首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rationale Adult rats typically exhibit more robust behavioral sensitization than do preweanling rats. A possible explanation for this age-dependent difference is that environmental context may have relatively less impact on the psychostimulant-induced behaviors of preweanling rats. Objective The purpose of this study was to assess the importance of environmental context for the development of cocaine-induced sensitization in preweanling and adult rats. Materials and methods On postnatal day (PD) 19 or PD 79, rats in the context-dependent condition were injected with 30 mg/kg cocaine immediately before being placed in a novel test chamber for 30 min. The same rats were then injected with saline 30 min after being returned to the home cage. Rats in the context-independent condition were injected with saline before being placed in the novel chamber and cocaine in the home age. Control rats were injected with saline at both time points. One day later, adult and preweanling rats were challenged with saline or 10 mg/kg cocaine (experiment 1), or preweanling rats were challenged with 5, 20, or 30 mg/kg cocaine (experiment 2). After being injected, rats were placed in the test chamber, and behavior was measured for 60 min. Results Adult rats showed context-dependent locomotor sensitization and conditioned activity, with females exhibiting more locomotor activity than males. Preweanling rats did not exhibit conditioned activity, but they showed robust context-dependent and context-independent sensitization when challenged with 10–30 mg/kg cocaine. Conclusions Context did not influence the expression of behavioral sensitization in preweanling rats, suggesting that deficits in associative or memory processes may be responsible for age-dependent differences in behavioral sensitization and conditioned activity.  相似文献   

2.

Rationale

Preweanling rats, unlike adults, exhibit context-independent behavioral sensitization after a single pretreatment injection of cocaine.

Objective

The purpose of this study was to examine environmental factors modulating one- and three-trial sensitization in preweanling rats.

Methods

For preweanling rats, drug pretreatments occurred on postnatal day (PD) 17–PD 19 (experiment 1) or PD 19 (experiment 2). One set of rats was injected with cocaine (30 mg/kg) and placed in anesthesia (“small”), operant conditioning (“large”), or activity chambers for 30 min. Rats were returned to the home cage and injected with saline. Additional groups of rats were injected with saline and placed in small, large, or activity chambers for 30 min and then injected with cocaine after being returned to the home cage. Control groups were injected with saline at both time points. In separate experiments, rats were pretreated with cocaine or saline and restricted to the home cage. On PD 20, all rats were injected with cocaine (20 mg/kg) and placed in activity chambers where locomotor activity was assessed for 60 min. For comparison purposes, sensitization was also assessed in adult rats.

Results

Adult male and female rats exhibited only context-dependent sensitization, whereas preweanling rats showed context-independent sensitization in a variety of conditions (e.g., when pretreated with cocaine in various novel chambers or the home cage).

Conclusions

These results suggest that nonassociative mechanisms underlying behavioral sensitization are functionally mature in preweanling rats, but associative processes modulating the strength of the sensitized response do not function in an adult-like manner during the preweanling period.  相似文献   

3.
The ontogenetic profile of psychostimulant-induced one-trial behavioral sensitization has not been determined. The purpose of this study was to systematically assess the ontogeny of methamphetamine-induced and cocaine-induced behavioral sensitization across the preweanling and adolescent periods. To this end, rats were injected with methamphetamine, cocaine, or saline in either an activity chamber or home cage during the preweanling [postnatal day (PD) 12, PD 16, or PD 20], preadolescent (PD 24), or adolescent (PD 34) periods. One day later, rats were challenged with the same psychostimulant and locomotion was measured in an activity chamber. The results showed that methamphetamine produced one-trial locomotor sensitization on PD 13 and PD 17; whereas, cocaine-induced behavioral sensitization was only evident on PD 21. The sensitized responding of preweanling rats was not influenced by environmental context. Interestingly, preadolescent and adolescent rats did not exhibit locomotor sensitization. The latter result is generally consistent with past studies showing that rats from the middle and late adolescent periods do not exhibit cocaine-induced one-trial behavioral sensitization. The present results show that methamphetamine, as well as cocaine, can produce one-trial context-independent behavioral sensitization during early ontogeny, but sensitized responding is only apparent within a narrow developmental window.  相似文献   

