首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have discovered a simple and highly robust method for removal of chemical shift artifact in spin‐echo MR images, which simultaneously decreases the radiofrequency power deposition (specific absorption rate). The method is demonstrated in spin‐echo echo‐planar imaging brain images acquired at 7 T, with complete suppression of scalp fat signal. When excitation and refocusing pulses are sufficiently different in duration, and thus also different in the amplitude of their slice‐select gradients, a spatial mismatch is produced between the fat slices excited and refocused, with no overlap. Because no additional radiofrequency pulse is used to suppress fat, the specific absorption rate is significantly reduced compared with conventional approaches. This enables greater volume coverage per unit time, well suited for functional and diffusion studies using spin‐echo echo‐planar imaging. Moreover, the method can be generally applied to any sequence involving slice‐selective excitation and at least one slice‐selective refocusing pulse at high magnetic field strengths. The method is more efficient than gradient reversal methods and more robust against inhomogeneities of the static (polarizing) field (B0). Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Single‐shot echo‐planar imaging is the most common acquisition technique for whole‐brain diffusion tensor imaging (DTI) studies in vivo. Higher field MRI systems are readily available and advantageous for acquiring DTI due to increased signal. One of the practical issues for DTI with single‐shot echo‐planar imaging at high‐field is incomplete fat suppression resulting in a chemically shifted fat artifact within the brain image. Unsuppressed fat is especially detrimental in DTI because the diffusion coefficient of fat is two orders of magnitude lower than that of parenchyma, producing brighter appearing fat artifacts with greater diffusion weighting. In this work, several fat suppression techniques were tested alone and in combination with the goal of finding a method that provides robust fat suppression and can be used in high‐resolution single‐shot echo‐planar imaging DTI studies. Combination of chemical shift saturation with slice‐select gradient reversal within a dual‐spin‐echo diffusion preparation period was found to provide robust fat suppression at 3 T. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

3.

Purpose

To increase the efficiency of densely encoded diffusion imaging of the brain, such as diffusion spectrum imaging (DSI), we time‐multiplex multiple slices within the same readout using simultaneous image refocusing echo‐planar imaging (SIR‐EPI).

Materials and Methods

Inefficiency in total scan time results from the long time of diffusion encoding gradient pulses which must be repeated for each and every image. We present a highly efficient multiplexing method, simultaneous image refocusing (SIR), for reducing the total scan time of diffusion imaging by nearly one‐half. SIR DSI is performed in 10 minutes rather than 21 minutes, acceptable for routine clinical application.

Results

Two identical studies were completed, comparing conventional single‐slice EPI DSI and SIR‐EPI DSI, showing equal signal‐to‐noise ratio (SNR) and contrast and small differences in registration, likely due to typical subject motion. Comparison of DSI and DTI tractographs showed matching quality and detection of white matter tracts.

