首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peerschke  EI 《Blood》1982,60(1):71-77
The ability of epinephrine to expose platelet fibrinogen receptors independent of released ADP was assessed using aspirin-treated, gel- filtered platelets. Similar to ADP-induced aggregation, platelet aggregation in response to epinephrine was accompanied by fibrinogen binding. Ten micromolar epinephrine induced a maximum number of platelet fibrinogen receptors in the absence of significant 14C- serotonin release. As indicated by Scatchard analysis, receptors exposed by both epinephrine and ADP had similar affinities for fibrinogen, but epinephrine induced approximately 30% fewer receptors than did ADP. This appears to correlate with the lesser degree of primary aggregation observed with this agent. Studies using phentolamine, a specific alpha-adrenergic antagonist, apyrase, or creatine phosphate/creatine kinase indicate that the exposure of platelet fibrinogen receptors by epinephrine was specific for platelet alpha-adrenergic receptor stimulation and was not the result of released ADP.  相似文献   

2.
Normal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, chymotrypsin, and prostaglandin E1 (PGE1). In contrast, thrombin-induced aggregates of platelets from patients with delta-storage pool deficiency (delta-SPD), which lack releasable nucleotides, are readily deaggregated by the same combination of inhibitors. The ease with which delta-SPD platelets are deaggregated is caused by the lack of stabilizing effects of released ADP, since: (1) exogenous adenosine diphosphate (ADP) (10 mumol/L), but not serotonin (2 mumol/L), abolishes the ability of these inhibitors to deaggregate delta-SPD platelets; (2) thrombin-induced aggregates of platelets from a patient (V.R.) (whose platelets have a severe, selective impairment of sensitivity to ADP, but normal amounts of releasable nucleotides) can be readily deaggregated, and addition of ADP does not stabilize the platelet aggregates; (3) apyrase or creatine phosphate (CP)/creatine phosphokinase (CPK), added before thrombin, make control platelets more easily deaggregated by hirudin, chymotrypsin, and PGE1, and do not change the deaggregation response of delta-SPD platelets and of V.R.'s platelets. Thrombin-induced aggregation and release of beta-thromboglobulin in control, delta-SPD, and in V.R.'s platelets was similar and not inhibited by apyrase or CP/CPK. The stabilizing effect of ADP on platelet aggregates is specific, since epinephrine in the presence of apyrase to remove traces of released ADP does not stabilize the aggregates of control, delta-SPD, or of V.R.'s platelets. Because epinephrine increases fibrinogen binding to thrombin-stimulated platelets to a greater extent than ADP, but does not stabilize the aggregates, it is unlikely that the additional fibrinogen binding sites induced by ADP have a major role in inhibiting deaggregation by the combination of inhibitors.  相似文献   

3.
Synergistic effects between agonists on platelet aggregation have long been appreciated. Recently epinephrine was reported to induce maximal aggregation of aspirin-treated platelets when combined with ADP or thrombin, and to increase fibrinogen binding of non-aspirin treated platelets stimulated with low doses of ADP. The present study extends these observations to correlate fibrinogen binding in response to various combinations of ADP, epinephrine, and thrombin with platelet aggregation and 14C-serotonin release using aspirin-treated platelets as well as platelets from stored concentrates. When fresh platelets were stimulated with epinephrine (5 microM) together with either ADP (10 microM) or thrombin (150 mU/ml), fibrinogen binding increased by 180% compared to binding observed in response to ADP or thrombin alone. This was accompanied by enhanced platelet aggregation, but no increase in 14C-serotonin release. While both ADP and epinephrine potentiated the aggregation and fibrinogen binding of stored platelets in response to high doses of thrombin (150 mU/ml), maximal aggregation was achieved only with thrombin (150 mU/ml) and epinephrine (5 microM) in combination. The data thus suggest that 1) epinephrine induces maximal aggregation of aspirin-treated platelets stimulated with thrombin or ADP by significantly enhancing fibrinogen receptor exposure independently of the cyclooxygenase-mediated release reaction; 2) epinephrine stimulates platelets by a mechanism different from that of thrombin or ADP; and 3) as demonstrated by others, the ability of platelets from stored concentrates to aggregate and to bind fibrinogen in response to ADP can be enhanced by epinephrine, and, in addition, these platelets can aggregate and bind fibrinogen maximally when stimulated with combinations of epinephrine and thrombin.  相似文献   

