首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Choosing between actions associated with uncertain rewards and punishments is mediated by neural circuitry encompassing the orbitofrontal cortex, anterior cingulate cortex (ACC), and striatum; however, the precise conditions under which these different components are activated during decision-making cognition remain uncertain. METHODS: Fourteen healthy volunteers completed an event-based functional magnetic resonance imaging protocol to investigate blood-oxygenation-level-dependent (BOLD) responses during independently modeled phases of choice cognition. In the "decision phase," participants decided which of two simultaneous visually presented gambles they wished to play for monetary reward. The gambles differed in their magnitude of gains, magnitude of losses, and the probabilities with which these outcomes were delivered. In the "outcome phase," the result of each choice was indicated on the visual display. RESULTS: In the decision phase, choices involving large gains were associated with increased BOLD responses in the pregenual ACC, paracingulate, and right posterior orbitolateral cortex compared with choices involving small gains. In the outcome phase, good outcomes were associated with increased BOLD responses in the posterior orbitomedial cortex, subcallosal ACC, and ventral striatum compared with negative outcomes. There was only limited overlap between reward-related activity in ACC and orbitofrontal cortex during the decision and outcome phases. CONCLUSIONS: Neural activity within the medial and lateral orbitofrontal cortex, pregenual ACC, and striatum mediate distinct representations of reward-related information that are deployed at different stages during a decision-making episode.  相似文献   

2.
Schizophrenia, once considered a psychological malady devoid of any organic brain substrate, has been the focus of intense neuroimaging research. Findings reveal mild but generalized tissue loss as well as more selective focal loss. It is unclear whether these abnormalities reflect neurodevelopmental or neurodegenerative processes, or some combination of each; current evidence favors a preponderance of neurodevelopmental abnormalities. The pattern of brain abnormalities is also influenced by environmental and genetic risk factors, as well as by the course (and possibly even treatment) of this illness. These findings are described in this article.  相似文献   

3.
BACKGROUND: The human hippocampus becomes visible during the first trimester and folds to form the hippocampal fissure (HF) in the second trimester. The walls of this fissure fuse by 30 weeks, although small residual cavities can occur if development is disrupted. The primary purpose of this study was to determine if hippocampal fissures are evident in schizophrenia. A second goal was to assess the association between HF size and premorbid and clinical features of the illness. METHODS: Magnetic resonance imaging scans were obtained on 33 patients with first-episode schizophrenia and 19 healthy volunteers. Hippocampal fissures were measured using semi-automated procedures, and hippocampi were manually traced. Birth history and premorbid functioning were assessed using maternal report. RESULTS: Patients had a significantly larger mean HF volume and a nonsignificantly smaller hippocampal volume. Hippocampal fissure size was significantly associated with poor educational achievement and with anxiety-depression symptoms during the onset of illness. Smaller hippocampal size was associated with poor premorbid adjustment. CONCLUSIONS: Larger HF size and an association between low educational achievement and enlarged HFs suggest abnormal neurodevelopment in schizophrenia. The association between HF size and anxiety-depression symptoms suggests that hippocampal abnormalities underlying HF dilatation may be a predisposing factor for increased stress sensitivity.  相似文献   

4.
Recently, a single nucleotide polymorphism (SNP) in the CAMKK2 gene (rs1063843) was found to be associated with lower expression of the gene in the dorsolateral prefrontal cortex (DLPFC) and with schizophrenia (SCZ) and deficits in working memory and executive function. However, the brain mechanism underlying this association is poorly understood. A functional magnetic resonance imaging (fMRI) study (N = 84 healthy volunteers) involving multiple cognitive tasks, including a Stroop task (to measure attentional executive control), an N‐back task (to measure working memory), and a delay discounting task (to measure decision making) to identify the brain regions affected by rs1063843 was performed. Across all three tasks, it was found that carriers of the risk allele consistently exhibited increased activation of the left DLPFC. In addition, the risk allele carriers also exhibited increased activation of the right DLPFC and the left cerebellum during the Stroop task and of the left caudate nucleus during the N‐back task. These findings helped to elucidate the role of CAMKK2 in cognitive functions and in the etiology of SCZ. Hum Brain Mapp 37:2398–2406, 2016. © 2016 Wiley Periodicals, Inc .  相似文献   