Conclusion

The net reduction to nearly half the number of diffusion encoding gradient pulses in SIR‐EPI significantly reduces acquisition times of DSI and DTI. J. Magn. Reson. Imaging 2009;29:517–522. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole‐body MR system. As the vertical gradient and spin echo trajectory enables a higher k‐space velocity in the phase‐encoding direction than single‐shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr–Purcell–Meiboom–Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single‐shot acquisition technique, the reconstructed images are robust to rigid‐body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Single‐shot echo‐planar imaging (ss‐EPI) has not been used widely for diffusion‐weighted imaging (DWI) of the spinal cord, because of the magnetic field inhomogeneities around the spine, the small cross‐sectional size of the spinal cord, and the increased motion in that area due to breathing, swallowing, and cerebrospinal fluid (CSF) pulsation. These result in artifacts with the usually long readout duration of the ss‐EPI method. Reduced field‐of‐view (FOV) methods decrease the required readout duration for ss‐EPI, thereby enabling its practical application to imaging of the spine. In this work, a reduced FOV single‐shot diffusion‐weighted echo‐planar imaging (ss‐DWEPI) method is proposed, in which a 2D spatially selective echo‐planar RF excitation pulse and a 180° refocusing pulse reduce the FOV in the phase‐encode (PE) direction, while suppressing the signal from fat simultaneously. With this method, multi slice images with higher in‐plane resolutions (0.94 × 0.94 mm2 for sagittal and 0.62 × 0.62 mm2 for axial images) are achieved at 1.5 T, without the need for a longer readout. Magn Reson Med 60:468–473, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Simultaneous multislice Echo Planar Imaging (EPI) acquisition using parallel imaging can decrease the acquisition time for diffusion imaging and allow full‐brain, high‐resolution functional MRI (fMRI) acquisitions at a reduced repetition time (TR). However, the unaliasing of simultaneously acquired, closely spaced slices can be difficult, leading to a high g‐factor penalty. We introduce a method to create interslice image shifts in the phase encoding direction to increase the distance between aliasing pixels. The shift between the slices is induced using sign‐ and amplitude‐modulated slice‐select gradient blips simultaneous with the EPI phase encoding blips. This achieves the desired shifts but avoids an undesired “tilted voxel” blurring artifact associated with previous methods. We validate the method in 3× slice‐accelerated spin‐echo and gradient‐echo EPI at 3 T and 7 T using 32‐channel radio frequency (RF) coil brain arrays. The Monte‐Carlo simulated average g‐factor penalty of the 3‐fold slice‐accelerated acquisition with interslice shifts is <1% at 3 T (compared with 32% without slice shift). Combining 3× slice acceleration with 2× inplane acceleration, the g‐factor penalty becomes 19% at 3 T and 10% at 7 T (compared with 41% and 23% without slice shift). We demonstrate the potential of the method for accelerating diffusion imaging by comparing the fiber orientation uncertainty, where the 3‐fold faster acquisition showed no noticeable degradation. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

7.

Purpose:

To improve image quality of diffusion‐weighted body magnetic resonance imaging (MRI) with background body signal suppression (DWIBS) at 3.0 T.

Materials and Methods:

In 30 patients and eight volunteers, a diffusion‐weighted spin‐echo echo‐planar imaging sequence with short TI inversion recovery (STIR) fat suppression was applied and repeated using slice‐selective gradient reversal (SSGR) and/or dual‐source parallel radiofrequency (RF) transmission (TX). The quality of diffusion‐weighted images and gray scale inverted maximum intensity projections (MIP) were visually assessed by intraindividual comparison with respect to the level of fat suppression and signal homogeneity. Moreover, the contrast between lesions/lymph nodes and background (Clb) was analyzed in the MIP reconstructions.

Results:

By combining STIR with SSGR, fat suppression was significantly improved (P < 0.001) and Clb was increased two times. The use of TX allowed the reduction of acquisition time and improved image quality with regard to signal homogeneity (P < 0.001) and fat suppression (P = 0.005).

Conclusion:

DWIBS at 3.0 T can be improved by using SSGR and TX. J. Magn. Reson. Imaging 2012;456‐461. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Two approaches to high‐resolution SENSE‐encoded magnetic resonance spectroscopic imaging (MRSI) of the human brain at 7 Tesla (T) with whole‐slice coverage are described. Both sequences use high‐bandwidth radiofrequency pulses to reduce chemical shift displacement artifacts, SENSE‐encoding to reduce scan time, and dual‐band water and lipid suppression optimized for 7 T. Simultaneous B0 and transmit B1 mapping was also used for both sequences to optimize field homogeneity using high‐order shimming and determine optimum radiofrequency transmit level, respectively. One sequence (“Hahn‐MRSI”) used reduced flip angle (90°) refocusing pulses for lower radiofrequency power deposition, while the other sequence used adiabatic fast passage refocusing pulses for improved sensitivity and reduced signal dependence on the transmit‐B1 level. In four normal subjects, adiabatic fast passage‐MRSI showed a signal‐to‐noise ratio improvement of 3.2 ± 0.5 compared to Hahn‐MRSI at the same spatial resolution, pulse repetition time, echo time, and SENSE‐acceleration factor. An interleaved two‐slice Hahn‐MRSI sequence is also demonstrated to be experimentally feasible. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Diffusion‐weighted imaging suffers from motion artifacts and relatively low signal quality due to the long echo times required to permit the diffusion encoding. We investigated the inclusion of a noncylindrical fourth gradient coil, dedicated entirely to diffusion encoding, into the imaging system. Standard three‐axis whole body gradients were used during image acquisition, but we designed and constructed an insert coil to perform diffusion encodings. We imaged three phantoms on a 3‐T system with a range of diffusion coefficients. Using the insert gradient, we were able to encode b values of greater than 1300 s/mm2 with an echo time of just 83 ms. Images obtained using the insert gradient had higher signal to noise ratios than those obtained using the whole body gradient: at 500 s/mm2 there was a 18% improvement in signal to noise ratio, at 1000 s/mm2 there was a 39% improvement in signal to noise ratio, and at 1350 s/mm2 there was a 56% improvement in signal to noise ratio. Using the insert gradient, we were capable of doing diffusion encoding at high b values by using relatively short echo times. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Diffusion‐weighted (DW) MRI has emerged as a key tool for assessing the microstructure of tissues in healthy and diseased states. Because of its rapid acquisition speed and insensitivity to motion, single‐shot echo‐planar imaging is the most common DW imaging technique. However, the presence of fat signal can severely affect DW‐echo planar imaging acquisitions because of the chemical shift artifact. Fat suppression is usually achieved through some form of chemical shift‐based fat saturation. Such methods effectively suppress the signal originating from aliphatic fat protons, but fail to suppress the signal from olefinic protons. Olefinic fat signal may result in significant distortions in the DW images, which bias the subsequently estimated diffusion parameters. This article introduces a method for removing olefinic fat signal from DW images, based on an echo time‐shifted acquisition. The method is developed and analyzed specifically in the context of single‐shot DW‐echo‐planar imaging, where image phase is generally unreliable. The proposed method is tested with phantom and in vivo datasets, and compared with a standard acquisition to demonstrate its performance. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.

Purpose

To describe and demonstrate a new technique that allows diffusion tensor imaging of small structures such as the spinal cord (SC) and optic nerve (ON) with contiguous slices and reduced image distortions using a narrow field of view (FOV).

Materials and Methods

Images were acquired with a modified single‐shot echo‐planar imaging (EPI) sequence that contains a refocusing radio frequency (RF) pulse in the presence of the phase‐encoding (rather than slice‐select) gradient. As a result, only a narrow volume may be both excited and refocused, removing the problem of signal aliasing for narrow FOVs. Two variants of this technique were developed: cardiac gating is included in the study of the SC to reduce pulsation artifacts, whereas inversion‐recovery (IR) cerebrospinal fluid (CSF) suppression is utilized in the study of the ON to eliminate partial volume effects. The technique was evaluated with phantoms, and mean diffusivity (MD) and fractional anisotropy (FA) measurements were made in the SC and ON of two healthy volunteers.

Results

The technique provides contiguous‐slice, reduced‐FOV images that do not suffer from aliasing and have reduced magnetic susceptibility artifacts. MD and FA values determined here lie within the ranges quoted in the literature.

