首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of Th17 cells in the pathogenesis of autoantibody‐mediated diseases is unclear. Here, we assessed the contribution of Th17 cells to the pathogenesis of experimental autoimmune myasthenia gravis (EAMG), which is induced by repetitive immunizations with Torpedo californica acetylcholine receptor (tAChR). We show that a significant fraction of tAChR‐specific CD4+ T cells is producing IL‐17. IL‐17ko mice developed fewer or no EAMG symptoms, although the frequencies of tAChR‐specific CD4+ T cells secreting IL‐2, IFN‐γ, or IL‐21, and the percentage of FoxP3+ Treg cells were similar to WT mice. Even though the total anti‐tAChR antibody levels were equal, the complement fixating IgG2b subtype was reduced in IL‐17ko as compared to WT mice. Most importantly, pathogenic anti‐murine AChR antibodies were significantly lower in IL‐17ko mice. Furthermore, we confirmed the role of Th17 cells in EAMG pathogenesis by the reconstitution of TCR β/δko mice with WT or IL‐17ko CD4+ T cells. In conclusion, we show that the level of IgG2b and the loss of B‐cell tolerance, which results in pathogenic anti‐murine AChR‐specific antibodies, are dependent on IL‐17 production by CD4+ T cells. Thus, we describe here for the first time how Th17 cells are involved in the induction of classical antibody‐mediated autoimmunity.  相似文献   

3.
T helper type 17 (Th17) and regulatory T cells (Treg) play an important role in the pathogenesis of inflammation and autoimmune disorders. Recent studies have suggested that they also had an impact on tumour immunology. However, the relationship between Th17 and Treg cells in the pathogenesis of bladder carcinoma is still unclear. Flow cytometry was used to analyse the numbers, phenotype and cytokine production of Th17 cells in peripheral blood and tumour tissue from bladder carcinoma patients, in parallel with analysis of Treg cells. The suppressor capacity of Treg and the potential effects of interleukin (IL)‐2 on the differentiation of Th17 and Treg cells in vitro were studied in a T cell stimulation and suppression assays. The results were as follows: Th17 cells were enriched in the tumours of patients with bladder carcinoma compared with the peripheral blood of patients and controls; patients with bladder carcinoma had a higher proportion of Treg cells in peripheral blood compared with healthy controls and nearly all patients examined showed a relative enrichment of tumour‐infiltrating Treg with respect to peripheral blood; there appeared to be an inverse relationship between tumour‐infiltrating Th17 and Treg cells; IL‐2 could convert tumour‐infiltrating Treg cells cultured in the presence of the autologous irradiated CD3 fraction into Th17 cells, down‐regulate forkhead box P2 expression and suppressive capacity of Treg cells. This study is the first to define the frequency and characteristics of Th17 cells in bladder carcinoma. We suggest that the balance between Th17 and Treg cells may be involved in the development or progression of bladder carcinoma.  相似文献   

4.
5.
Protein tyrosine phosphatases (PTPs) regulate T cell receptor (TCR) signalling and thus have a role in T cell differentiation. Here we tested whether the autoimmune predisposing gene PTPN22 encoding for a PTP that inhibits TCR signalling affects the generation of forkhead box protein 3 (FoxP3)+ T regulatory (Treg) cells and T helper type 1 (Th1) cells. Murine CD4+ T cells isolated from Ptpn22 knock‐out (Ptpn22KO) mice cultured in Treg cell polarizing conditions showed increased sensitivity to TCR activation compared to wild‐type (WT) cells, and subsequently reduced FoxP3 expression at optimal‐to‐high levels of activation. However, at lower levels of TCR activation, Ptpn22KO CD4+ T cells showed enhanced expression of FoxP3. Similar experiments in humans revealed that at optimal levels of TCR activation PTPN22 knock‐down by specific oligonucleotides compromises the differentiation of naive CD4+ T cells into Treg cells. Notably, in vivo Treg cell conversion experiments in mice showed delayed kinetic but overall increased frequency and number of Treg cells in the absence of Ptpn22. In contrast, the in vitro and in vivo generation of Th1 cells was comparable between WT and Ptpn22KO mice, thus suggesting PTPN22 as a FoxP3‐specific regulating factor. Together, these results propose PTPN22 as a key factor in setting the proper threshold for FoxP3+ Treg cell differentiation.  相似文献   