4.
In the present study, we examined whether exposing rats to manganese (Mn) during the preweanling period would affect basal or cocaine-induced locomotor activity in adulthood and reduce the number of striatal dopamine transporter binding sites. On postnatal day (PD) 1-21, rats were given oral supplements of vehicle or Mn chloride (250 or 750 microg/day). Striatal Mn and iron (Fe) accumulation as well as serum Fe levels were measured on PD 14, PD 21, and PD 90. Throughout the dosing period, rats were evaluated on standard measures of sensory and motor development. During adulthood, the basal and cocaine-induced locomotor activity of vehicle- and Mn-exposed rats was assessed using automated testing chambers. After completion of behavioral testing, striatal dopamine transporter binding sites were measured using [(3)H]GBR 12935. Results showed that early Mn exposure enhanced striatal Mn accumulation on PD 14 and PD 21, while depressing serum Fe levels on PD 21. Exposure to Mn on PD 1-21 did not affect striatal or serum Mn or Fe levels on PD 90. During the second postnatal week, Mn-exposed rat pups performed more poorly than controls on a negative geotaxis task, however basal motor activity of preweanling rat pups was not affected by Mn treatment. When tested in adulthood, basal locomotor activity of vehicle- and Mn-exposed rats also did not differ. In contrast, adult rats previously exposed to 750 microg/day Mn showed an enhanced locomotor response when challenged with 10 mg/kg cocaine. A different pattern of results occurred after treatment with a higher dose of the psychostimulant, because Mn-exposed rats showed an attenuated locomotor response when given 20 mg/kg cocaine. Importantly, Mn-exposed rats exhibited long-term reductions in striatal dopamine transporter binding sites. Considered together, these results indicate that postnatal Mn exposure has long-term behavioral and neurochemical effects that can persist into adulthood.  相似文献   

5.
 When given acutely, drugs that stimulate kappa opioid receptors (e.g., U-50,488) enhance the locomotor activity of preweanling rats and induce regional increases in Fos immunoreactivity (IR). In contrast, the effects of chronic treatment with kappa opioid agonists are unknown. The purpose of the present study was two-fold: first, to determine whether repeated treatment with a kappa opioid agonist would sensitize the locomotor activity of preweanling rats and, second, to determine whether changes in Fos IR correspond with the occurrence of locomotor sensitization. To test these hypotheses, rats were injected with U-50,488 (5 mg/kg, SC) or saline on either postnatal days (PD) 5–9 or PD 11–15. For rats pretreated on PD 5–9, a test day injection of U-50,488 or saline was given after either 1 or 7 abstinence days (i.e., at PD 11 or PD 17). For rats pretreated on PD 11–15, a test day injection of U-50,488 or saline was given after 1 abstinence day (i.e., at PD 17). In two additional experiments, the acute and chronic effects of U-50,488 treatment were assessed in adult rats. As expected, repeated treatment with U-50,488 produced locomotor sensitization at both PD 11 and PD 17, but only when the test day occurred 1, and not 7, days after cessation of drug pretreatment. Thus, the persistence of the sensitized response was very brief. Test day treatment with U-50,488 stimulated Fos IR in various brain regions of the preweanling rat, including the medial striatum, nucleus accumbens, lateral habenula, and septal area. Chronic treatment with U-50,488 depressed Fos expression in a number of brain regions (relative to acutely treated rats); however, these changes in Fos IR did not necessarily coincide with the occurrence of behavioral sensitization. Repeated treatment with U-50,488 did not produce locomotor sensitization in adult rats, so Fos IR was not assessed in this age group. Therefore, while acute treatment with U-50,488 both increased locomotor activity and stimulated Fos IR in preweanling rats, chronic U-50,488 treatment produced behavioral changes that did not correspond with Fos expression. Received: 6 August 1997 / Final version: 25 November 1997  相似文献   