4.
Shattil  SJ; Motulsky  HJ; Insel  PA; Flaherty  L; Brass  LF 《Blood》1986,68(6):1224-1231
Epinephrine causes platelet aggregation and secretion by interacting with alpha 2-adrenergic receptors on the platelet surface. Platelet aggregation requires the binding of fibrinogen to a specific receptor on the membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The current studies were designed to examine the effect of occupancy of platelet alpha 2-adrenergic receptors by epinephrine on the expression of fibrinogen receptors and on the aggregation of platelets. The ability of epinephrine to induce the expression of fibrinogen receptors was studied under two different conditions: acute stimulation (less than 1 min) and prolonged stimulation (50 to 90 min), the latter of which is associated with a reduction or "desensitization" of the platelet aggregation response. Expression of the fibrinogen receptor was monitored with 125I-fibrinogen as well as with 125I-PAC-1 (PAC-1), a monoclonal antibody that binds to the glycoprotein IIb-IIIa complex only after platelets are activated. Epinephrine caused an immediate increase in PAC-1 and fibrinogen binding that was dependent on occupancy of the alpha 2-receptor by epinephrine and on the presence of extracellular free Ca (KCa = 30 mumol/L). By itself, 1 mmol/L Mg was unable to support induction of the fibrinogen receptor by epinephrine. However, it did decrease the Ca requirement by about two orders of magnitude. Prolonged stimulation of unstirred platelets by epinephrine led to a 70% decrease in the aggregation response when the platelets were subsequently stirred. Despite their decreased aggregation response, desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due simply to a decrease in fibrinogen receptor expression. Although desensitization was not affected by pretreatment of the platelets with aspirin, it was partially prevented when extracellular Ca was chelated by EDTA during the long incubation with epinephrine. These studies demonstrate that once platelet alpha 2-adrenergic receptors are occupied by epinephrine, extracellular Ca is involved in initiating the aggregation response by supporting the induction of the fibrinogen receptor and the binding of fibrinogen. Furthermore. Ca-dependent reactions subsequent to fibrinogen binding may be necessary for maximal platelet aggregation and are impaired when platelets become desensitized to epinephrine.  相似文献   

5.
Platelet concentrates stored at 22 degrees C have a marked decrease in their aggregation response to adenosine diphosphate (ADP) or epinephrine but a normal response to these agents when used as a pair. Since platelet stimulation involves exposure of receptors for fibrinogen, we studied fibrinogen binding to platelets from fresh and stored concentrates. Following stimulation with 10 microM ADP or 20 microM epinephrine, platelet suspensions from fresh concentrates bound 125I-fibrinogen in a reaction that reached completion within 30 min. Significantly less binding occurred in suspensions from platelet concentrates that had been stored for 5 days at 22 degrees C. When stimulated by ADP and epinephrine as a pair (2 microM each), binding of fibrinogen to platelets was complete within 10-15 min and was not significantly decreased in suspensions from stored concentrates. We also investigated the effect of storage on the glycoprotein IIb-IIa complex, thought to be a specific receptor for fibrinogen on the platelet surface. Binding of a monoclonal antibody specific for this complex (B59.2) to platelet suspensions was unaffected by 5 days of storage. Furthermore, B59.2 inhibited aggregation, secretion, and fibrinogen binding of fresh and stored platelets stimulated with the pair of agents just as it did with single agents. We conclude that storage for 5 days at 22 degrees C impairs the exposure of fibrinogen receptors on platelets in response to ADP or epinephrine when used as single agents, without affecting the glycoprotein IIb-IIIa complex quantitatively. The function of the receptor is normal in response to the pair of agents.  相似文献   

