首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a third case with neurofibromatosis type 1 (NF1) due to mosaicism for a gross deletion in 17q11.2 covering the entire NF1 gene. The deletion was suspected in Giemsa banded chromosomes and was confirmed by fluorescence in situ hybridization using the cosmids CO919 from the 5′ region, GO2121 from the central, H10410 from the 3′ region of the NF1 gene, and the 1.7-Mb YAC 947G11 spanning the entire 350-kb genomic DNA of the NF1 gene. The deletion was present in 33% of peripheral blood lymphocytes and 58% of fibroblasts. The clinical manifestations in this 6-year-old male patient were especially severe and extended beyond the typical features of NF1. The patient also displayed facial anomalies, severe and early-onset psychomotor retardation, seizures, spasticity, and microcephaly. These features differ from other large-deletion NF1 patients, even nonmosaic cases. The complex phenotype could be explained by the involvement of coding sequences flanking the NF1 gene, thus supporting the existence of a contiguous gene syndrome in 17q11.2. Am. J. Med. Genet. 87:12–16, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

2.
The simultaneous occurrence of familial neurofibromatosis type 1 (NF1) and an overgrowth syndrome resembling Weaver syndrome was observed in two related cases (a mother and her son). NF1 was confirmed by molecular genetic analysis showing a large deletion at 17q11.2, encompassing the entire NF1 gene. The other symptoms in the two cases were similar to the features reported in Weaver syndrome. Although the combination of NF1 and an overgrowth syndrome resembling Weaver syndrome in this family may be fortuitous, we favour the hypothesis that the deletion of the entire gene has caused this combined phenotype. Possible pathogenetic mechanisms are discussed. The observation suggests a relation between NF1 with an extraordinarily large gene deletion and a Weaver(-like) syndrome. This warrants investigation for deletions in the 17q11.2 region in Weaver(-like) syndrome patients.  相似文献   

3.
Multiple congenital anomalies/mental retardation syndromes due to genomic rearrangements involving chromosome 17p11.2 include deletion resulting in Smith-Magenis syndrome and a reciprocal duplication of the same region resulting in the 17p11.2 duplication syndrome. We present the clinical and molecular analysis of an 8-year-old male with a dup(17p11.2p12) who was evaluated for unusual severity of the phenotype. Fluorescent in situ hybridization (FISH) analysis not only confirmed the 17p duplication but also identified an approximately 25% mosaicism for tetrasomy 17p11.2p12. Whole-genome array comparative genomic hybridization (aCGH) was performed to identify other genomic rearrangements possibly contributing to the severe phenotype and the unusual features in the patient. The 17p duplication was determined by FISH and aCGH to encompass approximately 7.5 Mb, from COX10 to KCNJ12. An approximately 830 Kb deletion of 17q11.2q12, including exon 1 of an amiloride-sensitive cation channel neuronal gene, ACCN1, was also identified by aCGH; breakpoints of the deletion were confirmed by FISH. Sequencing the non-deleted allele of ACCN1 did not show any mutations. Western analysis of human tissue-specific proteins revealed that ACCN1 is expressed not only in the brain as previously reported but also in all tissues examined, including heart, liver, kidneys, and spleen. The large-sized 17p11.2p12 duplication, partial triplication of the same region, and the 17q11.2q12 deletion create a complex chromosome 17 rearrangement that has not been previously identified. This is the first case of triplication reported for this chromosome. Our study emphasizes the utility of whole-genome analysis for known cases with deletion/duplication syndromes with unusual or severe phenotypes.  相似文献   

4.
PurposeNeurofibromatosis, type 1 (NF1) is an autosomal dominant disorder caused by mutations of the neurofibromin 1 (NF1) gene at 17q11.2. Approximately 5% of individuals with NF1 have a 1.4-Mb heterozygous 17q11.2 deletion encompassing NF1, formed through nonallelic homologous recombination (NAHR) between the low-copy repeats that flank this region. NF1 microdeletion syndrome is more severe than NF1 caused by gene mutations, with individuals exhibiting facial dysmorphisms, developmental delay (DD), intellectual disability (ID), and excessive neurofibromas. Although NAHR can also cause reciprocal microduplications, reciprocal NF1 duplications have been previously reported in just one multigenerational family and a second unrelated proband.MethodsWe analyzed the clinical features in seven individuals with NF1 microduplications, identified among 48,817 probands tested in our laboratory by array-based comparative genomic hybridization.ResultsThe only clinical features present in more than one individual were variable DD/ID, facial dysmorphisms, and seizures. No neurofibromas were present. Three sets of parents were tested: one duplication was apparently de novo, one inherited from an affected mother, and one inherited from a clinically normal father.ConclusionThis is the first report comparing the phenotypes of nonrelated individuals with NF1 microduplications. This comparison will allow for further definition of this emerging microduplication syndrome.Genet Med 2012:14(5):508–514  相似文献   

