首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional approaches for fat and water discrimination based on chemical‐shift fat suppression have reduced ability to characterize fatty infiltration due to poor contrast of microscopic fat. The multiecho Dixon approach to water and fat separation has advantages over chemical‐shift fat suppression: 1) water and fat images can be acquired in a single breathhold, avoiding misregistration; 2) fat has positive contrast; 3) the method is compatible with precontrast and late‐enhancement imaging, 4) less susceptible to partial‐volume effects, and 5) robust in the presence of background field variation; and 6) for the bandwidth implemented, chemical‐shift artifact is decreased. The proposed technique was applied successfully in all 28 patients studied. This included 10 studies with indication of coronary artery disease (CAD), of which four cases with chronic myocardial infarction (MI) exhibited fatty infiltration; 13 studies to rule out arrhythmogenic right ventricular cardiomyopathy (ARVC), of which there were three cases with fibrofatty infiltration and two confirmed with ARVC; and five cases of cardiac masses (two lipomas). The precontrast contrast‐to‐noise ratio (CNR) of intramyocardial fat was greatly improved, by 240% relative to conventional fat suppression. For the parameters implemented, the signal‐to‐noise ratio (SNR) was decreased by 30% relative to conventional late enhancement. The multiecho Dixon method for fat and water separation provides a sensitive means of detecting intramyocardial fat with positive signal contrast. Magn Reson Med 61:215–221, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
The divided inversion recovery technique is an MRI separation method based on tissue T1 relaxation differences. When tissue T1 relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady‐state free‐precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water‐fat or fluid separation. Example water‐fat and fluid separation images of the head, heart, and abdomen are presented. The water‐fat separation performance was investigated by comparing image intensities in short‐axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities. Magn Reson Med 63:1007–1014, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.

Purpose

To evaluate and quantify improvements in the quality of fat suppression for fast spin‐echo imaging of the knee using multipeak fat spectral modeling and IDEAL fat‐water separation.

Materials and Methods

T1‐weighted and T2‐weighted fast spin‐echo sequences with IDEAL fat‐water separation and two frequency‐selective fat‐saturation methods (fat‐selective saturation and fat‐selective partial inversion) were performed on 10 knees of five asymptomatic volunteers. The IDEAL images were reconstructed using a conventional single‐peak method and precalibrated and self‐calibrated multipeak methods that more accurately model the NMR spectrum of fat. The signal‐to‐noise ratio (SNR) was measured in various tissues for all sequences. Student t‐tests were used to compare SNR values.

Results

Precalibrated and self‐calibrated multipeak IDEAL had significantly greater suppression of signal (P < 0.05) within subcutaneous fat and bone marrow than fat‐selective saturation, fat‐selective partial inversion, and single‐peak IDEAL for both T1‐weighted and T2‐weighted fast spin‐echo sequences. For T1‐weighted fast spin‐echo sequences, the improvement in the suppression of signal within subcutaneous fat and bone marrow for multipeak IDEAL ranged between 65% when compared to fat‐selective partial inversion to 86% when compared to fat‐selectivesaturation. For T2‐weighted fast spin‐echo sequences, the improvement for multipeak IDEAL ranged between 21% when compared to fat‐selective partial inversion to 81% when compared to fat‐selective saturation.

Conclusion

Multipeak IDEAL fat‐water separation provides improved fat suppression for T1‐weighted and T2‐weighted fast spin‐echo imaging of the knee when compared to single‐peak IDEAL and two widely used frequency‐selected fat‐saturation methods. J. Magn. Reson. Imaging 2009;29:436–442. © 2009 Wiley‐Liss, Inc.  相似文献   

4.

Purpose

To combine gradient‐echo (GRE) imaging with a multipoint water–fat separation method known as “iterative decomposition of water and fat with echo asymmetry and least squares estimation” (IDEAL) for uniform water–fat separation. Robust fat suppression is necessary for many GRE imaging applications; unfortunately, uniform fat suppression is challenging in the presence of B0 inhomogeneities. These challenges are addressed with the IDEAL technique.

Materials and Methods

Echo shifts for three‐point IDEAL were chosen to optimize noise performance of the water–fat estimation, which is dependent on the relative proportion of water and fat within a voxel. Phantom experiments were performed to validate theoretical SNR predictions. Theoretical echo combinations that maximize noise performance are discussed, and examples of clinical applications at 1.5T and 3.0T are shown.