6.
Heyns A du  P; Eldor  A; Yarom  R; Marx  G 《Blood》1985,66(1):213-219
We demonstrate that zinc (0.1 to 0.3 mmol/L) induces aggregation of washed platelet suspensions. Higher concentrations (1 to 3 mmol/L) of zinc were needed to aggregate platelets in platelet-rich plasma obtained from blood anticoagulated with low-molecular-weight heparin, probably due to the binding of zinc to the plasma proteins. Zinc- induced aggregation of normal washed platelets required added fibrinogen and no aggregation occurred with thrombasthenic platelets or with normal platelets pretreated with a monoclonal antibody (10E5) that blocks the platelet fibrinogen receptor. These data indicate that the platelet membrane fibrinogen receptor-glycoproteins IIb and IIIa mediate the effect of zinc. Zinc-induced aggregation was blocked by the agent TMB-8, which interferes with the internal calcium flux, and by prostacyclin, which elevates platelet cyclic adenosine monophosphate levels. Zinc-induced aggregation was not accompanied by thromboxane synthesis or by the secretion of dense-body serotonin and was not affected by preexposure of platelets to acetylsalicylic acid. Experiments with creatine phosphate/creatine phosphokinase showed that the zinc effect on platelets was independent of extracellular adenosine diphosphate (ADP). Zinc had an additive effect when platelet aggregation was stimulated with subthreshhold concentrations of collagen or ADP. Together with the known effects of nutritional zinc on in vivo bleeding, on platelet aggregation, and on lipid metabolism, the results suggest that zinc may have an important bearing on normal hemostasis, thrombosis, and atherosclerosis.  相似文献   

7.
Fibrinogen binding to receptors on stimulated platelets is a prerequisite for platelet aggregation. To gain further insight into the role of fibrinogen in platelet aggregation and to identify the platelet fibrinogen receptor, we developed a monoclonal anti-platelet antibody that inhibited platelet aggregation. The purified antibody, designated A2A9, inhibited platelet aggregation stimulated by 10 microM ADP, 10 microM epinephrine, and thrombin at 1 unit/ml without inhibiting platelet shape change or platelet secretion. A2A9 was also a competitive inhibitor of fibrinogen binding to ADP-stimulated platelets. Fifty percent inhibition of fibrinogen binding occurred at 65 nM A2A9. Direct binding studies using radiolabeled A2A9 demonstrated 47,000 A2A9 binding sites on unstimulated platelets, with a dissociation constant of 60 nM. Platelets from two individuals with Glanzmann thrombasthenia bound essentially no A2A9. Therefore, these data support the hypothesis that receptor-bound fibrinogen mediates platelet aggregation. In order to identify the platelet fibrinogen receptor, A2A9 immobilized on agarose was used for affinity chromatography. Two platelet polypeptides with Mr = 140,000 and 93,000 were recovered from the immobilized A2A9. After disulfide reduction, these Mr values were altered to 125,000 and 116,000. The smaller polypeptide was also found to contain the PlA1 antigen. These data localize the epitope recognized by A2A9 to the platelet membrane glycoprotein IIb-IIIa complex and suggest that this complex forms the physiologic platelet fibrinogen receptor.  相似文献   