5.
The majority of neurofibromatosis type 1 (NF1) microdeletions in 17q11.2 span approximately 1.4 Mb and have breakpoints that lie within the proximal and distal NF1-low copy repeats, termed NF1-REPs. Less frequent are patients with atypical deletions and non-recurring breakpoints. NF1 patients with gross deletions have been reported to manifest a more severe clinical phenotype than NF1 patients with intragenic mutations, and display early onset and extensive growth of neurofibromas. It has been suggested that the deletion of a neighboring gene or genes in addition to the NF1 gene may modify the expression of the disease, particularly with regard to the high burden of cutaneous neurofibromas. Thus, atypical deletions partially overlapping with the common 1.4 Mb microdeletion interval could prove useful in identifying possible genetic modifiers in the NF1 gene region whose haploinsufficiency might promote neurofibroma growth. Here we report a 20-year-old female who has an atypical deletion with a proximal breakpoint in NF1 intron 21 and a distal deletion breakpoint in the ACCN1 gene. The deletion spans 2.7 Mb and was mediated by an intrachromosomal non-homology-driven mechanism, for example, non-homologous end-joining (NHEJ). Remarkably, this patient did not exhibit cutaneous neurofibromas. However, genotype-phenotype comparisons in this and other previously reported patients with atypical deletions partially overlapping the commonly deleted 1.4 Mb interval do not identify a specific deleted region that is associated with increased neurofibroma growth.  相似文献   

6.
High-resolution array-comparative genome hybridization (CGH) is a powerful tool for detection of submicroscopic chromosome deletions and duplications. We describe two patients with mild mental retardation (MR) and de novo microdeletions of 17q11.2q12. Although the deletions did not involve the neurofibromatosis type 1 (NF1) gene, they overlap with long-range deletions of the NF1 region which have been encountered in a small group of NF1 patients with more severe MR. Given the overlap of the deletions in our two patients with the large-sized NF1 microdeletions but not with the more frequent and smaller NF1 deletions, we hypothesize that more than one gene in the 17q11.2q12 region may be involved in MR. We discuss candidate genes for MR within this interval that was precisely defined through array-CGH analysis.  相似文献   

7.
We report a family with a paracentric inversion of the long arm of chromosome 17 [inv(17)(q11.2q25.1)] and neurofibromatosis type one (NF1). The family was ascertained because of NF1 and multiple miscarriages. Fluorescence in situ hybridization using cosmid probes from opposite ends of the NF1 gene confirmed that the inversion disrupts the gene. Using field inversion gel electrophoresis we have found that the inversion separates cDNA probes FB5D and AE25, which are normally adjacent to one another in the NF1 gene. This is the third published report of a gross chromosomal rearrangement responsible for NF1. The features in this family are typical for NF1, and are not unusually severe. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Plexiform neurofibromas are a major cause of morbidity in individuals with neurofibromatosis type 1 (NF1). Sporadically, these tumors appear as an isolated feature without other signs of NF1. A role for the NF1 gene in solitary plexiform neurofibromas has never been described. In this study, we report a 13-year-old boy who was diagnosed with a plexiform neurofibroma, without other NF1 diagnostic criteria. The tumor was partially resected and analyzed using different techniques: karyotyping, fluorescence in situ hybridization (FISH), and microarray comparative genomic hybridization (aCGH). Tumor Schwann cell culture and subsequent karyotyping showed a rearrangement involving chromosomes 1 and 17, namely an insertion of chromosomal bands 1p36-35 at 17q11.2. FISH demonstrated that the insertion interrupted the NF1 gene. In addition, a deletion was detected affecting the other NF1 allele. Whole-genome aCGH analysis of the resected tumor confirmed the presence of an 8.28 Mb deletion including the NF1 gene locus in ~15-20% of tumor cells. We conclude that biallelic NF1 inactivation was at the origin of the isolated plexiform neurofibroma in this patient. The insertion is most likely the "first hit" and the large deletion the "second hit."  相似文献   