Results

The measured SNR performance validated theoretical predictions and demonstrated improved image quality compared to unoptimized echo combinations. Clinical examples of the liver, breast, heart, knee, and ankle are shown, including the combination of IDEAL with parallel imaging. Excellent water–fat separation was achieved in all cases. The utility of recombining water and fat images into “in‐phase,” “out‐of‐phase,” and “fat signal fraction” images is also discussed.

Conclusion

IDEAL‐SPGR provides robust water–fat separation with optimized SNR performance at both 1.5T and 3.0T with multicoil acquisitions and parallel imaging in multiple regions of the body. J. Magn. Reson. Imaging 2007;25:644–652. © 2007 Wiley‐Liss, Inc.  相似文献   

5.

Purpose

To develop a magnetization preparation method that improves the differentiation of enhancing subendocardial infarction (MI) from ventricular blood for myocardial delayed‐enhancement (DE) magnetic resonance imaging (MRI).

Materials and Methods

T2Prep‐IR is a magnetization preparation pulse that consists of a T2 preparation (T2Prep) followed immediately by a nonselective inversion recovery (IR) pulse. The first imaging excitation is then delayed an inversion time (TI) to allow nulling of normal myocardium in DE study. The amount of T2 contrast is determined by the effective echo time of the T2Prep pulse, TEeff. TEeff is selected to differentiate MI and blood that share similar T1 values but have different T2 values. The T2Prep‐IR preparation was incorporated into a fast gradient echo sequence to produce an image with both T1 and T2 weighting. Simulations predict that this method will generate improved contrast between MI and chamber blood compared to conventional IR methods.

Results

Comparisons between images acquired using conventional IR and T2Prep‐IR in patients with MI indicate that this new approach significantly improves the blood‐MI contrast (122 ± 32% higher than that of IR with P < 0.05).

Conclusion

Our preliminary patient studies confirm that this preparation is helpful for improved delineation of subendocardial infarction. J. Magn. Reson. Imaging 2008;28:1280–1286. © 2008 Wiley‐Liss, Inc.  相似文献   

6.

Purpose

To evaluate a prototype fast spin‐echo (FSE) triple‐echo Dixon (FTED) technique for T2‐weighted spine imaging with and without fat suppression compared to conventional T2‐weighted fast recovery (FR) FSE and short‐tau inversion recovery (STIR) imaging.

Materials and Methods

Sixty‐one patients were referred for spine magnetic resonance imaging (MRI) including sagittal FTED (time 2:26), STIR (time 2:42), and T2 FRFSE (time 2:55). Two observers compared STIR and FTED water images and T2 FRFSE and FTED T2 images for overall image quality, fat suppression, anatomic sharpness, motion, cerebrospinal fluid (CSF) flow artifact, susceptibility, and disease depiction.

Results

On FTED images water and fat separation was perfect in 58 (.95) patients. Compared to STIR, the FTED water images demonstrated less motion in 57 (.93) of 61 patients (P < 0.05), better anatomic sharpness in 51 (.84) and patients (P < 0.05), and less CSF flow artifact in 7 (.11) P < 0.05) patients. There was no difference in fat suppression or chemical shift artifact. T2 FRFSE and FTED T2 images showed equivalent motion, CSF flow, and chemical shift artifact. Lesion depiction was equivalent on FTED water and STIR images and FTED T2 and T2 FRFSE images.

Conclusion

FTED efficiently provides both fat‐suppressed and nonfat‐suppressed T2‐weighted spine images with excellent image quality, equal disease depiction, and 56% reduction in scan time compared to conventional STIR and T2 FRFSE. J. Magn. Reson. Imaging 2011;33:390–400. © 2011 Wiley‐Liss, Inc.  相似文献   

7.

Purpose:

To develop a robust 3D fast spin echo (FSE) T2‐weighted imaging method with uniform water and fat separation in a single acquisition, amenable to high‐quality multiplanar reformations.

Materials and Methods:

The Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) method was integrated with modulated refocusing flip angle 3D‐FSE. Echoes required for IDEAL processing were acquired by shifting the readout gradient with respect to the Carr‐Purcell‐Meiboom‐Gill echo. To reduce the scan time, an alternative data acquisition using two gradient echoes per repetition was implemented. Using the latter approach, a total of four gradient echoes were acquired in two repetitions and used in the modified IDEAL reconstruction.

Results:

3D‐FSE T2‐weighted images with uniform water–fat separation were successfully acquired in various anatomies including breast, abdomen, knee, and ankle in clinically feasible scan times, ranging from 5:30–8:30 minutes. Using water‐only and fat‐only images, in‐phase and out‐of‐phase images were reconstructed.