6.
Forkhead box P3 (FoxP3)+ regulatory T cells (Tregs) are functionally deficient in systemic lupus erythematosus (SLE), characterized by reduced surface CD25 [the interleukin (IL)‐2 receptor alpha chain]. Low‐dose IL‐2 therapy is a promising current approach to correct this defect. To elucidate the origins of the SLE Treg phenotype, we studied its role through developmentally defined regulatory T cell (Treg) subsets in 45 SLE patients, 103 SLE‐unaffected first‐degree relatives and 61 unrelated healthy control subjects, and genetic association with the CD25‐encoding IL2RA locus. We identified two separate, uncorrelated effects contributing to Treg CD25. (1) SLE patients and unaffected relatives remarkably shared CD25 reduction versus controls, particularly in the developmentally earliest CD4+FoxP3+CD45ROCD31+ recent thymic emigrant Tregs. This first component effect influenced the proportions of circulating CD4+FoxP3highCD45RO+ activated Tregs. (2) In contrast, patients and unaffected relatives differed sharply in their activated Treg CD25 state: while relatives as control subjects up‐regulated CD25 strongly in these cells during differentiation from naive Tregs, SLE patients specifically failed to do so. This CD25 up‐regulation depended upon IL2RA genetic variation and was related functionally to the proliferation of activated Tregs, but not to their circulating numbers. Both effects were found related to T cell IL‐2 production. Our results point to (1) a heritable, intrathymic mechanism responsible for reduced CD25 on early Tregs and decreased activation capacity in an extended risk population, which can be compensated by (2) functionally independent CD25 up‐regulation upon peripheral Treg activation that is selectively deficient in patients. We expect that Treg‐directed therapies can be monitored more effectively when taking this distinction into account.  相似文献   

7.
8.
9.
Primary biliary cirrhosis (PBC) is an organ‐specific autoimmune liver disease characterized by progressive loss of intrahepatic small bile ducts. Cellular immune mechanisms involving T cell reaction are thought to be involved significantly in the pathogenesis of PBC. Recent studies have independently revealed enhanced T helper type 17 (Th17) response and weakened T regulatory cell (Treg) response in some autoimmune diseases, indicating a role of Th17/Treg imbalance in the pathogenesis of autoimmunity. This prompted us to investigate whether the Th17/Treg balance was broken in the peripheral blood of patients with PBC and, if it was, what cytokine circumstances might contribute to this imbalance. The expression of 11 Th17/Treg differentiation‐related genes and serum concentrations of the corresponding cytokines in 36 patients with PBC, 28 patients with chronic hepatitis B and 28 healthy controls were measured by real‐time quantitative–polymerase chain reaction and enzyme‐linked immunosorbent assay respectively. Peripheral Th17 and Treg cells were analysed by flow cytometry. Th17‐related cytokines were increased significantly in patients with PBC. Consistent with the cytokine profile, the Th17 cell population and retinoid‐related orphan receptor γt expression were increased markedly. In contrast, the Treg cell population and forkhead box P3 expression were decreased dramatically in the peripheral blood of patients with PBC. Our study revealed that the Th17/Treg imbalance, both cytokine profile and cell numbers, exists in patients with PBC, suggesting its potential role in the breakdown of immune self‐tolerance in PBC. Interleukin‐23, which characterized the imbalanced cytokine profile, may play an essential role in Th17‐related human autoimmunity.  相似文献   

10.
T cells that produce both IL‐17 and IFN‐γ, and co‐express ROR‐γt and T‐bet, are often found at sites of autoimmune inflammation. However, it is unknown whether this co‐expression of T‐bet with ROR‐γt is a prerequisite for immunopathology. We show here that T‐bet is not required for the development of Th17‐driven experimental autoimmune encephalomyelitis (EAE). The disease was not impaired in T‐bet?/? mice and was associated with low IFN‐γ production and elevated IL‐17 production among central nervous system (CNS) infiltrating CD4+ T cells. T‐bet?/? Th17 cells generated in the presence of IL‐6/TGF‐β/IL‐1 and IL‐23 produced GM‐CSF and high levels of IL‐17 and induced disease upon transfer to naïve mice. Unlike their WT counterparts, these T‐bet?/– Th17 cells did not exhibit an IL‐17→IFN‐γ switch upon reencounter with antigen in the CNS, indicating that this functional change is not critical to disease development. In contrast, T‐bet was absolutely required for the pathogenicity of myelin‐responsive Th1 cells. T‐bet‐deficient Th1 cells failed to accumulate in the CNS upon transfer, despite being able to produce GM‐CSF. Therefore, T‐bet is essential for establishing Th1‐mediated inflammation but is not required to drive IL‐23‐induced GM‐CSF production, or Th17‐mediated autoimmune inflammation.  相似文献   

11.
Programmed cell death‐1 (PD‐1) plays an important role in peripheral T cell tolerance, but whether or not it affects the differentiation of helper T cell subsets remains elusive. Here we describe the importance of PD‐1 in the control of T helper type 1 (Th1) cell activation and development of forkhead box protein 3 (FoxP3+) regulatory T cells (Tregs). PD‐1‐deficient T cell‐specific T‐bet transgenic (P/T) mice showed growth retardation, and the majority died within 10 weeks. P/T mice showed T‐bet over‐expression, increased interferon (IFN)‐γ production by CD4+ T cells and significantly low FoxP3+ Treg cell percentage. P/T mice developed systemic inflammation, which was probably induced by augmented Th1 response and low FoxP3+ Treg count. The study identified a unique, previously undescribed role for PD‐1 in Th1 and Treg differentiation, with potential implication in the development of Th1 cell‐targeted therapy.  相似文献   