6.
Initiation and experimentation with illicit drugs often occurs in adolescence. Evidence suggests that adolescent rats are more sensitive to some of the effects of drugs of abuse than adult rats. The present study investigated whether adolescent and adult female Sprague Dawley rats differ in cocaine-induced locomotor activity. Animals were placed in the test environment for 30 minutes, and then administered an intraperitoneal (IP) injection of either cocaine (20mg/kg) or saline (0.9%). Both adult and adolescent animals showed significant increases in locomotor activity as a result of cocaine administration compared to saline controls. Interestingly, cocaine induced significantly more locomotor activity in the adolescent females compared to the adults, demonstrating that cocaine acts differently in developing animals.  相似文献   

7.
RATIONALE: Cocaine administration in rats increases locomotor activity as a result of underlying changes in neurotransmitter dynamics and intracellular signaling. The serine/ threonine phosphatase, calcineurin, is known to modulate several signaling proteins that can influence behavioral responses to cocaine. OBJECTIVE: This study aimed to determine whether calcineurin plays a role in locomotor responses associated with acute and repeated cocaine exposure. Second, we examined cocaine-mediated changes in intracellular signaling to identify potential mechanism underlying the ability of calcineurin to influence cocaine-mediated behavior. METHODS: Locomotor activity was assessed over 17 days in male Sprague-Dawley rats (n = 48) that received daily administration of cocaine (15 mg/kg, s.c.) or saline in the presence or absence of the calcineurin inhibitor, cyclosporine (15 mg/kg, i.p.). Non-cocaine-treated animals from this initial experiment (n = 24) also received an acute cocaine challenge on day 18 of testing. RESULTS: Daily cyclosporine administration potentiated the locomotor response to repeated cocaine 5 min after cocaine injection and attenuated the sustained locomotor response 15 to 40 min after cocaine. Furthermore, cyclosporine pretreatment for 17 days augmented the acute locomotor response to acute cocaine 5 to 30 min after cocaine injection. Finally, repeated exposure to either cocaine or cyclosporine for 22 days increased synapsin I phosphorylation at the calcineurin-sensitive Ser 62/67 site, demonstrating a common downstream target for both calcineurin and cocaine. CONCLUSION: Our results suggest that calcineurin inhibition augments locomotor responses to cocaine and mimics cocaine-mediated phosphorylation of synapsin I.  相似文献   

8.
Marijuana (Cannabis sativa) remains one of the most widely used illegal drugs, with adolescents being particularly vulnerable to its use and abuse. In spite of this, most studies are conducted in adult animals even though the effects might be quite different in adolescents. Additionally, the use of marijuana often precedes the use of other psychoactive drugs including cocaine, especially when marijuana exposure begins during early adolescence. The purpose of this study was to examine the effects of repeated Δ9-tetrahydrocannabinol (THC), the major active ingredient in marijuana, in adolescents compared to adults and to determine its subsequent effects on cocaine-stimulated activity. To this end, adolescent (postnatal day PND 34) and adult (PND 66) rats were administered 3 mg/kg/day THC for 8 days and locomotor activity was measured on days 1, 2, 7 and 8 after dosing. On day 12 (4 days after the last dose of THC), rats were injected with escalating doses of cocaine and behavior was recorded. Results show that THC depressed locomotor activity in adult rats but not in adolescents. However, following a cocaine challenge, adolescents exposed to THC showed increased locomotor responses to cocaine compared to chronic vehicle-injected controls. This was not seen in adults. These results show that the effects of cocaine are enhanced after THC in adolescents, but not adults, and that this might account for the greater transition to cocaine after early, as opposed to later, marijuana use.  相似文献   