8.
ADP and epinephrine-induced release of platelet fibrinogen   总被引:2,自引:0,他引:2  
Kaplan  KL; Dauzier  MJ; Rose  S 《Blood》1981,58(4):797-802
Human platelets gel-filtered into Tyrode's buffer containing 1 mM Mg++ and 0.35% bovine serum albumin were studied to determine whether they would undergo biphasic aggregation and release of alpha-granule proteins in response to adenosine diphosphate (ADP) or epinephrine without addition of exogenous fibrinogen. Fibrinogen concentration in the supernatant of unaggregated gel-filtered platelets was less than 1 pmole/ml. With addition of ADP or epinephrine, biphasic aggregation was seen, with release of platelet fibrinogen, beta-thromboglobulin, and platelet factor 4. Fibrinogen concentration in the supernatant after aggregation ranged from 15 to 70 pmole/ml. Release of the alpha-granule proteins by epinephrine was coincidental with release of the dense granule adenine nucleotides. Aggregation and alpha-granule protein release by both ADP and epinephrine were inhibited by added Ca++ at 1-- 2 mM. The ability of gel-filtered platelets to undergo ADP- and epinephrine-induced aggregation and release in the absence of exogenous fibrinogen suggests that released platelet fibrinogen may be able to fulfill the requirement for fibrinogen in ADP- and epinephrine-induced platelet aggregation and release.  相似文献   

9.
Peerschke  EI; Coller  BS 《Blood》1984,64(1):59-63
We recently described a monoclonal antibody, 10E5 , that completely blocks adenosine diphosphate (ADP) induced fibrinogen binding to platelets and aggregation induced by ADP, epinephrine, and thrombin. Multiple lines of evidence indicate that 10E5 binds to platelet membrane glycoproteins IIb and/or IIIa. Because it has been reported that platelets treated with chymotrypsin aggregate when fibrinogen is added, we tested the effect of 10E5 antibody on chymotrypsin-induced fibrinogen binding and platelet aggregation. Aspirin-treated human platelets were washed in modified Tyrode's buffer (pH 7.5), incubated for 5 minutes at 22 degrees C with 300 micrograms/mL chymotrypsin, and washed again. The amount of 10E5 antibody bound to these platelets (37,232 +/- 2,928 molecules/platelet; mean +/- SEM, N=9) was similar to that bound to unstimulated control platelets (36,910 +/- 2,669) and did not differ significantly from the amount of antibody bound to ADP- treated platelets (P less than .01, N = 5). The amount of 10E5 bound to chymotrypsin-treated platelets correlated directly with the amount of fibrinogen bound to separate aliquots of the same platelet samples (r = .876, P less than .001). The 10E5 antibody caused virtually complete inhibition of both the binding of fibrinogen to chymotrypsin-treated platelets and the aggregation induced by exogenous fibrinogen. Immunoprecipitation studies of 125I-labeled chymotrypsin-treated platelets revealed that the 10E5 antibody bound proteins with molecular weights characteristic of glycoproteins IIb and IIIa. These data suggest that the fibrinogen receptor on chymotrypsin-treated platelets is identical to that on ADP-treated platelets and that this receptor is either near to, or on, the glycoprotein IIb/IIIa complex.  相似文献   

10.
The association of fibrinogen with washed human platelets was examined by immunocytochemistry during aggregation induced by adenosine diphosphate (ADP) and during deaggregation. The platelets were suspended either in a medium containing 2 mmol/L Ca2+ or in a medium containing no added Ca2+ (20 mumol/L Ca2+). Platelets were fixed at several times during aggregation and deaggregation, embedded in Lowicryl K4M, sectioned, incubated with goat antihuman fibrinogen, washed, reacted with gold-labeled antigoat IgG, and prepared for electron microscopy. To determine whether the method detected fibrinogen associated with the platelets, the platelets were pretreated with chymotrypsin (10 U/mL) and aggregated by fibrinogen; gold particles were apparent not only in the alpha granules but on the platelet surface and between adherent platelets as well. In the medium with 2 mmol/L Ca2+, ADP caused extensive aggregation of normal platelets in the presence of fibrinogen (0.4 mg/mL), and gold particles were evident between the adherent platelets and on the platelet surface; when the platelets deaggregated, gold was no longer present on the surface. In a medium without added Ca2+, ADP caused extensive aggregation in the presence of fibrinogen, and large numbers of gold particles were on the platelet surface and even more between adherent platelets. In this medium, the platelets did not deaggregate, and by five minutes, the granules appeared to be swollen or fused. In the absence of external fibrinogen, ADP caused the formation of small aggregates, and fibrinogen was not detected between adherent platelets. Thus, the association of fibrinogen with the platelet surface enhances platelet aggregation but is not essential for the ADP-induced formation of small aggregates. The association of fibrinogen with platelets is greater under conditions in which platelets release their granule contents and do not deaggregate because both endogenous and exogenous fibrinogen take part in aggregation.  相似文献   