9.
We describe a 6-year-old boy with a de novo 12 Mb interstitial duplication of chromosome 17q11.1q12, identified by oligo array-CGH. The patient shows psychomotor developmental and language delay, dolicocephaly, minor facial anomalies, hypotonia and renal megacalicosis. The duplication involves the neurofibromatosis type I (NF1) gene and overlaps with long-range unusual deletions of the NF1 region, extending over 17q12 region and associated with renal cysts and diabetes (RCDA). To our knowledge this is the first case of a patient carrying a large-sized duplication involving the 17q11.2q12 region. In the duplicated chromosomal segment there are about 130 annotated genes. Among them, several genes which have been already proposed as candidate for mental retardation (MR) in patients with partially overlapping deletions may be responsible for neurological impairment in our patient. In addition, other genes within the duplicated region are of interest for possible correlation with a few clinical features of the patient.  相似文献   

10.
Gross deletions of the NF1 gene at 17q11.2 belong to the group of 'genomic disorders' characterized by local sequence architecture that predisposes to genomic rearrangements. Segmental duplications within regions associated with genomic disorders are prone to non-allelic homologous recombination (NAHR), which mediates gross rearrangements. Copy number variants (CNVs) without obvious phenotypic consequences also occur frequently in regions of genomic disorders. In the NF1 gene region, putative CNVs have been reportedly detected by array comparative genomic hybridization (array CGH). These variants include duplications and deletions within the NF1 gene itself (CNV1) and a duplication that encompasses the SUZ12 gene, the distal NF1-REPc repeat and the RHOT1 gene (CNV2). To explore the possibility that these CNVs could have played a role in promoting deletion mutagenesis in type-1 deletions (the most common type of gross NF1 deletion), non-affected transmitting parents of patients with type-1 NF1 deletions were investigated by multiplex ligation-dependent probe amplification (MLPA). However, neither CNV1 nor CNV2 were detected. This would appear to exclude these variants as frequent mediators of NAHR giving rise to type-1 deletions. Using MLPA, we were also unable to confirm CNV1 in healthy controls as previously reported. We conclude that locus-specific techniques should be used to independently confirm putative CNVs, originally detected by array CGH, to avoid false-positive results. In one patient with an atypical deletion, a duplication in the region of CNV2 was noted. This duplication could have occurred concomitantly with the deletion as part of a complex rearrangement or may alternatively have preceded the deletion.  相似文献   

11.
Large deletions in the NF1 gene region at 17q11.2 are caused by nonallelic homologous recombination (NAHR). The recurrent type‐2 NF1 deletions span 1.2 Mb, with breakpoints in the SUZ12 gene and SUZ12P. Type‐2 NF1 deletions occur preferentially during mitosis and are associated with somatic mosaicism. A panel of 16 type‐2 NF1 deletions was used as a model system in which to investigate whether extended homozygosity across 17q11.2 might be associated with somatic deletion. Using SNP arrays, a 3.2 Mb interval encompassing the NF1 deletion region was found to harbor runs of homozygosity (ROHs) in different human populations. However, ROHs ≥500 kb directly flanking the NF1 deletion region on both sides were not found to occur disproportionately in NF1 patients harboring type‐2 deletions compared to controls. Although low allelic diversity in 17q11.2 is unlikely to be a key factor in promoting NAHR‐mediated somatic type‐2 deletions, a specific ROH of 588 kb (roh1), located some 525 kb proximal to the deletion interval, was found to occur more frequently (P=0.012) in the type‐2 deletion patients compared with controls. We postulate that roh1 may act remotely, via an as yet unknown mechanism, to increase the frequency of somatic recombination between the distally duplicated SUZ12 sequences. Hum Mutat 30:1–10, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Patients with an apparently balanced translocation and an abnormal phenotype may carry a cryptic deletion/duplication at their translocation breakpoints that may explain their abnormalities. Using microarray CGH (aCGH) and gene expression arrays we studied a child with t(15;22)(q26.1;q11.2), developmental delay and mild dysmorphic features. A high density aCGH study with 244,000 oligo probes demonstrated a 3.3 Mb deletion immediately adjacent to the 15q breakpoint. Gene expression studies with 44,000 oligos displayed an approximately 50% reduction of the expression of IGF1R gene that was translocated to the der(22). There are 18 known or hypothetical protein coding genes within the deleted region according to UniProt, RefSeq, and GenBank mRNA (UCSC HG17, May 2004). Although two of these genes, RGMA and ST8SIA2, play an important role in neural development, the mild phenotype of our patient indicates that loss of one copy of these genes may not be critical developmentally. The 50% reduction of IGF1R expression could be responsible for the growth deficiency in the patient. Reviewing the few 15q26 microdeletion cases that have been characterized by aCGH, we discovered that deletion of the segment including distal 15q26.2 to the proximal part of 15q26.3 is associated with severe phenotypes. Our experience demonstrates that high-density oligonucleotide-based aCGH is a quick and precise way to identify cryptic copy number changes in "balanced translocations." Expression studies can also add valuable information regarding gene expression changes due to a chromosomal rearrangement. Both approaches can assist in the elucidation of the etiology of unexplained phenotypic differences in cases such as this one.  相似文献   