9.
The impact of cocaine exposure during development on behavioral sensitization as measured by locomotor activity and stereotypy following repeated intermittent administration of amphetamine is examined. Male and female Sprague-Dawley rats were exposed to cocaine at 50 mg/kg/day during postnatal days (PND) 11-20 and, as adults (PND193-212), were administered seven daily injections of 2.0 mg/kg amphetamine. Both locomotor activity and stereotypic behavior were assessed following the first and seventh injections. Control males and females showed sensitized behavior following repeated amphetamine injections with females showing greater locomotion while males showed increased stereotypy. Male rats pretreated with cocaine failed to develop sensitized locomotor or stereotypic responses following repeated amphetamine injections consistent with dampened D(1) receptor activity. Females pretreated with cocaine did not show a sensitized locomotor response but did display sensitization of stereotypy following repeated amphetamine administration. Thus, it appears that postnatal cocaine treatment produces differential effects on the circuits mediating sensitization behavior in male and female rats.  相似文献   

10.
Rationale Repeated intermittent administration of psychostimulant drugs such as amphetamine and cocaine can cause sensitization (reverse tolerance) to the locomotor-stimulating actions in rats. Sensitization to the stimulant effects of these drugs might contribute to the development and maintenance of addictive behaviors (e.g. compulsive drug use).Objectives Studies were designed to systematically examine how testing conditions affect the development and expression of locomotor sensitization to cocaine and amphetamine.Methods Rats were treated once daily with intraperitoneal (i.p.) administration of amphetamine (0.5–2.0 mg/kg) or cocaine (5.0–20 mg/kg) and placed in activity chambers for 30, 60, or 120 min. All amphetamine-preexposed rats were challenged with 0.5 mg/kg amphetamine, and all cocaine-preexposed rats were challenged with 5.0 mg/kg cocaine for 120-minute activity tests 2 weeks after the final injection.Results Rats treated repeatedly with 2.0 mg/kg amphetamine and tested for 60 min in activity chambers or 20 mg/kg cocaine and tested for 30 min in activity chambers were most active in response to the drug challenge. These time points coincide with the maximal behavioral effects of each drug, as measured after the first injection. In contrast, rats treated with 2.0 mg/kg amphetamine and tested for 30 min or 20 mg/kg cocaine and tested for 120 min were least active in response to the drug challenge.Conclusions Repeated association of the peak behavioral effects of high doses of amphetamine or cocaine with the drug-paired environment produces maximal expression of sensitized locomotor responses. Certain testing conditions appear to disrupt sensitization to these same doses of the drugs.  相似文献   

11.
Partial D(2)-like receptor agonists act as functional antagonists when given during periods of high dopaminergic tone (e.g., when self-administering cocaine or amphetamine). For this reason, we determined whether pretreatment with the partial D(2)-like agonist terguride would block the induction and/or expression of cocaine-induced behavioral sensitization in preweanling rats. More specifically, we examined (a). whether repeated administration of terguride alone (0.4-1.6 mg/kg) would support behavioral sensitization (Experiment 1); (b). whether injecting preweanling rats with terguride (0.1-1.6 mg/kg) during the pretreatment phase would block the induction and ultimate expression of cocaine-induced behavioral sensitization (Experiment 2); and (c). whether injecting rats with terguride (0.2-0.8 mg/kg) on the test day would block the expression of cocaine sensitization (Experiment 3). Results showed that repeated terguride administration did not induce behavioral sensitization by itself, nor did it block the induction of cocaine sensitization in preweanling rats. Interestingly, terguride reduced, but did not fully attenuate, the locomotor activity of cocaine-treated rats during the pretreatment phase. When given on the test day, terguride also depressed cocaine-induced locomotor activity, but rather than blocking the expression of behavioral sensitization, terguride seemed to cause a general reduction in locomotion. Because partial D(2)-like agonists attenuate cocaine- and amphetamine-induced reward, it has been proposed that this class of drug might serve as an effective pharmacotherapy for psychostimulant abuse. Although partial D(2)-like agonists may prove useful in this regard, results from the present study suggest that terguride would not block sensitization components of the addiction process.  相似文献   