12.
CD4+ T cell anergy reflects the inability of CD4+ T cells to respond functionally to antigenic stimulation through proliferation or IL‐2 secretion. Histone deacetylase (HDAC) inhibitors have been shown to induce anergy in antigen‐activated CD4+ T cells. However, questions remain if HDAC inhibitors mediate anergy through direct action upon activated CD4+ T cells or through the generation and/or enhancement of regulatory T (Treg) cells. To assess if HDAC inhibitor n‐butyrate induces anergy independent of the generation or expansion of FoxP3+ Treg cells in vitro, we examine n‐butyrate‐treated murine CD4+ T cells for anergy induction and FoxP3+ Treg activity. Whereas n‐butyrate decreases CD4+ T cell proliferation and IL‐2 secretion, n‐butyrate did not augment FoxP3 protein production or confer a suppressive phenotype upon CD4+ T cells. Collectively, these data suggest that HDAC inhibitors can facilitate CD4+ T cell functional unresponsiveness directly and independently of Treg cell involvement.  相似文献   

13.
A new paradigm has emerged relating the pathogenesis of rheumatoid arthritis (RA), focused on the balance between T helper type 17 cells and regulatory T cells (Tregs). In humans, both subpopulations depend on transforming growth factor (TGF)‐β for their induction, but in the presence of inflammatory cytokines, such as interleukin (IL)‐6, the generation of Th17 is favoured. Tocilizumab is a therapeutic antibody targeting the IL‐6 receptor (IL‐6R), which has demonstrated encouraging results in RA. The aim of this study was to evaluate the effect of tocilizumab on Th1 cells, Th17 cells, IL‐17 and interferon (IFN)‐γ double secretors Th17/Th1 cells, and Tregs in RA patients. Eight RA patients received tocilizumab monthly for 24 weeks and blood samples were obtained every 8 weeks to study T cell populations by flow cytometry. The frequency of Th17 cells, Th1 cells and Th17/Th1 cells was evaluated in peripheral blood mononuclear cells (PBMCs) activated in vitro with a polyclonal stimulus. Tregs were identified by their expression of forkhead box protein 3 (FoxP3) and CD25 by direct staining of PBMCs. Although no changes were detected in the frequency of Th1 or Th17 cells, the percentages of peripheral Tregs increased after therapy. In addition, the infrequent Th17/Th1 subpopulation showed a significant increment in tocilizumab‐treated patients. In conclusion, tocilizumab was able to skew the balance between Th17 cells and Tregs towards a more protective status, which may contribute to the clinical improvement observed in RA patients.  相似文献   

14.
Visceral leishmaniasis (VL) is a disseminated and lethal disease of reticulo‐endothelial system caused by protozoan parasites Leishmania donovani and L. infantum, which are known to induce host T cell suppression. To understand the impact of parasite load on T cell function, the present was focused on parasite load with T cell function in bone marrow of 26 VL patients. We observed significant enrichment of forkhead box protein 3 (FoxP3)+ (P = 0·0003) and interleukin (IL)‐10+ FoxP3+ regulatory T cells (Treg) (P = 0·004) in the bone marrow (BM) of patients with high parasite load (HPL) compared with low parasite load (LPL). Concordantly, T effector cells producing interferon (IFN)‐γ (P = 0·005) and IL‐17A (P = 0·002) were reduced in the BM of HPL. Blocking of Treg‐cell derived suppressive cytokines [(IL‐10 and transforming growth factor (TGF)‐β] rescued the effector T cells and their functions. However, it was observed that TGF‐β levels were dominant, favouring Treg cell differentiation. Furthermore, the low ratio of IL‐6/TGF‐β favours the suppressive milieu in HPL patients. Here we show the change in levels of various cytokines with the parasitic load during active VL, which could be helpful in devising newer immunotherapeutic strategies against this disease.  相似文献   