5.
OBJECTIVES: Bipolar patients are impaired in Stroop task performance, a measure of selective attention. Structural and functional abnormalities in task-associated regions, in particular the prefrontal cortex (PFC), have been reported in this population. We aimed to examine the relationship between functional abnormalities, impaired task performance and the severity of depressive symptoms in bipolar patients. METHODS: Remitted bipolar patients (n = 10; all medicated), either euthymic or with subsyndromal depression, and age-matched control subjects (n = 11) viewed 10 alternating blocks of incongruent Stroop and control stimuli, naming the colour of the ink. Neural response was measured using functional magnetic resonance imaging. We computed between-group differences in neural response and within-group correlations with mood and anxiety. RESULTS: There were no significant between-group differences in task performance. During the Stroop condition, controls demonstrated greater activation of visual and dorsolateral and ventrolateral prefrontal cortical areas; bipolar patients demonstrated relative deactivation within orbital and medial prefrontal cortices. Depression scores showed a trend towards a negative correlation with the magnitude of orbitofrontal cortex deactivation in bipolar patients, whereas state anxiety correlated positively with activation of dorsolateral PFC and precuneus in controls. CONCLUSIONS: Our findings confirm previous reports of decreased ventral prefrontal activity during Stroop task performance in bipolar patients, and suggest a possible negative correlation between this and depression severity in bipolar patients. These findings further highlight the ventromedial PFC as a potential candidate for illness related dysfunction in bipolar disorder.  相似文献   

6.
Neurons in the macaque brain arise from progenitors located near the cerebral ventricles in a temporally segregated manner such that lethal doses of ionizing irradiation, if administered over a discrete time interval, can deplete individual nuclei selectively. A previous study showed that neuron number in the dorsal lateral geniculate nucleus is reduced following early gestational exposure to x‐irradiation (Algan and Rakic [ 1997 ] J. Comp. Neurol. 12:335–352). Here we examine whether similarly timed irradiation decreases neuron number in three associational thalamic nuclei: mediodorsal (MD), anterior, and pulvinar. Ten macaques were exposed to multiple doses of x‐rays (total exposure (175–350 cGy) in early gestation (E33–E42) or midgestation (E70–E90); eight nonirradiated macaques were controls. Only the early‐irradiated monkeys, not the midgestationally irradiated animals, exhibited deficits in whole‐thalamic neuron (–15%) and glia numbers (–21%) compared with controls. Reduction of neuron number (–26%) and volume (–29%) was particularly pronounced in MD. In contrast, cell number and volume were not significantly decreased in the anterior or pulvinar nuclei following early gestational irradiation. Thus, reduced thalamic neuron number was associated specifically with irradiation in early gestation. Persistence of the thalamic neuronal deficit in adult animals indicates that prenatally deleted neurons had not been replenished during maturation or in adulthood. The selective reduction of MD neuron number also supports the protomap hypothesis that neurons of each thalamic nucleus originate sequentially from separate lines of neuronal stem cells (Rakic [ 1977a ] J. Comp. Neurol. 176:23–52). The early gestationally irradiated macaque is discussed as a potentially useful model for studying the neurodevelopmental pathogenesis of schizophrenia. J. Comp. Neurol. 515:454–464, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Rostral prefrontal cortex (PFC) is known to be involved in source memory, the ability to recollect contextual information about an event. However it is unclear whether subregions of rostral PFC may be differentially engaged during the recollection of different kinds of source detail. We used event related functional MRI to contrast two forms of source recollection: (1) recollection of whether stimuli had previously been perceived or imagined, and (2) recollection of which of two temporally distinct lists those stimuli had been presented in. Lateral regions of rostral PFC were activated in both tasks. However medial regions of rostral PFC were activated only when participants were required to recollect source information for self-generated, “imagined” stimuli, indicating a specific role in self-referential processing. In addition, reduced activity in a region of medial ventro-caudal PFC/basal forebrain was associated with making “imagined-to-perceived” confabulation errors. These results suggest that whilst the processing resources supported by some regions of lateral rostral PFC play a general role in source recollection, those supported by medial rostral PFC structures may be more specialised in their contributions.  相似文献   