Conclusion:

3D‐FSE‐IDEAL provides volumetric T2‐weighted images with uniform water and fat separation in a single acquisition. High‐resolution images with multiple contrasts can be reformatted to any orientation from a single acquisition. This could potentially replace 2D‐FSE acquisitions with and without fat suppression and in multiple planes, thus improving overall imaging efficiency. J. Magn. Reson. Imaging 2010;32:745–751. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Water–fat separation techniques play an important role in a variety of clinical and research applications. In particular, multiecho separation methods remain a topic of great interest due to their ability to resolve water and fat images in the presence of B0‐field inhomogeneity. However, these methods are inherently slow as they require multiple measurements. An accelerated technique with reduced k‐space sampling is desirable to decrease the scan time. This work presents a new method for water–fat separation from accelerated multiecho acquisitions. The proposed approach does not require the region‐growing or region‐merging schemes that are typically used for field map estimation. Instead, the water, fat, and field map signals are estimated directly from the undersampled k‐space measurements. In this work, up to 2.5×‐acceleration is demonstrated in a water–fat phantom, ankle, knee, and liver. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Three‐point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin‐echo acquisition strategy (IDEAL‐GRASE) to provide a time‐efficient method for lipid–water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL‐GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high‐resolution T2 maps in addition to the water and fat images. The radial IDEAL‐GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
In this study, it is demonstrated that fat saturation (FS) preparation (prep) pulses generate incidental magnetization transfer contrast (MTC) in multislice Look‐Locker (LL) imaging. It is shown that frequency‐selective FS prep pulses can invoke MTC through the exchange between free and motion‐restricted protons. Simulation reveals that the fractional signal loss by these MTC effects is more severe for smaller flip angles (FAs), shorter repetition times (TRs), and greater number of slices (SN). These incidental MTC effects result in a signal attenuation at a steady state (up to 30%) and a T1 measurement bias (up to 20%) when using inversion recovery (IR) LL echo‐planar imaging (EPI) sequences. Furthermore, it is shown that water‐selective MRI using binomial pulses has the potential to minimize the signal attenuation and provide unbiased T1 measurement without fat artifacts in MR images. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.

Purpose:

To demonstrate the feasibility of combining a chemical shift‐based water‐fat separation method (IDEAL) with a 2D ultrashort echo time (UTE) sequence for imaging and quantification of the short T2 tissues with robust fat suppression.

Materials and Methods:

A 2D multislice UTE data acquisition scheme was combined with IDEAL processing, including T2* estimation, chemical shift artifacts correction, and multifrequency modeling of the fat spectrum to image short T2 tissues such as the Achilles tendon and meniscus both in vitro and in vivo. The integration of an advanced field map estimation technique into this combined method, such as region growing (RG), is also investigated.

Results:

The combination of IDEAL with UTE imaging is feasible and excellent water‐fat separation can be achieved for the Achilles tendon and meniscus with simultaneous T2* estimation and chemical shift artifact correction. Multifrequency modeling of the fat spectrum yields more complete water‐fat separation with more accurate correction for chemical shift artifacts. The RG scheme helps to avoid water‐fat swapping.

Conclusion:

The combination of UTE data acquisition with IDEAL has potential applications in imaging and quantifying short T2 tissues, eliminating the necessity for fat suppression pulses that may directly suppress the short T2 signals. J. Magn. Reson. Imaging 2010;31:1027–1034. ©2010 Wiley‐Liss, Inc.  相似文献   

12.
Multi echo chemical shift‐based water–fat separation methods allow for uniform fat suppression in the presence of main field inhomogeneities. However, these methods require additional scan time for chemical shift encoding. This work presents a method for water–fat separation from undersampled data (CS‐WF), which combines compressed sensing and chemical shift‐based water–fat separation. Undersampling was applied in the k‐space and in the chemical shift encoding dimension to reduce the total scanning time. The method can reconstruct high quality water and fat images in 2D and 3D applications from undersampled data. As an extension, multipeak fat spectral models were incorporated into the CS‐WF reconstruction to improve the water–fat separation quality. In 3D MRI, reduction factors of above three can be achieved, thus fully compensating the additional time needed in three‐echo water–fat imaging. The method is demonstrated on knee and abdominal in vivo data. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.

Purpose

To evaluate a new dynamic contrast‐enhanced (DCE) imaging technique called multiecho time‐resolved acquisition (META) for abdominal/pelvic imaging. META combines an elliptical centric time‐resolved three‐dimensional (3D) spoiled gradient‐recalled echo (SPGR) imaging scheme with a Dixon‐based fat‐water separation algorithm to generate high spatiotemporal resolution volumes.

