首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prefrontal modulation of visual processing in humans   总被引:5,自引:0,他引:5  
Single neuron, evoked potential and metabolic techniques show that attention influences visual processing in extrastriate cortex. We provide anatomical, electrophysiological and behavioral evidence that prefrontal cortex regulates neuronal activity in extrastriate cortex during visual discrimination. Event-related potentials (ERPs) were recorded during a visual detection task in patients with damage in dorsolateral prefrontal cortex. Prefrontal damage reduced neuronal activity in extrastriate cortex of the lesioned hemisphere. These electrophysiological abnormalities, beginning 125 ms after stimulation and lasting for another 500 ms, were accompanied by behavioral deficits in detection ability in the contralesional hemifield. The results provide evidence for intrahemispheric prefrontal modulation of visual processing.  相似文献   

2.
We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (SI) and secondary (SII) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (MI), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of SI, MI, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral pre-frontal cortex, bilateral inferior parietal lobe, right SII) suggesting their specific involvement during 2D geometrical shape matching.  相似文献   

3.
The processing of human bodies is important in social life and for the recognition of another person’s actions, moods, and intentions. Recent neuroimaging studies on mental imagery of human body parts suggest that the left hemisphere is dominant in body processing. However, studies on mental imagery of full human bodies reported stronger right hemisphere or bilateral activations. Here, we measured functional magnetic resonance imaging during mental imagery of bilateral partial (upper) and full bodies. Results show that, independently of whether a full or upper body is processed, the right hemisphere (temporo-parietal cortex, anterior parietal cortex, premotor cortex, bilateral superior parietal cortex) is mainly involved in mental imagery of full or partial human bodies. However, distinct activations were found in extrastriate cortex for partial bodies (right fusiform face area) and full bodies (left extrastriate body area). We propose that a common brain network, mainly on the right side, is involved in the mental imagery of human bodies, while two distinct brain areas in extrastriate cortex code for mental imagery of full and upper bodies.  相似文献   

4.
Change blindness—the inability to detect salient changes when a distractor event occurs simultaneously—has been repeatedly used to investigate the neural correlates of awareness. The fact that the N2pc, which is basically assigned to attention processing, has been observed only for detected changes in such tasks lead to the assumption that this component may also reflect awareness. In contrast to previous electrophysiological studies, we used mudsplashes (experiment 1) or a very short blank (experiment 2) to induce change blindness so that the change was not occluded. A change, regardless of its detection, elicited a reliable N2pc. Successful change detection, however, was reflected in an enhanced amplitude of the N2pc component. Thus, the N2pc cannot be taken as a direct correlate of awareness but rather as a marker for a process that is necessary but not sufficient for awareness. Taking into account the generation of the N2pc in extrastriate visual areas, this finding fits nicely with the recent discussion about reentrant processing as a basis for visual awareness.  相似文献   

5.
Observers viewing a complex visual scene selectively attend to relevant locations or objects and ignore irrelevant ones. Selective attention to an object enhances its neural representation in extrastriate cortex, compared with those of unattended objects, via top-down attentional control signals. The posterior parietal cortex is centrally involved in this control of spatial attention. We examined brain activity during attention shifts using rapid, event-related fMRI of human observers as they covertly shifted attention between two peripheral spatial locations. Activation in extrastriate cortex increased after a shift of attention to the contralateral visual field and remained high during sustained contralateral attention. The time course of activity was substantially different in posterior parietal cortex, where transient increases in activation accompanied shifts of attention in either direction. This result suggests that activation of the parietal cortex is associated with a discrete signal to shift spatial attention, and is not the source of a signal to continuously maintain the current attentive state.  相似文献   

6.
An ERP study of change detection,change blindness,and visual awareness   总被引:8,自引:0,他引:8  
Electrophysiological correlates of change detection and change blindness were studied in 12 observers. The ERP difference between detected changes and undetected changes was considered an electrophysiological correlate of visual awareness. Two distinct electrophysiological responses correlated with the awareness of change. First, awareness was associated with a negative amplitude shift at posterior sites around 200 ms after the change in the stimulus. The latency of the negative shift varied as a function of the task difficulty and the speed of becoming aware of the change. Second, ERPs to detected changes became more positive as compared with undetected changes around 400 ms after the change in the stimulus, peaking at parietal sites. We suggest that the earlier negativity is associated with a change in the content of visual awareness, whereas the later positivity may reflect more global processes needed in decision making and action planning.  相似文献   