Conclusion

Contiguous‐slice zonally orthogonal multislice (CO‐ZOOM‐EPI is a new technique for diffusion‐weighted imaging of small structures such as the ON and SC with high resolution and reduced distortions due to susceptibility variations. This technique is able to acquire contiguous slices that may allow further nerve‐tracking analyses. J. Magn. Reson. Imaging 2009;29:454–460. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The selective multiple quantum coherence technique is combined with a read gradient to accelerate the measurement of a specific scalar‐coupled metabolite. The sensitivities of the localization using pure phase encoding and localization with the read gradient are compared in experiments at high magnetic field strength (17.6 T). Multiple spin‐echoes of the selective multiple quantum coherence edited metabolite are acquired using frequency‐selective refocusing of the specified molecule group. The frequency‐selective refocusing does not affect the J‐modulation of a coupled spin system, and the echo time is not limited to a multiple of 1/J to acquire pure in‐phase or antiphase signal. The multiple echoes can be used to accelerate the metabolite imaging experiment or to measure the apparent transverse relaxation T2. A simple phase‐shifting scheme is presented, which enables the suppression of editing artifacts resulting from the multiple spin‐echoes of the water resonance. The experiments are carried out on phantoms, in which lactate and polyunsaturated fatty acids are edited, and in vivo on tumors, in which lactate content and T2 are imaged. The method is of particular interest when a fast and sensitive selective multiple quantum coherence editing is necessary, e.g., for spatial three dimensional experiments. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Contrast‐enhanced three‐dimensional T1‐weighted imaging based on magnetization‐prepared rapid‐gradient recalled echo is widely used for detecting small brain metastases. However, since contrast materials remain in both blood and the tumor parenchyma and thus increase the signal intensity of both regions, it is often challenging to distinguish brain tumors from blood. In this work, we develop a T1‐weighted, black‐blood version of single‐slab three‐dimensional turbo/fast spin echo whole‐brain imaging, in which the signal intensity of the brain tumor is selectively enhanced while that of blood is suppressed. For blood suppression, variable refocusing flip angles with flow‐sensitizing gradients are employed. To avoid a signal loss resulting from the flow‐sensitizing scheme, the first refocusing flip angle is forced to 180°. Composite restore pulses at the end of refocusing pulse train are applied to achieve partial inversion recovery for the T1‐weighted contrast. Simulations and in vivo volunteer and patient experiments are performed, demonstrating that this approach is highly efficient in detecting small brain metastases. Magn Reson Med 63:553–561, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
There is a need for an imaging sequence that can provide high‐resolution diffusion tensor images at 3T near air–tissue interfaces. By employing a radial fast spin‐echo (FSE) collection in conjunction with magnitude filtered back‐projection reconstruction, high‐resolution diffusion‐weighted images can be produced without susceptibility artifacts. However, violation of the Carr‐Purcell‐Meiboom‐Gill (CPMG) condition of diffusion prepared magnetization is a prominent problem for FSE trains that is magnified at higher fields. The unique aspect of violating the CPMG condition in trajectories that oversample the center of k‐space and the implications for choosing the solution are examined. For collecting diffusion‐weighted radial‐FSE data at 3T we propose mixed‐CPMG phase cycling of RF refocusing pulses combined with a 300% wider refocusing than excitation slice. It is shown that this approach produces accurate diffusion values in a phantom, and can be used to collect undistorted, high‐resolution diffusion tensor images of the human brain. Magn Reson Med 60:270–276, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
In this work, a multiecho parallel echo‐planar imaging (EPI) acquisition strategy is introduced as a way to improve the acquisition efficiency in parallel diffusion tensor imaging (DTI). With the use of an appropriate echo combination strategy, the sequence can provide signal‐to‐noise ratio (SNR) enhancement while maintaining the advantages of parallel EPI. Simulations and in vivo experiments demonstrate that a weighted summation of multiecho images provides a significant gain in SNR over the first echo image. It is experimentally demonstrated that this SNR gain can be utilized to reduce the number of measurements often required to ensure adequate SNR for accurate DTI measures. Furthermore, the multiple echoes can be used to derive a T2 map, providing additional information that might be useful in some applications. Magn Reson Med 60:1512–1517, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.

Purpose:

To evaluate an alternative method for generating multibanded radiofrequency (RF) pulses for use in multiband slice‐accelerated imaging with slice‐GRAPPA unaliasing, substantially reducing the required peak power without bandwidth compromises. This allows much higher accelerations for spin‐echo methods such as SE‐fMRI and diffusion‐weighted MRI where multibanded slice acceleration has been limited by available peak power.

Theory and Methods:

Multibanded “time‐shifted” RF pulses were generated by inserting temporal shifts between the applications of RF energy for individual bands, avoiding worst‐case constructive interferences. Slice profiles and images in phantoms and human subjects were acquired at 3 T.

Results:

For typical sinc pulses, time‐shifted multibanded RF pulses were generated with little increase in required peak power compared to single‐banded pulses. Slice profile quality was improved by allowing for higher pulse bandwidths, and image quality was improved by allowing for optimum flip angles to be achieved.