Materials and Methods

Twenty‐three patients referred for hepatic metastases or renal masses were imaged using the new META sequence and a conventional fat‐suppressed 3D SPGR sequence on a 3T scanner. In 12 patients, equilibrium‐phase 3D SPGR images acquired immediately after META were used for comparing the degree and homogeneity of fat suppression, artifacts, and overall image quality. In the remaining 11 of 23 patients, DCE 3D SPGR images acquired in a previous or subsequent examination were used for comparing the efficiency of arterial phase capture in addition to the qualitative analysis for the degree and homogeneity of fat suppression, artifacts, and overall image quality.

Results

META images were determined to be significantly better than conventional 3D SPGR images for degree and uniformity of fat suppression and ability to visualize the arterial phase. There were no significant differences in artifact levels or overall image quality.

Conclusion

META is a promising high spatiotemporal resolution imaging sequence for capturing the fast dynamics of hyperenhancing hepatic lesions and provides robust fat suppression even at 3T. J. Magn. Reson. Imaging 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The two‐point Dixon method is a proton chemical shift imaging technique that produces separated water‐only and fat‐only images from a dual‐echo acquisition. It is shown how this can be achieved without the usual constraints on the echo times. A signal model considering spectral broadening of the fat peak is proposed for improved water/fat separation. Phase errors, mostly due to static field inhomogeneity, must be removed prior to least‐squares estimation of water and fat. To resolve ambiguity of the phase errors, a corresponding global optimization problem is formulated and solved using a message‐passing algorithm. It is shown that the noise in the water and fat estimates matches the Cramér‐Rao bounds, and feasibility is demonstrated for in vivo abdominal breath‐hold imaging. The water‐only images were found to offer superior fat suppression compared with conventional spectrally fat suppressed images. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Short T2 species such as the Achilles tendon and cortical bone cannot be imaged with conventional MR sequences. They have a much broader absorption lineshape than long T2 species, therefore they are more sensitive to an appropriately placed off‐resonance irradiation. In this work, a technique termed ultrashort TE (UTE) with off‐resonance saturation contrast (UTE‐OSC) is proposed to image short T2 species. A high power saturation pulse was placed +1 to +2 kHz off the water peak to preferentially saturate signals from short T2 species, leaving long T2 water and fat signals largely unaffected. The subtraction of UTE images with and without an off‐resonance saturation pulse effectively suppresses long T2 water and fat signals, creating high contrast for short T2 species. The UTE‐OSC technique was validated on a phantom, and applied to bone samples and healthy volunteers on a clinical 3T scanner. High‐contrast images of the Achilles tendon and cortical bone were generated with a high contrast‐to‐noise ratio (CNR) of the order of 12 to 20 between short T2 and long T2 species within a total scan time of 4 to 10 min. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Chemical shift‐based water/fat separation, like iterative decomposition of water and fat with echo asymmetry and least‐squares estimation, has been proposed for quantifying intermuscular adipose tissue. An important confounding factor in iterative decomposition of water and fat with echo asymmetry and least‐squares estimation‐based intermuscular adipose tissue quantification is the large difference in T1 between muscle and fat, which can cause significant overestimation in the fat fraction. This T1 bias effect is usually reduced by using small flip angles. T1‐correction can be performed by using at least two different flip angles and fitting for T1 of water and fat. In this work, a novel approach for the water/fat separation problem in a dual flip angle experiment is introduced and a new approach for the selection of the two flip angles, labeled as the unequal small flip angle approach, is developed, aiming to improve the noise efficiency of the T1‐correction step relative to existing approaches. It is shown that the use of flip angles, selected such the muscle water signal is assumed to be T1‐independent for the first flip angle and the fat signal is assumed to be T1‐independent for the second flip angle, has superior noise performance to the use of equal small flip angles (no T1 estimation required) and the use of large flip angles (T1 estimation required). Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

17.

Purpose:

To validate a T1‐independent, T2*‐corrected fat quantification technique that uses accurate spectral modeling of fat using a homogeneous fat‐water‐SPIO phantom over physiologically expected ranges of fat percentage and T2* decay in the presence of iron overload.