12.
Expression of cocaine-evoked motor behaviors appears to be dependent on dopamine neurotransmission particularly in the target area of the mesolimbic system, i.e. the nucleus accumbens (NAc). To test potential anatomical component of the locomotor effects of cocaine and expression of its behavioral sensitization, male Wistar rats were implanted with bilateral cannulae aimed at the two subregions of the NAc (the shell or the core) and then intracranially injected with cocaine (locomotor activity) or injected with cocaine given either systemically or intracranially following the repeated (5 days) systemic drug administration (sensitization). Sensitization was measured at early (5-day) and late (21-day) withdrawal periods. Acute administration of intra-NAc shell cocaine (6.73-50 microg/side) in a dose-dependent manner increased locomotor activity in rats; significant hyperactivation was observed after 25 and 50 microg/side of cocaine. Intra-NAc core injection of cocaine (12.5-50 microg/side) did not change rats' locomotor activity. After 5- or 21-day withdrawal, behavioral sensitization (ca. 2 times higher locomotor activity than that after acute drug administration) was observed when cocaine was injected either systemically (10 mg/kg) or intra-NAc shell (12.5-25 microg/side) in animals repeatedly treated with cocaine (10 mg/kg). No difference was observed in the response to the challenge with intra-NAc core cocaine (12.5-25 micorg/side) in rats treated repeatedly with cocaine at either withdrawal period. The above findings show the differential regulation of motor responses to cocaine within the subregions of the NAc. They also indicate a preferential effect for the NAc shell in expression of the acute and sensitizing effects of cocaine in rats.  相似文献   

13.
The influence of the treatment-to-test interval on the expression of behavioral sensitization to cocaine was assessed following chronic cocaine exposure during the late preweanling period. From postnatal day 14 (P14) to P20, Sprague–Dawley rat pups received a daily intraperitoneal injection of either 30 mg/kg/2 cc cocaine or an equivalent volume of saline that was paired with placement in the treatment/test context for 30 min. Animals were challenged with 15 mg/kg cocaine in this context on the test day following drug-free intervals of 1, 3, 7, 14, or 21 days. Behavioral sensitization was evident following the preweanling cocaine regimen in terms of both matrix crossings and stereotypy. For matrix crossings, there was no evidence that this sensitization decreased across the time intervals examined, and sensitization was evident with stereotypy even at the 21-day injection–test interval. The expression of sensitization, however, was partially overshadowed by an overall reduced sensitivity to cocaine seen in testing during the periadolescent period (i.e., at P34 and P41). Thus, behavioral sensitization to cocaine can be expressed for weeks following chronic treatment during the late preweanling period, although the magnitude of behavioral expression may be influenced by age-related neurobehavioral alterations.  相似文献   

14.
It has been suggested that the locomotor response of rats to novelty is positively correlated with motor stimulant effects of acute injections with psychomotor stimulants, and liability to self-administer these drugs. In addition, response to novelty appears to be inversely correlated with an individual's susceptibility to develop behavioural sensitization (an increase in the behavioural response to a given dose of stimulant after repeated treatments). To test some of these putative relationships, 96 rats were allocated to one of two subgroups based on a median split of locomotor responses to novelty. Animals then received 10 successive injections of either vehicle, cocaine (10 mg/kg), or the direct D2 agonist, (+)-4-propyl-9-hydroxynaphthoxazine (PHNO: 15 microg/kg), and locomotor activity was monitored. Conditioning tests and additional sensitization and cross-sensitization tests were conducted. Results showed that locomotor responses to novelty are not significantly correlated with locomotor effects of either acute injection with cocaine or PHNO, or rate of development of behavioural sensitization to these drugs. However, locomotor responses to novelty did predict level of locomotor and stereotypy responses to cocaine, and to a lessor extent to PHNO. Cocaine-treated, but not PHNO-treated, rats exhibited drug-conditioned-like effects. Cross-sensitization between cocaine and PHNO was not observed, indicating independent mechanisms for sensitization. It is concluded that the locomotor response to novelty can predict level of locomotion and stereotypy produced by cocaine and PHNO, but does not predict the degree or rate of behavioural sensitization to either of these drugs.  相似文献   