11.
Harfenist  EJ; Packham  MA; Mustard  JF 《Blood》1988,71(1):132-136
Fibrinogen is a cofactor in the aggregation of human platelets, and is required for ADP-induced aggregation of washed platelets; however, exogenous fibrinogen is not required for ADP-induced aggregation of washed platelets from rabbits or rats. Because with human platelets the cell adhesion peptide, Arg-Gly-Asp-Ser (RGDS), inhibits aggregation and the binding of 125I-fibrinogen to ADP-stimulated platelets, its effects on rabbit and rat platelets were studied to investigate the differences in the fibrinogen requirements of platelets from the three species. RGDS (50 mumol/L) caused greater than 80% inhibition of thrombin- induced or (ADP + fibrinogen)-induced aggregation of human platelets, but only 3% to 9% inhibition of the aggregation of rabbit or rat platelets, regardless of whether fibrinogen was added. RGDS inhibited the binding of 125I-fibrinogen to ADP-stimulated human platelets by 80% to 90%, but by only 15% to 27% in the case of rabbit or rat platelets. The differences were due to the species of platelets, since human and rabbit fibrinogens gave similar results. In addition, RGDS failed to displace fibrinogen from the surface of rabbit platelets that had been stimulated with ADP. Thus, there are species differences in the ability of the cell adhesion peptide, RGDS, to block the platelet fibrinogen receptor, even within the mammalian species.  相似文献   

12.
Effect of fibrinogen concentration on the velocity of platelet aggregation   总被引:1,自引:0,他引:1  
The relationship between fibrinogen binding to its receptor and platelet aggregation has been investigated by comparing 125I-fibrinogen binding and aggregation velocities of gel-filtered platelets in the presence of adenosine diphosphate (ADP). Aggregometric responses at various fibrinogen concentrations are found to be bell-shaped and show a maximum at fibrinogen concentrations (Fmax) similar to the 125I-fibrinogen hemisaturating doses. At higher and lower fibrinogen concentrations, platelet aggregation velocities decrease in a parallel manner. Lowering ADP concentration increases Fmax, in agreement with the modulatory effect of ADP on fibrinogen binding to platelets. Variations of fibrinogen in the range of physiopathologic plasma concentrations affect platelet aggregation induced by any ADP dose. These results clarify the relationship between the fibrinogen binding process and aggregation and demonstrate that plasma fibrinogen concentration has a major influence on the velocity of platelet aggregation.  相似文献   

13.
N E Kirschbaum  M W Mosesson  D L Amrani 《Blood》1992,79(10):2643-2648
Glycoprotein (GP) IIb/IIIa on adenosine diphosphate (ADP)-activated human platelets interacts with specific sites on the fibrinogen molecule leading to aggregation. We characterized the platelet-binding site on the gamma chains of fibrinogen using plasmic fragments D gamma A and D gamma'. Fragment D gamma A, which contains the carboxy terminal gamma A400-411 platelet-binding sequence (HHLGGAKQAGDV), was 70-fold more active than the synthetic gamma A400-411 peptide in inhibiting ADP-induced platelet aggregation. Fragment D gamma A inhibited fibrinogen binding and also bound directly to ADP-activated platelets. The Kd values determined for fibrinogen and fragment D gamma A binding were 0.55 mumol/L and 1.2 mumol/L, respectively. In contrast, fragment D gamma', which differs from fragment D gamma A with respect to its gamma chain sequence from position 408 to the COOH-terminus at position 427, did not inhibit platelet aggregation or fibrinogen binding, and did not bind directly to the platelet surface. Denaturation of fragment D gamma A with guanidine-HCl caused a loss of inhibitory activity in platelet aggregation assays. These data indicate that the native conformation of the gamma chain platelet-binding site on fibrinogen is important for optimal binding to GPIIb/IIIa.  相似文献   