7.
Visual attention is guided to stimuli either on the basis of their intrinsic saliency against their background (bottom-up factors) or through willful search of known targets (top-down factors). Posterior parietal cortex (PPC) is thought to be important for the guidance of visual bottom-up attention, whereas dorsolateral prefrontal cortex is thought to represent top-down factors. Contrary to this established view, we found that, when monkeys were tested in a task requiring detection of a salient stimulus defined purely by bottom-up factors and whose identity was unknown before the presentation of a visual display, prefrontal neurons represented the salient stimulus no later than those in the PPC. This was true even though visual response latency was shorter in parietal than in prefrontal cortex. These results suggest an early involvement of the prefrontal cortex in the bottom-up guidance of visual attention.  相似文献   

8.
The ventral extrastriate cortex adjacent to the second visual area was studied in the New World monkey Cebus apella, using anaesthetised preparations. The visuotopic organisation and myeloarchitecture of this region demonstrate the existence of a distinct strip of cortex, 3-4 mm wide, with an ordered representation of the contralateral upper visual quadrant, up to 60 degrees eccentricity. This upper-quadrant representation is probably homologous to the ventral subdivision of the third visual complex (V3v) of Old World monkeys, also known as the ventral posterior area. The representation of the horizontal meridian in V3v forms its posterior and medial border with V2, while the upper vertical meridian is represented anterior and laterally, forming a congruent border with the fourth visual area (V4). Central visual fields are represented in posterior and lateral portions of V3v, in the inferior occipital sulcus, while the periphery of the visual field is represented anteriorly, on the tentorial surface. Cortex anterior to V3v, at the ventral occipitotemporal transition, had neurones that had poor visual responses. No representation of the lower quadrant was found adjacent to V3v in ventral cortex. However, we observed cells with perifoveal receptive fields centred in the lower quadrant immediately dorsal to V3v, around the junction of the inferior occipital and lunate sulci. These observations argue against the idea that V3v is an area restricted to the ventral cortex in New World monkeys and support the conclusions of previous anatomical studies in Cebus that showed a continuity of myeloarchitecture and connectional patterns between ventral and lateral extrastriate cortices. Together, these data suggest that V3v may be part of a larger area that extends into dorsolateral extrastriate cortex, overlapping to some extent with the caudal subdivision of the dorsolateral area described in other New World monkeys.  相似文献   

9.
It has been proposed that the right hemisphere alerting network co-activates, either directly or via the brainstem, the attention system in the parietal cortex involved in spatial attention. The observation that impaired alertness and sustained attention can predict the outcome of neglect might suggest such a relationship, too. In the present fMRI study, we intended to analyse and compare the functional anatomy of two attentional conditions both involving intrinsic (endogenous) alerting and fixation but differing with respect to the degree of spatially distributed attention by using the same paradigm under two different attentional conditions. In a group of ten participants, both a focused and a distributed visuospatial attention condition evoked similar patterns of activation in dorsolateral prefrontal regions, in the anterior cingulate gyrus, in the superior and inferior parietal cortex as well as in the superior temporal gyrus and in the thalamus. These activation foci were stronger in the right hemisphere under both conditions. After subtraction of the alertness condition with focused spatial attention, distributed spatial attention with stimuli appearing at unpredictable locations within both visual fields induced additional bilateral activations only in the left and right superior parietal cortex and in the right precuneus suggesting that these regions are specific for a more widespread dispersion of spatial attention.  相似文献   

10.
Lesions in the primary visual cortex induce severe loss of visual perception. Depending on the size of the lesion, the visual field might be affected by small scotomas, hemianopia, or complete loss of vision (cortical blindness). In many cases, the whole visual field of the patient is affected by the lesion, but diffuse light-dark discrimination remains (residual rudimentary vision, RRV). In other cases, a sparing of a few degrees can be found (severely reduced vision, SRV).In a follow-up study, we mapped visually induced cerebral activation of three subjects with SRV using functional magnetic resonance imaging. We were especially interested in the visual areas that would be activated if subjects could perceive the stimulus consciously although information flow from V1 to higher visual areas was strongly reduced or virtually absent. Because subjects were only able to discriminate strong light from darkness, we used goggles flashing intense red light at a frequency of 3 Hz for full visual field stimulation. Besides reduced activation in V1, we found activation in the parietal cortex, the frontal eye fields (FEF), and the supplementary eye fields (SEF). In all patients, FEF activation was pronounced in the right hemisphere. These patterns were never seen in healthy volunteers. In a patient who recovered completely, we observed that extrastriate activation disappeared in parallel with the visual field restitution. This result suggests that damage to the primary visual cortex changes the responsiveness of parietal and extravisual frontal areas in patients with SRV. This unexpected result might be explained by increased stimulus-related activation of attention-related networks.  相似文献   