13.
14.
NF1 microdeletion syndrome is a common dominant genomic disorder responsible for around 5% of type I neurofibromatosis cases. The majority of cases are caused by mutations arising within the NF1 gene. NF1 microdeletion carriers present a more severe phenotype than patients with intragenic mutations, including mental retardation, cardiac anomalies and dysmorphic features. Here, we report on two brothers with mental retardation presenting a microduplication of the NF1 microdeletion syndrome region detected by array-CGH analysis. Main phenotypic features are mental deficiency, early onset of baldness (15 years old), dental enamel hypoplasia and minor facial dysmorphism. The breakpoint regions coincide with the repeats, and the recombination hot spots shown to mediate NF1 microdeletion through NAHR. A screening of the patients' familial relatives showed that this microduplication segregates in the family for at least two generations. This result demonstrates that both deletion and duplication of the NF1 region, at cytogenetic band 17q11.2, give rise to viable gametes, even if only NF1 microdeletions have been reported until now. Our study reports seven cases of NF1 microduplication within one family. Similar phenotypic abnormalities were present in most of the individuals, however, two displayed a normal phenotype, suggesting a potential incomplete penetrance of the phenotype associated with NF1 microduplication.  相似文献   

15.
The gene for von Recklinghausen neurofibromatosis (NF1) is on proximal 17q; the location of the gene for achondroplasia (ACH) is unknown. We have begun a molecular analysis of a patient with mental retardation, NF1 and ACH, a clinical presentation suggestive of a contiguous gene syndrome. In addition, this individual has a 47,XYY chromosome constitution. To define a possible chromosome 17 deletion, we investigated the copy number of DNA sequences linked to NF1 with conventional and pulsed-field gel electrophoresis (PFGE). We found no evidence for a deletion on chromosome 17. These results make it unlikely that this patient harbors a single deletion in the NF1 region causing both NF1 and ACH and suggest different mechanisms for the de novo occurrence of 2 autosomal dominant disorders in this individual.  相似文献   

16.
Characterization of a single base-pair deletion in neurofibromatosis type 1   总被引:1,自引:0,他引:1  
The gene which is responsible for neurofibromatosis type 1 (NF1)is located on chromosome 17 (17q11.2). The NF1 gene is approximately350 kilobases (kb) long and exhibits an extremely high mutationrate; therefore, most patients are expected to have unique mutations.To date, relatively few mutations have been well characterized.We report here a de novo single base pair (bp) deletion in oneNF1 allele in a patient diagnosed with NF1 and leukemia. Wefurther characterized this mutation at the RNA level by allele-specificoligonucleotide (ASO) hybridization which demonstrated thatthe mutant allele is transcribed.  相似文献   