15.
 We have recently shown that adrenalectomy (ADX) in rats blocks the appearance of cocaine-induced sensitization when this behavioral response is tested at early withdrawal times (1–2 days), but not after later withdrawal from cocaine (12 days). To determine if a similar phenomenon occurred with stress-induced sensitization, male Sprague-Dawley rats were given a sham ADX, ADX surgery, or ADX plus SC implanted corticosterone (CORT) pellets (CORT 12.5% pellets or CORT 50% pellets). A fifth group was given ADX surgery, but CORT 50% pellets were implanted after repeated stress treatment. One week after surgery, each group was divided into two additional groups, naive and stress. Naive animals remained unhandled, while stress rats were given a variety of daily stressors administered twice per day for 6 consecutive days. One day after the last stress, rats were given a saline injection followed by a cocaine injection (15 mg/kg, IP) the next day, and locomotor activity was monitored (early withdrawal). Two weeks after the last stress, the locomotor responses to an additional saline and cocaine injection were monitored (late withdrawal). At early withdrawal, no significant sensitization occurred for horizontal activity, but cross-sensitization was demonstrated for vertical activity. At late withdrawal, sham controls showed a stress-induced elevation in horizontal activity, with only a trend toward increased vertical activity. Animals given ADX surgery or ADX and CORT 12.5% pellets did not demonstrate sensitization to repeated stress, while CORT 50% pellets in ADX rats restored the sensitized horizontal response to cocaine challenge at late withdrawal. In contrast, stress-pretreated rats which were given CORT 50% pellets during the 2-week withdrawal period after the stress showed a marked decrease in horizontal activity in response to cocaine challenge at late withdrawal. The results provide evidence for a necessary role for adrenal hormones in long term, but not short-term, stress-induced cross-sensitization. Together with our previous study on the role of CORT in cocaine-induced sensitization, the results indicate that CORT is not the common factor mediating the long-term sensitization to cocaine and stress. Received: 10 April 1997 / Final version: 19 August 1997  相似文献   

16.
As addiction is increasingly formulated as a developmental disorder, identifying how early developmental exposures influence later responses to drugs of abuse is important to our understanding of substance abuse neurobiology. We have previously identified behavioral changes in adult mice following gestational exposure to cocaine that differ when assessed with methods employing contingent and non-contingent drug administration. We sought to clarify this distinction using a Pavlovian behavioral measure, conditioned place-preference. Adult mice exposed to cocaine in utero (40 or 20 mg/kg/day), vehicle and pair-fed controls were place-conditioned to either cocaine (5 mg/kg or 20 mg/kg, i.p.) or saline injections. The development of conditioned place-preference to cocaine was impaired in mice exposed to cocaine in utero, and was abolished by fetal malnutrition. A context-specific place-aversion to vehicle but not cocaine injection was observed in prenatally cocaine-exposed mice. Locomotor behavior did not differ among prenatal treatment groups. We conclude that early developmental exposure to cocaine may diminish the subsequent rewarding effects of cocaine in adulthood measured with classical conditioning techniques, and that this is not due to changes in locomotor behavior. Sensitivity to acute stress is also altered by prenatal cocaine exposure, consistent with earlier findings in this model.  相似文献   

17.
The ability of continuous intravenous infusion of cocaine (60 mg/kg per day for 11 or 12 days; by osmotic minipump) to alter responses to acute injection of cocaine (20 mg/kg, i.p.; given 24 hr after termination of the infusion by minipump) was tested in conscious, tethered Sprague-Dawley rats. Extracellular levels of cocaine, dopamine and metabolites of dopamine in the striatum were determined by in vivo microdialysis. Locomotor activity and stereotyped behavior were evaluated simultaneously during dialysis sampling. Prior infusion of cocaine blunted the ability of acute challenge with cocaine to increase the efflux of dopamine in the striatum, locomotor activity and stereotypy. Increases in extracellular levels of homovanillic acid in the striatum were significantly greater in cocaine-infused rats than vehicle-infused controls, both prior to and after acute injections of cocaine. However, no differences between these two groups were observed in levels of cocaine in the striatum after acute challenge. Extracellular levels of dopamine in the striatum correlated significantly (P less than 0.05) with stereotypy in both groups but with locomotor activity only in cocaine-infused rats. The results indicate that behavioral tolerance occurred after continuous intravenous infusions of cocaine, that this was correlated with neurochemical tolerance to acute cocaine challenge and that alterations in the metabolism of cocaine did not account for the observed behavioral responses.  相似文献   