11.
Functional magnetic resonance imaging blood-oxygenation-level-dependent (BOLD) signal increases (activations) and BOLD signal decreases ("deactivations") were compared in six healthy volunteers during galvanic vestibular (mastoid) and galvanic cutaneous (neck) stimulation in order to differentiate vestibular from ocular motor and nociceptive functions. By calculating the contrast for vestibular activation minus cutaneous activation for the group, we found activations in the anterior parts of the insula, the paramedian and dorsolateral thalamus, the putamen, the inferior parietal lobule [Brodmann area (BA) 40], the precentral gyrus (frontal eye field, BA 6), the middle frontal gyrus (prefrontal cortex, BA 46/9), the middle temporal gyrus (BA 37), the superior temporal gyrus (BA 22), and the anterior cingulate gyrus (BA 32) as well as in both cerebellar hemispheres. These activations can be attributed to multisensory vestibular and ocular motor functions. Single-subject analysis in addition showed distinctly nonoverlapping activations in the posterior insula, which corresponds to the parieto-insular vestibular cortex in the monkey. During vestibular stimulation, there was also a significant signal decrease in the visual cortex (BA 18, 19), which spared BA 17. A different "deactivation" was found during cutaneous stimulation; it included upper parieto-occipital areas in the middle temporal and occipital gyri (BA 19/39/18). Under both stimulation conditions, there were signal decreases in the somatosensory cortex (BA 2/3/4). Stimulus-dependent, inhibitory vestibular-visual, and nociceptive-somatosensory interactions may be functionally significant for processing perception and sensorimotor control.  相似文献   

12.
Adaptive changes in early and late blind: a fMRI study of Braille reading.   总被引:17,自引:0,他引:17  
Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string "######". This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex.  相似文献   

13.
Visual motion processing is compromised in schizophrenia (SZ), but it is uncertain what neural deviations account for their motion analysis abnormalities. Neural activations were measured with dense-array electroencephalography while 14 medicated SZ and 14 healthy persons performed a paired-stimuli forced choice speed discrimination task. SZ had (a) worse-at-speed discrimination, replicating previous findings, (b) normal early extrastriate neural activity (N1) to both motion stimuli, (c) reduced later extrastriate activity (P2) specifically to the second stimulus, and (d) following P2, an enhanced later N2 over parietal cortex. Stronger P2 and N2 responses were associated with better speed discrimination performance across groups. These findings indicate that the neural correlates of poor motion analysis in SZ may not be an early visual analysis abnormality but a problem with efficient use of speed information later in cognitive processing.  相似文献   

14.
We studied orienting and maintenance of spatial attention in audition and vision. Functional magnetic resonance imaging (fMRI) in nine healthy subjects revealed activations in the same superior and inferior parietal, and posterior prefrontal areas in the auditory and visual orienting tasks when these tasks were compared with the corresponding maintenance tasks. Attention-related activations in the thalamus and cerebellum were observed during the auditory orienting and maintenance tasks and during the visual orienting task. In addition to the supratemporal auditory cortices, auditory orienting, and maintenance produced stronger activity than the respective visual tasks in the inferior parietal and prefrontal cortices, whereas only the occipital visual cortex and the superior parietal cortex showed stronger activity during the visual tasks than during the auditory tasks. Differences between the brain networks involved in auditory and visual spatial attention could be, for example, due to different encoding of auditory and visual spatial information or differences in stimulus-driven (bottom-up triggered) and voluntary (top-down controlled) attention between the auditory and visual modalities, or both.  相似文献   