8.
The (31)P NMR localised method was used to study the metabolism of phospholipid and high energy phosphate in the prefrontal cortex. The spectra were taken from patients with schizophrenia (11 males) receiving neuroleptic medication, and were compared to normal controls (15 males). Their spectral intensities were analysed using a non-linear least-squares method with a prior knowledge of the fixed chemical shifts and linewidths, leading to further resolution into resonances of glycerophosphorylethanolamine (GPE), glycerophosphorylcholine (GPC), phosphorylethanolamine (PE) and phosphorylcholine (PC). The metabolite concentrations were calculated referring to the spectral intensities of phosphate phantoms with known concentrations. T1 values of phantom and cerebrum were estimated from a series of localised inversion recovery spectra to correct for the signal saturation effects. The schizophrenic patients showed an increased concentration of GPC but not GPE, PE or PC. Furthermore, no difference was observed regarding the concentration of high-energy phosphates such as phosphocreatine, inorganic phosphate and ATP. The patients did not show any differences in mitochondrial function such as phosphorylation potential and the ratio of the rate of ATP synthesis. Thus, an increase in GPC concentration in the prefrontal cortex could be characteristic of the pathophysiology of schizophrenia with mild negative symptoms.  相似文献   

9.
10.
Abstract Shortening of hippocampal formation (HF) in chronic schizophrenic patients have been demonstrated in our previous study. The purpose of the present study is to test if shortening of the HF occurs in schizophrenic patients suffering their initial psychotic episode. We performed contiguous, 1 mm thick, magnetic resonance imaging scans in 20 first-episode schizophrenic patients, 21 chronic schizophrenic patients, and 25 healthy subjects. Both groups of schizophrenic patients demonstrated significant shortening of the HF compared with normal controls (first-episode schizophrenia, 5.3%; chronic schizophrenia, 8.0%). However, the HF length was not significantly different between the first-episode and chronic schizophrenic patients. No significant correlation was seen between the HF length and the duration of illness in chronic schizophrenic patients. These results suggest that the HF shortening observed in schizophrenic patients may be genetic and/or developmental in origin.  相似文献   

11.
Summary Background. Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. Methods. We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder, delusional disorder or other non-organic psychosis), aged 10–18 to those of 29 matched controls, using optimized voxel-based morphometry. Results. Psychotic patients had frontal white matter abnormalities, but expected (regional) gray matter reductions were not observed. Post hoc analyses revealed that schizophrenia patients (n = 15) had significantly larger lateral ventricles as compared to controls. Duration and dose of antipsychotics correlated negatively with global gray matter volume in minimally medicated patients (n = 18). Conclusion. Findings of white matter changes and enlarged lateral ventricles already at illness onset in young schizophrenia spectrum patients, suggests aberrant neurodevelopmental processes in the pathogenesis of these disorders. Gray matter volume changes, however, appear not to be a key feature in early onset first-episode psychosis.  相似文献   

12.
BACKGROUND: A growing body of evidence suggests the existence of synaptic pathology in schizophrenia. Here we used the phencyclidine schizophrenia model to directly investigate at the electron microscopic level whether structural synaptic alterations are present in these animals. METHODS: Adult male rats were treated according to our subchronic phencyclidine paradigm (5 mg/kg twice daily for 7 days, intraperitoneally). Following a one-week withdrawal period, the number of prefrontal cortical spine synapses was calculated using an unbiased electron microscopic stereological approach. The number of astroglia cells and the density of their processes was also analyzed following glial-fibrillary acidic protein immunohistochemistry. RESULTS: Subchronic phencyclidine treatment resulted in a 41.2% decrease in the number of prefrontal spine synapses when compared to controls. This was accompanied by a 58.8% increase in astroglia process density, without significant change in the number of astroglia cells. CONCLUSIONS: Our results demonstrate a severe reduction in the number of prefrontal spine synapses in an animal model of schizophrenia. This phenomenon may contribute to phencyclidine-induced cognitive dysfunction and decreased prefrontal cellular activity observed in this model.  相似文献   

13.
Dendritic spine loss is observed in many psychiatric disorders, including schizophrenia, and likely contributes to the altered sense of reality, disruption of working memory, and attention deficits that characterize these disorders. ErbB4, a member of the EGF family of receptor tyrosine kinases, is genetically associated with schizophrenia, suggesting that alterations in ErbB4 function contribute to the disease pathology. Additionally, ErbB4 functions in synaptic plasticity, leading us to hypothesize that disruption of ErbB4 signaling may affect dendritic spine development. We show that dendritic spine density is reduced in the dorsomedial prefrontal cortex of ErbB4 conditional whole‐brain knockout mice. We find that ErbB4 localizes to dendritic spines of excitatory neurons in cortical neuronal cultures and is present in synaptic plasma membrane preparations. Finally, we demonstrate that selective ablation of ErbB4 from excitatory neurons leads to a decrease in the proportion of mature spines and an overall reduction in dendritic spine density in the prefrontal cortex of weanling (P21) mice that persists at 2 months of age. These results suggest that ErbB4 signaling in excitatory pyramidal cells is critical for the proper formation and maintenance of dendritic spines in excitatory pyramidal cells. J. Comp. Neurol. 522:3351–3362, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
以前额叶为种子点,利用静息态fMRI进行全脑时域相关的功能连接分析,观察长期海洛因成瘾者前额叶功能连接的变化。结果发现相比于正常对照,以左侧前额叶为种子点进行功能连接分析,海洛因成瘾者左侧前额叶与左侧海马、右侧前扣带回、左侧额中回、右侧额中回、右侧楔前叶功能连接明显降低;以右侧前额叶为种子点进行功能连接分析,海洛因成瘾者右侧前额叶与左侧眶额叶、左侧额中回功能连接明显降低。提示长期海洛因成瘾者前额叶与相关脑区的功能连接减弱,可能与海洛因成瘾的维持与戒断后复吸相关。  相似文献   