14.
The role of fibrinogen as a cofactor in platelet aggregation is mediated by its binding to platelet receptors that are induced by stimuli such as ADP. In the present study, we demonstrate that the tetrapeptide glycyl-L-prolyl-L-arginyl-L-proline inhibits the interaction of fibrinogen with its platelet receptor. The primary effect of the peptide was on the extent rather than on the rate of fibrinogen binding. Significant inhibition occurred at a 1:1 molar ratio of peptide to fibrinogen and reached maximal levels at 100:1 ratio. The inhibition was dependent upon fibrinogen concentration and occurred in the presence of calcium or magnesium. The peptide inhibited the binding of fibrinogen to platelets with exposed receptors, suggesting that it interfered directly with the ligand-receptor interaction. Fibrinogen binding supported by epinephrine and thrombin as well as ADP was inhibited by the peptide. Fibrinogen-dependent aggregation of washed platelets by ADP was abolished by a 30-fold molar excess of the peptide. The tetrapeptide is an analog of the amino-terminal sequence of the alpha-chain of fibrin and has been shown to inhibit fibrin polymerization [Laudano, A. P. & Doolittle, R. F. (1978) Proc. Natl. Acad. Sci. USA 75, 3085-3089]. A peptide corresponding to the natural sequence, glycyl-L-prolyl-L-arginyl-L-valyl-L-valine, was also capable of inhibiting fibrinogen binding to the platelet. These results suggest that common structural features within fibrinogen may serve a dual function by permitting the molecule to participate in both platelet aggregation and fibrin formation.  相似文献   

15.
E I Peerschke 《Blood》1991,77(3):508-514
Previous studies indicated a correlation between the formation of EDTA-resistant (irreversible) platelet-fibrinogen interactions and platelet cytoskeleton formation. The present study explored the direct association of membrane-bound fibrinogen with the Triton X-100 (Sigma Chemical Co, St Louis, MO) insoluble cytoskeleton of aspirin-treated, gel-filtered platelets, activated but not aggregated with 20 mumol/L adenosine diphosphate (ADP) or 150 mU/mL human thrombin (THR) when bound fibrinogen had become resistant to dissociation by EDTA. Conversion of exogenous 125I-fibrinogen to fibrin was prevented by adding Gly-Pro-Arg and neutralizing THR with hirudin before initiating binding studies. After 60 minutes at 22 degrees C, the cytoskeleton of ADP-treated platelets contained 20% +/- 12% (mean +/- SD, n = 14) of membrane-bound 125I-fibrinogen, representing 10% to 50% of EDTA-resistant fibrinogen binding. The THR-activated cytoskeleton contained 45% +/- 15% of platelet bound fibrinogen, comprising 80% to 100% of EDTA-resistant fibrinogen binding. 125I-fibrinogen was not recovered with platelet cytoskeletons if binding was inhibited by the RGDS peptide, excess unlabeled fibrinogen, or disruption of the glycoprotein (GP) IIb-IIIa complex by EDTA-treatment. Both development of EDTA-resistant fibrinogen binding and fibrinogen association with the cytoskeleton were time dependent and reached maxima 45 to 60 minutes after fibrinogen binding to stimulated platelets. Although a larger cytoskeleton formed after platelet stimulation with thrombin as compared with ADP, no change in cytoskeleton composition was noted with development of EDTA-resistant fibrinogen binding. Examination of platelet cytoskeletons using monoclonal antibodies, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blotting showed the presence of only traces of GP IIb-IIIa in the cytoskeletons of resting platelets, with no detectable increases after platelet activation or development of EDTA-resistant fibrinogen binding. These data suggest that GP IIb-IIIa-mediated fibrinogen binding to activated platelets is accompanied by time-dependent alterations in platelet-fibrinogen interactions leading to the GP IIb-IIIa independent association between bound fibrinogen and the platelet cytoskeleton.  相似文献   