15.
Despite their crucial biological relevance, the neural structures differentially activated by the detection of optic flow towards the observer remain to be elucidated. Here, we deploy functional magnetic resonance imaging with normal volunteers to locate the areas differentially activated when motion towards the observer is detected. Motion towards the observer, compared with motion away, showed significant activations (P<0.05, corrected for multiple comparisons), as assessed using statistical parametric mapping, in the lateral inferior occipital cortex bilaterally and in right lateral superior occipital cortex. The areas implicated do not extend into area V5 or subdivisions thereof.Our data suggest that the representations of motion towards the observer implicate perceptual and attentional mechanisms acting at early stages of visual processing in extrastriate cortex. From the standpoint of efficient biological engineering, it makes sense that such crucially important functions as object motion towards the observer would be computed in early visual processing areas. Further studies will be required to determine the extent to which the effects we observed in lateral occipital cortex reflect differential attention to different types of motion, as contrasted with the derivation of explicit representations of motion towards the observer.  相似文献   

16.
The Embedded Figures Task (EFT) involves search for a target hidden in a complex geometric pattern. Even though the EFT is designed to probe local visual search functions, not language-related processes, neuropsychological studies have demonstrated a strong association between aphasia and impairment on this task. A potential explanation for this relationship was offered by a recent functional MRI study (Manjaly et al., 2003), which demonstrated that a part of the left posterior inferior frontal gyrus (pIFG), overlapping with Broca's region, is crucially involved in the execution of the EFT. This result suggested that pIFG, an area strongly associated with language-related functions, is also part of a network subserving cognitive functions unrelated to language. In this study, we tested this conjecture by analysing the data of Manjaly et al. for context-dependent functional interactions of the pIFG during execution of the EFT. The results showed that during EFT, compared to a similar visual matching task with minimal local search components, pIFG changed its interactions with areas commonly involved in visuospatial processing: Increased contributions to neural activity in left posterior parietal cortex, cerebellar vermis, and extrastriate areas bilaterally, as well as decreased contributions to bilateral temporo-parietal cortex, posterior cingulate cortex, and left dorsal premotor cortex were found. These findings demonstrate that left pIFG can be involved in nonlanguage processes. More generally, however, they provide a concrete example of the notion that there is no general one-to-one mapping between cognitive functions and the activations of individual areas. Instead, it is the spatiotemporal pattern of functional interactions between areas that is linked to a particular cognitive context.  相似文献   

17.
Although direction selectivity is a cardinal property of neurons in the visual motion detection system, movement of numerous elements without global direction (incoherent motion) has been shown to activate human and monkey visual systems, as does coherent motion which has global direction. We used magnetoencephalography to investigate the neural process underlying responses to these types of motions in the human extrastriate cortex. Both motions were created using a random dot kinematogram and four speeds (0, 0.6, 9.6 and 25 degrees /s). The visual stimuli were composed of two successive motions at different speeds; a coherent motion at a certain speed that changed to incoherent motion at another speed or vice versa. Magnetic responses to the change in motion consisted of a few components, the first of which was always largest. The peak latency of the first component was inversely related to the speed of the preceding motion, but for both motions it was not affected by the speed of the subsequent motion. For each subject, the estimated origin of the first component was always in the extrastriate cortex, and this changed with the speed of the preceding motion. For both motions, the location for the slower preceding motion was lateral to that for the faster preceding motion. Although the latency changes of the two motions differed, their overall response properties were markedly similar. These findings show that the speed of incoherent motion is represented in the human extrastriate cortex neurons to the same degree as coherent motion. We consider that the human visual system has a distinct neural mechanism to perceive random dots' motion even though they do not move in a specific direction as a whole.  相似文献   

18.
Event related potentials (ERPs) were recorded from subjects who had to perform either an identification task or a simple detection task on moving visual stimuli. Results showed that the amplitude of the so-called visual "N1" component was larger for identification than for mere detection, replicating previous data obtained with static stimuli. However, we also found that: (i) the onset, peak and offset latencies of the visual N1 to dynamic stimuli were significantly earlier in the detection task than in the identification task, and (ii) in both conditions, the coordinates of the equivalent current dipoles best explaining the visual N1 component were consistent with those of the human motion visual area MT+/V5 in the extrastriate cortex. Altogether, these results indicate that dynamic stimuli may activate (at least partly) different pathways and processes in extrastriate cortex according to the nature of the task required on these stimuli.  相似文献   

19.
In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann’s area BA 44). As similar locations have been discussed as part of a dorsal frontal—superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related “what” and “where” processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may underlie action and cognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号