18.
Schizophrenia is a serious psychiatric disorder that is most frequently treated with the administration of antipsychotics. Although onset of schizophrenia typically occurs in late adolescence, the majority of preclinical research on the behavioral effects of antipsychotics and their mechanism(s) of action has been conducted on adult male animals. In this study, the acute effects of haloperidol (0.03-0.3 mg/kg, i.p.) and clozapine (1-10 mg/kg, i.p.) on locomotor activity were examined in juvenile [postnatal day 22 (PN22)], adolescent (PN40), and adult (>PN70) rats of both sexes. Subsequently, in order to determine whether tolerance to the activity suppressive effects of these drugs would occur in adolescents, PN40 rats were dosed and assessed for an additional nine days. While all groups exhibited some degree of suppression following acute administration of both drugs, juvenile rats were considerably more sensitive to this effect. With sub-chronic administration during late adolescent development (PN40-PN49), tolerance failed to develop. These results emphasize the importance of age in pharmacological characterization of antipsychotics and suggest that pre-adolescents may have enhanced sensitivity to the motor effects of these drugs. Further, they suggest that, similar to adults, older adolescents may not develop tolerance to the activity suppression induced by these two antipsychotics.  相似文献   

19.
Outbred male Sprague-Dawley rats can be classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on their locomotor response to acute cocaine. Concomitant measurement of dopamine clearance in these rats revealed that the differential behavioral responses are associated with the magnitude of dopamine transporter (DAT) inhibition by cocaine. Here, we investigated several factors that might contribute to cocaine-induced behavioral variability and its association with differential inhibition of DAT function. In rats classified as LCRs or HCRs after 10 mg/kg cocaine injection, we found no differences in (1) novelty-induced locomotion, (2) cocaine levels in dorsal striatum or nucleus accumbens (NAc), (3) DAT number or affinity in NAc, or (4) DAT affinity for cocaine in NAc. In rats given 20 mg/kg cocaine, behavior was more uniform across individuals, but still warranted separation into LCR/HCR categories. Additionally, we analyzed the stability of the LCR/HCR classification made during the first test with 10 or 20 mg/kg cocaine by retesting rats 7 days later with saline or cocaine (10 or 20 mg/kg). Before injection, HCRs were more active relative to LCRs and to their own behavior on the first test day. Following cocaine, LCRs and HCRs exhibited similar drug-induced changes in locomotion, but there were unique effects that depended on the cocaine dose given on the first and second test days. Our results argue against several likely explanations for individual differences in cocaine-induced behavior and highlight the influence of a single cocaine exposure on subsequent behavioral responses to the drug.  相似文献   

20.
In the present study, the abilities of NPA (a direct DA receptor agonist) and amphetamine (an indirect DA receptor agonist) to induce short- and long-term behavioral sensitization were assessed in 11- and 17-day-old rats (age at initial injection). Rats were injected on 4 consecutive days with amphetamine (1.0, 2.5, or 5.0 mg/kg), NPA (1.0 mg/kg), or saline. A final test day occurred either 2 days (experiment 1) or 8 days (experiment 2) later. On the test day, rats given successive agonist injections received a single injection of the same agonist again; whereas rats given successive saline injections received either amphetamine or NPA for the first time. Five minutes after injection, locomotor activity (line-crosses), stereotyped sniffing, and vertical activity were measured during a 30-min testing session. The results showed that 11- and 17-day-old rats exhibited behavioral sensitization when tested with NPA or amphetamine after a 2-day interval. In contrast, neither NPA nor amphetamine was able to sensitize the behaviors of preweanling rats when measured 8 days after initial drug treatments. Therefore, these results show that both direct and indirect DA agonists are able to induce short-term behavioral sensitization in preweanling rats, but that the mechanisms responsible for mediating long-term behavioral sensitization have not yet matured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号