotopic map and its relationship to phantom phenomena was tested in five subjects with congenital absence of an upper limb, four traumatic amputees with phantom limb pain and five healthy controls. Cortical maps of the first and fifth digit of the intact hand, the lower lip and the first toe (bilaterally) were obtained using neuroelectric source imaging. The subjects with congenital upper limb atrophy showed symmetric positions of the left and right side of the lower lip and the first toe, whereas the traumatic amputees with pain showed a significant shift (about 2.4 cm) of the cortical representation of the lower lip towards the hand region contralateral to the amputation side but no shift for the toe representation. In healthy controls, no significant hemispheric differences between the cortical representation of the digits, lower lip or first toe were found. Phantom phenomena were absent in the congenital but extensive in the traumatic amputees. These data confirm the assumption that congenital absence of a limb does not lead to cortical reorganization or phantom limbs whereas traumatic amputations that are accompanied by phantom limb pain show shifts of the cortical areas adjacent to the amputation zone towards the representation of the deafferented body part.  相似文献   

18.
We have studied the effects of making large lesions of visual cortex on the synaptic organization of the dorsal lateral geniculate nucleus (LGN) in the cat. Visual cortex was removed at birth in one group of cats and during adulthood in a second group. Following survival periods of 6 months to 2 years, the organization of synapses made by afferents from the retina in the LGN was investigated quantitatively with the electron microscope. In single thin sections we determined the percentage of retinal axon terminals that made synapses in the LGN, the average number of synapses made by each retinal axon terminal, and the identity of each postsynaptic process. These measurements were made separately for retinogeniculate connections in the A and C laminae of the LGN. For comparison, similar sets of measurements were made in adult cats that had been reared normally. When single thin sections from the A or C laminae of the LGN in normal cats are examined, about 60% of the axon terminals from the retina are seen to make at least one synaptic contact. These contacts can be with dendrites or F profiles or both. On average, each retinogeniculate terminal makes approximately 1.4 synapses in the plane of a single section and contacts dendrites three times as often as F profiles. In the A laminae of the LGN in cats that received a visual cortex lesion at birth or in adulthood, the percentage of retinal terminals that make synapses is the same as in normal cats. Similarly, the average number of synaptic contacts made by each retinogeniculate terminal is not changed by a lesion of visual cortex. In contrast, the number of contacts made with dendrites is reduced markedly, by about 29% after a lesion at birth and 53% after a lesion as an adult. However, these reductions are offset by compensatory increases in the number of contacts made with F profiles, and thus the mean number of contacts made by each retinogeniculate terminal is stabilized at a normal value. In the C laminae of the LGN, retinogeniculate terminals also reapportion their synaptic contacts. In cats with a lesion during adulthood, the redistribution of synapses is compensatory, as in the A laminae. When a lesion is made at birth, however, the number of new retinal contacts made with F profiles exceeds the number of dendritic contacts that are lost. As a result, each retinogeniculate terminal makes about 26% more synapses, in total, than normal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.

Background

Paired corticospinal-motoneuronal stimulation (PCMS) increases corticospinal transmission in humans with chronic incomplete spinal cord injury (SCI).Objective/Hypothesis: Here, we examine whether increases in the excitability of spinal motoneurons, by performing voluntary activity, could potentiate PCMS effects on corticospinal transmission.

Methods

During PCMS, we used 100 pairs of stimuli where corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the hand representation of the primary motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle ~1–2?ms before antidromic potentials were elicited in motoneurons by electrical stimulation of the ulnar nerve. PCMS was applied at rest (PCMSrest) and during a small level of isometric index finger abduction (PCMSactive) on separate days. Motor evoked potentials (MEPs) elicited by TMS and electrical stimulation were measured in the FDI muscle before and after each protocol in humans with and without (controls) chronic cervical SCI.

Results

We found in control participants that MEPs elicited by TMS and electrical stimulation increased to a similar extent after both PCMS protocols for ~30?min. Whereas, in humans with SCI, MEPs elicited by TMS and electrical stimulation increased to a larger extent after PCMSactive compared with PCMSrest. Importantly, SCI participants who did not respond to PCMSrest responded after PCMSactive and those who responded to both protocols showed larger increments in corticospinal transmission after PCMSactive.

Conclusions

Our findings suggest that muscle contraction during PCMS potentiates corticospinal transmission. PCMS applied during voluntary activity may represent a strategy to boost spinal plasticity after SCI.  相似文献   

20.
Chronic tactile allodynia and hyperalgesia are frequent complications of spinal cord injury (SCI) with poorly understood mechanisms. Possible causes are plastic changes in the central arbors of nociceptive and nonnociceptive primary sensory neurons and changes in descending modulatory serotonergic pathways. A clinically relevant clip-compression model of SCI in the rat was used to investigate putative mechanisms of chronic pain. Behavioral testing (n = 18 rats) demonstrated that moderate (35 g) or severe (50 g) SCI at the 12th thoracic spinal segment (T-12) reliably produces chronic tactile allodynia and hyperalgesia that can be evoked from the hindpaws and back. Quantitative morphometry (n = 37) revealed no changes after SCI in the density or distribution of Abeta-, Adelta-, and C-fiber central arbors of primary sensory neurons within the thoracolumbar segments T-6 to L-4. This observation rules out a mandatory relationship between pain-related behaviors and changes in the distribution or density of central afferent arbors. The area of serotonin immunoreactivity in the dorsal horn (n = 12) decreased caudal to the injury site (L1-4) and increased threefold rostral to it (T9-11). The decreased serotonin and presence of tactile allodynia and hyperalgesia caudal to the injury are consistent with disruption of descending antinociceptive serotonergic tracts that modulate pain transmission. The functional significance of the increased serotonin in rostral segments may relate to the development of tactile allodynia as serotonin also has known pronociceptive actions. Changes in the descending serotonergic pathway require further investigation, as a disruption of the balance of serotonergic input rostral and caudal to the injury site may contribute to the etiology of chronic pain after SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号