Materials and Methods:

A homogeneous gel phantom consisting of vials with known fat‐fractions and iron concentrations is described. Fat‐fraction imaging was performed using a multiecho chemical shift‐based fat‐water separation method (IDEAL), and various reconstructions were performed to determine the impact of T2* correction and accurate spectral modeling. Conventional two‐point Dixon (in‐phase/out‐of‐phase) imaging and MR spectroscopy were performed for comparison with known fat‐fractions.

Results:

The best agreement with known fat‐fractions over the full range of iron concentrations was found when T2* correction and accurate spectral modeling were used. Conventional two‐point Dixon imaging grossly underestimated fat‐fraction for all T2* values, but particularly at higher iron concentrations.

Conclusion:

This work demonstrates the necessity of T2* correction and accurate spectral modeling of fat to accurately quantify fat using MRI. J. Magn. Reson. Imaging 2009;30:1215–1222. © 2009 Wiley‐Liss, Inc.  相似文献   

18.

Purpose

To develop a chemical‐shift–based imaging method for fat quantification that accounts for the complex spectrum of fat, and to compare this method with MR spectroscopy (MRS). Quantitative noninvasive biomarkers of hepatic steatosis are urgently needed for the diagnosis and management of nonalcoholic fatty liver disease (NAFLD).

Materials and Methods

Hepatic steatosis was measured with “fat‐fraction” images in 31 patients using a multiecho chemical‐shift–based water‐fat separation method at 1.5T. Fat‐fraction images were reconstructed using a conventional signal model that considers fat as a single peak at –210 Hz relative to water (“single peak” reconstruction). Fat‐fraction images were also reconstructed from the same source images using two methods that account for the complex spectrum of fat; precalibrated and self‐calibrated “multipeak” reconstruction. Single‐voxel MRS that was coregistered with imaging was performed for comparison.

Results

Imaging and MRS demonstrated excellent correlation with single peak reconstruction (r2 = 0.91), precalibrated multipeak reconstruction (r2 = 0.94), and self‐calibrated multipeak reconstruction (r2 = 0.91). However, precalibrated multipeak reconstruction demonstrated the best agreement with MRS, with a slope statistically equivalent to 1 (0.96 ± 0.04; P = 0.4), compared to self‐calibrated multipeak reconstruction (0.83 ± 0.05, P = 0.001) and single‐peak reconstruction (0.67 ± 0.04, P < 0.001).

Conclusion

Accurate spectral modeling is necessary for accurate quantification of hepatic steatosis with MRI. J. Magn. Reson. Imaging 2009;29:1332–1339. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Chemical shift encoded techniques have received considerable attention recently because they can reliably separate water and fat in the presence of off‐resonance. The insensitivity to off‐resonance requires that data be acquired at multiple echo times, which increases the scan time as compared to a single echo acquisition. The increased scan time often requires that a compromise be made between the spatial resolution, the volume coverage, and the tolerance to artifacts from subject motion. This work describes a combined parallel imaging and compressed sensing approach for accelerated water–fat separation. In addition, the use of multiscale cubic B‐splines for B0 field map estimation is introduced. The water and fat images and the B0 field map are estimated via an alternating minimization. Coil sensitivity information is derived from a calculated k‐space convolution kernel and l1‐regularization is imposed on the coil‐combined water and fat image estimates. Uniform water–fat separation is demonstrated from retrospectively undersampled data in the liver, brachial plexus, ankle, and knee as well as from a prospectively undersampled acquisition of the knee at 8.6x acceleration. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Muscle damage, edema, and fat infiltration are hallmarks of a range of neuromuscular diseases. The T2 of water, T2,w, in muscle lengthens with both myocellular damage and inflammation and is typically measured using multiple spin‐echo or Carr–Purcell–Meiboom–Gill acquisitions. However, microscopic fat infiltration in neuromuscular diseases prevents accurate T2,w quantitation as the longer T2 of fat, T2,f, masks underlying changes in the water component. Fat saturation can be inconsistent across the imaging volume and removes valuable physiological fat information. A new method is presented that combines iterative decomposition of water and fat with echo asymmetry and least squares estimation with a Carr–Purcell–Meiboom–Gill–sequence. The sequence results in water and fat separated images at each echo time for use in T2,w and T2,f quantification. With knowledge of the T2,w and T2,f, a T2‐corrected fat fraction map can also be calculated. Monte‐Carlo simulations and measurements in phantoms, volunteers, and a patient with inclusion body myositis are demonstrated. In healthy volunteers, uniform T2,w and T2‐corrected fat fraction maps are present within all muscle groups. However, muscle‐specific patterns of fat infiltration and edema are evident in inclusion body myositis, which demonstrates the power of separating and quantifying the fat and water components. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号