16.
Peerschke  EI; Zucker  MB; Grant  RA; Egan  JJ; Johnson  MM 《Blood》1980,55(5):841-847
Fibrinogen is essential for aggregating platelets with adenosine diphosphate (ADP) and was recently shown to bind to platelets stimulated with ADP. The present work confirms the specific and saturable nature of the platelet-fibrinogen interaction. Binding of 125iodine-labeled fibrinogen to human gel-filtered platelts was maximal at 1 min, and the receptors were saturated when the fibrinogen concentration in the suspending medium approached 0.8 mg/ml. Assuming that one fibrinogen molecule interacts with a single receptor, experiments with 9 normal donors revealed the presence of 12,896 +/- 2456 receptors per platelet. Much of the bound material dissociated from platelets after incubation with apyrase or EDTA. Binding was markedly inhibited at pH 6.5, in the presence of EDTA, and with platelets from 3 thrombasthenic patients but not with those from a patient with the Bernard-Soulier syndrome. Fibrinogen binding was also virtually absent with platelets that had been incubated with EDTA for 8 min at 37 degrees C and pH 7.8. These platelets could not aggregate when mixed with ADP and adequate CaCl2 and fibrinogen, although they could still change their shape. Thus, ADP-induced binding of fibrinogen correlates with platelet aggregability.  相似文献   

17.
Previous studies suggested a role for prostaglandins or thromboxane A2, or both in the exposure of fibrinogen receptors on normal platelets in response to several aggregating agents. Platelets from diabetics are known to be more sensitive to aggregating agents and to produce more prostaglandins and thromboxane than platelets from normal subjects. We compared fibrinogen binding to platelets from diabetic subjects with binding to platelets from normal subjects and determined whether aspirin (which inhibits the formation of prostaglandins and thromboxane) would inhibit the binding of fibrinogen to platelets from diabetic subjects and whether this correlated with its effects on platelet aggregation. We found the following: Aspirin suppressed thromboxane formation and rendered the platelets less sensitive to the induction of aggregation by adenosine diphosphate (ADP) or collagen. The amount of U-46619 [( 15s]-hydroxy-11-alpha, 9-alpha [epoxy-methano]- prosta[5Z,13E]-dienoic acid, a stable analog of prostaglandin endoperoxide/thromboxane A2) necessary to induce aggregation, was similar in normal and diabetic subjects and was unchanged after ingestion of aspirin. Binding of 125I-fibrinogen following stimulation of platelets by ADP or collagen was greater in diabetic (because more binding sites were exposed) than in normal subjects. However, following stimulation by U-46619, binding was similar in diabetic and normal subjects. Aspirin caused a reduction in the exposure of binding sites on both platelets from diabetic and normal subjects, so that (in this respect) platelets from diabetic subjects became more like those from normal subjects. Effects of the monoclonal antibody B59.2, which is specific for the platelet glycoprotein IIb-IIIa complex (the presumed receptor for fibrinogen on the platelet surface) were also studied. The amount of this antibody that bound to platelets was the same for normal and diabetic subjects both before and after aspirin and with or without stimulation by ADP or collagen. In addition, B59.2 inhibited aggregation and fibrinogen binding in both platelets from diabetic and normal subjects. The combined data suggest that the glycoprotein IIb- IIIa complex of platelets from diabetic subjects is similar to that of platelets from normal subjects and that the increased fibrinogen binding and aggregation of platelets from diabetic subjects in response to ADP or collagen is mediated by increased formation of prostaglandin endoperoxide or thromboxane A2, or both.  相似文献   