15.
The neonatal ventral hippocampal (nVH) and the neonatal prefrontal cortex (nPFC) lesions in rats have been used as models to test the hypothesis that early neurodevelopmental abnormalities lead to behavioral changes putatively linked to schizophrenia. We investigated the role of the nVH and the nPFC lesions on behavioral characteristics related to locomotor behaviors, social interaction, and grooming. Bilateral ibotenic acid lesions of the VH, the PFC, or both were made in neonatal Sprague-Dawley rats (postnatal day 7, P7) and their behaviors studied at P35 and P60. No significant differences in any of the behaviors were observed between sham animals and rats with ibotenic acid lesions at P35. Postpubertally (at P60), the spontaneous locomotor activity of nVH-lesioned rats was significantly enhanced compared to the sham controls; however, this hyperactivity was reversed by nVH and nPFC double lesions. Neonatal PFC lesion alone did not alter spontaneous activity, although a trend of increased activity was observed. The duration of grooming was significantly decreased in rats with neonatal lesions of the VH. Similar to the data on locomotion, nVH plus nPFC lesion normalized the grooming behavior. Lesion of the PFC alone was without any significant effect on grooming behavior. Neonatal VH-lesioned animals spent less time in active social interaction, and this effect persisted even in nVH plus nPFC-lesioned animals. By itself, nPFC lesion did not alter social behavior. These data suggest that subtle developmental aberrations within PFC caused by nVH lesions, rather than the lesion of PFC itself, may contribute to some of the behavioral changes seen in the nVH-lesioned rats.  相似文献   

16.
17.
18.
Functional magnetic resonance imaging (fMRI) was used to examine the pattern of activity of the prefrontal cortex during performance of subjects in a nonspatial working memory task. Subjects observed sequences of letters and responded whenever a letter repeated with exactly one nonidentical letter intervening. In a comparison task, subjects monitored similar sequences of letters for any occurrence of a single, prespecified target letter. Functional scanning was performed using a newly developed spiral scan image acquisition technique that provides high-resolution, multislice scanning at approximately five times the rate usually possible on conventional equipment (an average of one image per second). Using these methods, activation of the middle and inferior frontal gyri was reliably observed within individual subjects during performance of the working memory task relative to the comparison task. Effect sizes (2–4%) closely approximated those that have been observed within primary sensory and motor cortices using similar fMRI techniques. Furthermore, activation increased and decreased with a time course that was highly consistent with the task manipulations. These findings corroborate the results of positron emission tomography studies, which suggest that the prefrontal cortex is engaged by tasks that rely on working memory. Furthermore, they demonstrate the applicability of newly developed fMRI techniques using conventional scanners to study the associative cortex in individual subjects. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Anterior prefrontal cortex and the recollection of contextual information   总被引:4,自引:0,他引:4  
Recollective memory can involve the retrieval of many different kinds of contextual information, including where and when an event took place, as well as our thoughts and feelings at the time. The brain regions associated with this ability were examined in an event-related fMRI experiment, where participants made decisions about words or famous faces which were presented either on the left or right of a monitor screen. Subsequently, the studied words and faces were again presented and participants underwent fMRI brain scanning while recollecting either which of the decisions they had made on each item ("task memory"), or whether it had been presented on the left or right of the screen ("position memory"). A functional dissociation was observed within anterior prefrontal cortex (principally Brodmann's area 10), with activation in lateral regions associated with remembering either type of information (relative to baseline), and a medial anterior PFC region showing significantly greater activation during the "task memory" conditions. These results suggest different roles for lateral and medial anterior prefrontal cortex in recollection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号