Conclusion:

A simple approach has been demonstrated that significantly alleviates the restrictions imposed on achievable slice acceleration factors in multiband spin‐echo imaging due to the power requirements of multibanded RF pulses. This solution will allow for increased accelerations in diffusion‐weighted MRI applications where data acquisition times are normally very long and the ability to accelerate is extremely valuable. Magn Reson Med 69:1261–1267, 2013 Wiley Periodicals, Inc.  相似文献   

17.
A modification of the Stejskal‐Tanner diffusion‐weighting preparation with a single refocusing RF pulse is presented which involves three gradient lobes that can be adjusted to null eddy currents with any given decay rate to reduce geometric distortions in diffusion‐weighted echo‐planar imaging (EPI). It has a very similar compensation performance as the commonly used double‐spin‐echo preparation but (i) is less sensitive to flip angle imperfections, e.g. along the slice profile, and B1 inhomogeneities and (ii) can yield shorter echo times for moderate b values, notably for longer echo trains as required for higher spatial resolution. It therefore can provide an increased signal‐to‐noise ratio as is simulated numerically and demonstrated experimentally in water phantoms and the human brain for standard EPI (2.0 × 2.0 mm2) and high‐resolution EPI of inner field‐of‐views using 2D‐selective RF excitations (0.5 × 1.0 mm2). Thus, the presented preparation may help to overcome current limitations of diffusion‐weighted EPI, in particular at high static magnetic fields. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Development of GRASE (gradient‐ and spin‐echo) pulse sequences for single‐shot 3D imaging has been motivated by physiologic studies of the brain. The duration of echo‐planar imaging (EPI) subsequences between RF refocusing pulses in the GRASE sequence is determinant of image distortions and susceptibility artifacts. To reduce these artifacts the regular Cartesian trajectory is modified to a circular trajectory in 2D and a cylindrical trajectory in 3D for reduced echo train time. Incorporation of “fly‐back” trajectories lengthened the time of the subsequences and proportionally increased susceptibility artifact but the unipolar readout gradients eliminate all ghost artifacts. The modified cylindrical trajectory reduced susceptibility artifact and distortion artifact while raising the signal‐to‐noise ratio in both phantom and human brain images. Magn Reson Med 60:976–980, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Frequency‐modulated (FM) pulses have practical advantages for spin‐echo experiments, such as the ability to produce a broadband π rotation, with an inhomogeneous radiofrequency (RF) field. However, such use leads to a nonlinear phase of the transverse magnetization, which is why FM pulses like the hyperbolic secant (HS) pulse are not commonly used for multislice spin‐echo magnetic resonance imaging (MRI). Here, a general theory and methods are described for conventional spin‐echo imaging using a π HS pulse for refocusing. Phase profiles produced by the HS pulse are analytically described. The analysis is extended to yield the specific relationships between pulse parameters and gradients, which must be satisfied to compensate the nonlinear phase variation produced with a spin‐echo sequence composed of π/2 and π HS pulses (the π/2 HS ? π HS sequence). The latter offers advantages for multislice spin‐echo MRI, including excellent slice‐selection and partial compensation for RF inhomogeneity. Furthermore, it can be implemented with a shorter echo time and lower power deposition than a previously described method using a pair of π HS pulses. Magn Reson Med 61:175–187, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
High‐resolution, diffusion‐weighted (DW) MR microscopy is gaining increasing acceptance as a nondestructive histological tool for the study of fixed tissue samples. Spin‐echo sequences are popular for high‐field diffusion imaging due to their high tolerance to B0 field inhomogeneities. Volumetric DW rapid acquisition with relaxation enhancement (DW‐RARE) currently offers the best tradeoff between imaging efficiency and image quality, but is relatively sensitive to residual eddy‐current effects on the echo train phase, resulting in encoding direction‐dependent ghosting in the DW images. We introduce two efficient, image‐based phase corrections for ghost artifact reduction in DW‐RARE of fixed tissue samples, neither of which require navigator echo acquisition. Both methods rely on the phase difference in k‐space between the unweighted reference image and a given DW image and assume a constant, per‐echo phase error arising from residual eddy‐current effects in the absence of sample motion. Significant qualitative and quantitative ghost artifact reductions are demonstrated for individual DW and calculated diffusion tensor images. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号