18.
Peerschke  EI; Galanakis  DK 《Blood》1987,69(3):950-952
The alpha chain 572-574 Arg-Gly-Asp sequence of fibrinogen appears to play only a minor role in platelet aggregation based on the ability of fibrinogen preparations lacking alpha chain carboxyterminal segments to support platelet aggregation, but synthetic Arg-Gly-Asp-Ser (RGDS) peptides are capable of inhibiting platelet aggregation and fibrinogen binding. The present study thus examined the ability of RGDS peptides to inhibit platelet interactions with a plasmic degradation product of fibrinogen (8D-50) that resembles an intermediate fragment X. Gel- filtered, human blood platelets suspended in 0.01 mol/L HEPES-buffered modified Tyrode's solution, pH 7.5, were stimulated with 20 mumol/L adenosine diphosphate and the binding of 125I-labeled 8D-50 or intact fibrinogen (0.01 to 0.6 mg/mL) assessed in the presence of 0 to 117 mumol/L RGDS. The data revealed that RGDS decreased the apparent affinity of 8D-50 and intact fibrinogen for platelets but did not affect the maximum number of binding sites. RGDS thus appears to be a competitive inhibitor not only of intact fibrinogen (Ki = 12 +/- 2 mumol/L) but also of 8D-50 (Ki = 15 +/- 3 mumol/L) (mean +/- SD, n = 3).  相似文献   

19.
Summary. Whole blood flow cytometry has revealed that platelets undergo partial degranulation in response to ADP, in the absence of aggregation, as evidenced by the expression of the P-selectin and CD63 antigens of the α-granule and lysosomal membranes respectively. With maximum ADP (10-5 m ) fibrinogen bound to 76·1 ± 7·2% of platelets but P-selectin and CD63 antigen were expressed on 26·9±9·8% and 8·6±3·5% of platelets respectively. Maximum fibrinogen binding, P-selectin and CD63 expression induced by α-thrombin were 96·1±1·4%, 92·8±2·3% and 77·6±9·7% respectively. β-thromboglobulin release from the ADP-stimulated platelets correlated closely with the expression of P-selectin and CD63 ( r =0·98·0±02 for both antigens). No platelet aggregates were seen by flow cytometry and the absence of aggregation was confirmed by single cell counting. Addition of the GPIIb–IIIa antagonist echistatin. at concentrations that totally blocked fibrinogen binding to ADP-stimulated platelets, had no effect on the expression of the granule membrane antigens. The partial degranulation of normal platelets was independent of thrombin generation since it was not inhibited by hirudin (5 units/ml). In conclusion, ADP is capable of causing partial degranulation of platelets independently of aggregation, fibrinogen binding or thrombin generation. Thus release of potent procoagulant, vasoactive and mitogenic substances from the platelets could continue in the presence of thrombin inhibitors and GPIIb-IIIa antagonists.  相似文献   

20.
Plow  EF; Marguerie  GA 《Blood》1980,56(3):553-555
Thrombin and adenosine diphosphate (ADP) supported the binding of 125I- fibrinogen to washed human platelets with similar kinetics and affinity. Platelet secretion, as measured by 14C-serotonin release, and fibrinogen binding exhibited an identical dependence on thrombin concentration. Enzymatic removal of ADP with apyrase or creatine phosphate/creatine phosphokinase (CP/CPK) from thrombin-stimulated platelets markedly inhibited 125I-fibrinogen binding, but pretreatment of platelets with CP/CPK prior to thrombin stimulation was without effect. Thus, ADP, released from the platelet, participates in the binding of fibrinogen to thrombin-stimulated platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号