17.
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition with a birth incidence of 1/3,500. Around 50% of cases are due to new mutations. The NF1 gene maps to 17q11.2 and encodes neurofibromin. NF1 is a "classical" tumor suppressor gene. Congenital disseminated NF1 is rare with just two cases previously reported. We present a deceased baby with congenital disseminated NF1 in whom we performed molecular studies. A germline mutation (R461X) in exon 10a of the NF1 gene was found. A 2 bp deletion (3508delCA) in codon 1170 of exon 21 was identified in DNA derived from some tumor tissue. Loss of heterozygosity in NF1 and TP53 was observed in other tumor samples. No microsatellite instability was observed in the tumor samples. This is the first report of molecular analysis of the NF1 locus in a patient with disseminated congenital neurofibromatosis. This case had a de novo germline mutation in NF1 and three documented somatic mutations in the NF1 and TP53 genes in tumor specimens.  相似文献   

18.
NF1 microdeletion breakpoints are clustered at flanking repetitive sequences   总被引:13,自引:0,他引:13  
Neurofibromatosis type 1 patients with a submicroscopic deletion spanning the NF1 tumor suppressor gene are remarkable for an early age at onset of cutaneous neurofibromas, suggesting the deletion of an additional locus that potentiates neurofibromagenesis. Construction of a 3.5 Mb BAC/PAC/YAC contig at chromosome 17q11.2 and analysis of somatic cell hybrids from microdeletion patients showed that 14 of 17 cases had deletions of 1.5 Mb in length. The deletions encompassed the entire 350 kb NF1 gene, three additional genes, one pseudogene and 16 expressed sequence tags (ESTs). In these cases, both proximal and distal breakpoints mapped at chromosomal regions of high identity, termed NF1REPs. These REPs, or clusters of paralogous loci, are 15-100 kb and harbor at least four ESTs and an expressed SH3GL pseudogene. The remaining three patients had at least one breakpoint outside an NF1REP element; one had a smaller deletion thereby narrowing the critical region harboring the putative locus that exacerbates neurofibroma development to 1 Mb. These data show that the likely mechanism of NF1 microdeletion is homologous recombination between NF1REPs on sister chromatids. NF1 microdeletion is the first REP-mediated rearrangement identified that results in loss of a tumor suppressor gene. Therefore, in addition to the germline rearrangements reported here, NF1REP-mediated somatic recombination could be an important mechanism for the loss of heterozygosity at NF1 in tumors of NF1 patients.  相似文献   

19.
A mildly dysmorphic, mentally retarded male with neurofibromatosis 1 (NF1) was found to have a de novo deletion of chromosome 17. The deletion occurred on the paternally derived chromosome 17 as shown by the absence of a D17S73 paternal allele. Densitometric analysis indicated that, in addition to the D17S73 locus, the patient has only one copy of four other adjacent loci. The deletion involved the loci D17S120, NF1, D17S57, D17S115, and D17S73 and was estimated to encompass more than 380 kb of DNA. The deletion of the entire paternal NF1 allele argues strongly that this disorder is not caused by the action of an abnormal NF1 protein. The extent of the deletion suggests that the mental retardation and dysmorphism of this patient may result from a deletion involving both the NF1 gene and contiguous genetic material.  相似文献   

20.
A search for evidence of somatic mutations in the NF1 gene   总被引:7,自引:0,他引:7  
Neurofibromatosis type I (NF1) is an autosomal dominant disorder affecting 1 in 3000 people. The NF1 gene is located on chromosome 17q11.2, spans 350 kb of genomic DNA, and contains 60 exons. A major phenotypic feature of the disease is the widespread occurrence of benign dermal and plexiform neurofibromas. Genetic and biochemical data support the hypothesis that NF1 acts as a tumour suppressor gene. Molecular analysis of a number of NF1 specific tumours has shown the inactivation of both NF1 alleles during tumourigenesis, in accordance with Knudson's "two hit" hypothesis. We have studied 82 tumours from 45 NF1 patients. Two separate strategies were used in this study to search for the somatic changes involved in the formation of NF1 tumours. First, evidence of loss of heterozygosity (LOH) of the NF1 gene region was investigated, and, second, a screen for the presence of sequence alterations was conducted on a large panel of DNA derived from matched blood/tumour pairs. In this study, the largest of its kind to date, we found that 12% of the tumours (10/82) exhibited LOH; previous studies have detected LOH in 3-36% of the neurofibromas examined. In addition, an SSCP/HA mutation screen identified five novel NF1 germline and two somatic mutations. In a plexiform neurofibroma from an NF1 patient, mutations in both NF1 alleles have been characterised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号