15.
Programmed death‐1 (PD‐1) and interactions with PD‐ligand 1 (PD‐L1) play critical roles in the tumour evasion of immune responses through different mechanisms, including inhibition of effector T cell proliferation, reducing cytotoxic activity, induction of apoptosis in tumour‐infiltrating T cells and regulatory T cell (Treg) expansion. Effective blockade of immune checkpoints can therefore potentially eliminate these detrimental effects. The aim of this study was to investigate the effect of anti‐PD‐1 antibody, pembrolizumab, on various Treg subpopulations. Peripheral blood mononuclear cells (PBMC) from healthy donors (HD) and primary breast cancer patients (PBC) were treated in vitro with pembrolizumab, which effectively reduced PD‐1 expression in both cohorts. We found that PD‐1 was expressed mainly on CD4+CD25+ T cells and pembrolizumab had a greater effect on PD‐1 expression in CD4+CD25? T cells, compared to CD4+CD25+ cells. In addition, pembrolizumab did not affect the expression levels of Treg‐related markers, including cytotoxic T lymphocyte antigen‐4 (CTLA‐4), CD15s, latency‐associated peptide (LAP) and Ki‐67. Moreover, we report that CD15s is expressed mainly on forkhead box P3 (FoxP3)?Helios+ Treg in HD, but it is expressed on FoxP3+Helios? Treg subset in addition to FoxP3?Helios+ Treg in PBC. Pembrolizumab did not affect the levels of FoxP3+/?Helios+/? Treg subsets in both cohorts. Taken together, our study suggests that pembrolizumab does not affect Treg or change their phenotype or function but rather blocks signalling via the PD‐1/PD‐L1 axis in activated T cells.  相似文献   

16.
In mast cells, IL‐33 typically induces the activation of NF‐κB, which results in the production of cytokines such as IL‐6 and IL‐2. Here, we demonstrate that the IL‐33‐induced IL‐6 production in murine mast cells and the formation of RORγt+ Tregs essentially depends on the MAPKAPs, MK2, and MK3 (MK2/3) downstream of MyD88. In contrast to this, the IL‐33‐induced and MyD88‐dependent IL‐2 production in mast cells contributes to the maintenance of Helios+ Tregs. Thereby, the IL‐33‐induced IL‐2 response and, thus, the maintenance of Helios+ Tregs are limited by an IL‐6‐mediated autocrine negative feedback stimulation acting on mast cells. Collectively, we present MK2/3 in IL‐33‐activated mast cells as a signaling node, which controls the dichotomy between RORγt+ Treg and Helios+ Treg in vitro.  相似文献   

17.
18.
Tuberculous pleural effusion is characterized by a T helper type 1 (Th1) profile, but an excessive Th1 response may also cause tissue damage that might be controlled by regulatory mechanisms. In the current study we investigated the role of regulatory T cells (Treg) in the modulation of Th1 responses in patients with tuberculous (TB) pleurisy. Using flow cytometry we evaluated the proportion of Treg (CD4+CD25highforkhead box protein 3+), interferon (IFN)‐γ and interleukin (IL)‐10 expression and CD107 degranulation in peripheral blood (PB) and pleural fluid (PF) from patients with TB pleurisy. We demonstrated that the proportion of CD4+CD25+, CD4+CD25highFoxP3+ and CD8+CD25+ cells were increased in PF compared to PB samples. Mycobacterium tuberculosis stimulation increased the proportion of CD4+CD25low/negIL‐10+ in PB and CD4+CD25low/negIFN‐γ+ in PF; meanwhile, CD25high mainly expressed IL‐10 in both compartments. A high proportion of CD4+CD107+ and CD8+CD107+ cells was observed in PF. Treg depletion enhanced the in‐vitro M. tuberculosis‐induced IFN‐γ and CD4+ and CD8+ degranulation responses and decreased CD4+IL‐10+ cells in PF. Our results demonstrated that in TB pleurisy Treg cells effectively inhibit not only IFN‐γ expression but also the ability of CD4+ and CD8+ cells to degranulate in response to M. tuberculosis.  相似文献   

19.
Due to their immunomodulatory properties, mesenchymal stem cells (MSC) are interesting candidates for cellular therapy for autoimmune disorders, graft‐versus‐host disease and allograft rejection. MSC inhibit the proliferation of effector T cells and induce T cells with a regulatory phenotype. So far it is unknown whether human MSC‐induced CD4+CD25+CD127forkhead box P3 (FoxP3)+ T cells are functional and whether they originate from effector T cells or represent expanded natural regulatory T cells (nTreg). Perirenal adipose‐tissue derived MSC (ASC) obtained from kidney donors induced a 2·1‐fold increase in the percentage of CD25+CD127FoxP3+ cells within the CD4+ T cell population from allostimulated CD25–/dim cells. Interleukin (IL)‐2 receptor blocking prevented this induction. The ASC‐induced T cells (iTreg) inhibited effector cell proliferation as effectively as nTreg. The vast majority of cells within the iTreg fraction had a methylated FOXP3 gene Treg‐specific demethylated region (TSDR) indicating that they were not of nTreg origin. In conclusion, ASC induce Treg from effector T cells. These iTreg have immunosuppressive capacities comparable to those of nTreg. Their induction is IL‐2 pathway‐dependent. The dual effect of MSC of inhibiting immune cell proliferation while generating de‐novo immunosuppressive cells emphasizes their potential as cellular immunotherapeutic agent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号