共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization 总被引:11,自引:0,他引:11
The overall pattern of chromosomal changes detected by spectral karyotype (SKY) analysis of two cell lines of each major histological subtype of NSCLC, namely squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), indicated a greater degree of chromosomal rearrangement, than was present or predicted by either comparative genomic hybridization (CGH) or G-banding analysis alone. To investigate these observations, CGH was used to screen DNA derived from 8 primary tumors and 15 cell lines. The results indicated that the most frequently gained chromosome arms were 5p (70%), 8q (65%), 15q (52%), 20q (48%), 1q (43%), 19q (39%), 3q (35%), and 11q (35%). Chromosomal losses were less frequently observed, and included 18q (39%), 9 (35%), 6q (30%), 13q (21%), 5q12-q32 (17%), and 19p (17%). Amplifications were found on 2p23-p24, 3q24-q27, 5p, 6cen-p21.1, 6q26, 7p21, 7q31, 8q, 11q13-qter, 20q12-q13.2. Comparison between CGH findings of the two major histological subtypes showed that gains at 1q22-q32.2, 15q, 20q, and losses at 6q, 13q, and 18q was common in ADCs, whereas SQCCs exhibited gains/amplifications at 3q. Distal 8q was gained by CGH in 65% of tumors of both subtypes. Low level MYCC amplification was confirmed by direct fluorescence in situ hybridization (FISH) analysis. The pattern of overall chromosomal changes detected using combinations of molecular cytogenetic analytical methods suggests that it will be easier to detect recurrent subtype-dependent aberrations in NSCLC. 相似文献
2.
Uchida K Oga A Okafuji M Mihara M Kawauchi S Furuya T Chochi Y Ueyama Y Sasaki K 《Cancer Genetics and Cytogenetics》2006,167(2):109-116
We investigated relationships between DNA copy number aberrations and chromosomal structural rearrangements in 11 different cell lines derived from oral squamous cell carcinoma (OSCC) by comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). CGH frequently showed recurrent chromosomal gains of 5p, 20q12, 8q23 approximately qter, 20p11 approximately p12, 7p15, 11p13 approximately p14, and 14q21, as well as losses of 4q, 18q, 4p11 approximately p15, 19p13, 8p21 approximately pter, and 16p11 approximately p12. SKY identified the following recurrent chromosomal abnormalities: i(5)(p10), i(5)(q10), i(8)(q10), der(X;1)(q10;p10), der(3;5)(p10;p10), and der(3;18)(q10;p10). In addition, breakpoints detected by SKY were clustered in 11q13 and around centromeric regions, including 5p10/q10, 3p10/q10, 8p10/q10 14q10, 1p10/1q10, and 16p10/16q10. Cell lines with i(5)(p10) and i(8)(q10) showed gains of the entire chromosome arms of 5p and 8q by CGH. Moreover, breakages near the centromeres of chromosomes 5 and 8 may be associated with 5p gain, 8q gain, and 8p loss in OSCC. FISH with a DNA probe from a BAC clone mapping to 5p15 showed a significant correlation between the average numbers of i(5)(p10) and 5p15 (R(2) = 0.8693, P< 0.01) in these cell lines, indicating that DNA copy number of 5p depends upon isochromosome formation in OSCC. 相似文献
3.
Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping 总被引:6,自引:0,他引:6
Kytölä S Rummukainen J Nordgren A Karhu R Farnebo F Isola J Larsson C 《Genes, chromosomes & cancer》2000,28(3):308-317
Breast cancer cell lines have been widely used as models in functional and therapeutical studies, but their chromosomal alterations are not well known. We characterized the chromosomal aberrations in 15 commonly used human breast carcinoma cell lines (BT-474, BT-549, CAMA-1, DU4475, MCF7, MDA-MB-134, MDA-MB-157, MDA-MB-361, MDA-MB-436, MPE600, SK-BR-3, T-47D, UACC-812, UACC-893, and ZR-75-1) by comparative genomic hybridization (CGH) and spectral karyotyping (SKY). By CGH the most frequent gains were detected at 1q, 8q, 20q, 7, 11q13, 17q, 9q, and 16p, whereas losses were most common at 8p, 11q14-qter, 18q, and Xq. SKY revealed a multitude of structural and numerical chromosomal aberrations. Simple translocations, typically consisting of entire translocated chromosome arms, were the most common structural aberrations. Complex marker chromosomes included material from up to seven different chromosomes. Evidence for a cytogenetic aberration not previously described in breast cancer, the isoderivative chromosome, was found in two cell lines. Translocations t(8;11), t(12;16), t(1;16), and t(15;17) were frequently found, although the resulting derivative chromosomes and their breakpoints were strikingly dissimilar. The chromosomes most frequently involved in translocations were 8, 1, 17, 16, and 20. An excellent correlation was found between the number of translocation events found by SKY in the individual cell lines, and the copy number gains and losses detected by CGH, indicating that the majority of translocations are unbalanced. Genes Chromosomes Cancer 28:308-317, 2000. 相似文献
4.
Pavlovich CP Padilla-Nash H Wangsa D Nickerson ML Matrosova V Linehan WM Ried T Phillips JL 《Genes, chromosomes & cancer》2003,37(3):252-260
We report the use of spectral karyotyping (SKY) and comparative genomic hybridization (CGH) to describe the numerous genomic imbalances characteristic of stage IV clear cell renal cell carcinoma (CCRCC). SKY and CGH were performed on 10 cell lines established from nephrectomy specimens, and CGH on uncultured material from five of the primary renal tumors. The mutational status of VHL (3p25) and MET (7q31), genes implicated in renal carcinogenesis, were determined for each case. Each case showed marked aneuploidy, with an average number of copy alterations of 14.6 (+/-2.7) in the primary tumors and 19.3 (+/-4.6) in the cell lines. Both whole-chromosome and chromosome-segment imbalances were noted by CGH: consistent losses or gains included +5q23-->ter (100%), -3p14-->ter (80%), and +7 (70%). All VHL mutations and 83% of the genomic imbalances found in the primary tumors were also found in the cell lines derived from them. SKY showed many complex structural rearrangements that were undetected by conventional banding analysis in these solid tumors. All cases with VHL inactivation had 3p loss and 5q gain related primarily to unbalanced translocations between 3p and 5q. In contrast, gains of chromosome 7 resulted primarily from whole-chromosome gains and were not associated with mutations of MET. SKY and CGH demonstrated that genomic imbalances in advanced RCC were the result of either segregation errors [i.e., whole chromosomal gains and losses (7.8/case)] or chromosomal rearrangements (10.7/case), of which the majority were unbalanced translocations. 相似文献
5.
Ozaki T Neumann T Wai D Schäfer KL van Valen F Lindner N Scheel C Böcker W Winkelmann W Dockhorn-Dworniczak B Horst J Poremba C 《Cancer Genetics and Cytogenetics》2003,140(2):145-152
We characterized the chromosomal alterations in eight osteosarcoma cell lines (OST, HOS, U-2 OS, ZK-58, MG-63, SJSA-1, Saos-2, and MNNG) by comparative genomic hybridization (CGH); gains and losses of DNA sequences were defined as chromosomal regions with a fluorescence ratio, wherein all of the 95% confidence interval was above 1.25 and below 0.75, respectively. In four of 8 cell lines, multicolor karyotyping (MK) was added. CGH revealed the average number of aberrations per cell line was 20.8 (range: 10–31); the average numbers of gains and losses were 11.1 and 9.6, respectively. The frequent gains were identified on 1p21q24, 1q25q31, 7p21, 7q31, 8q23q24, and 14q21; frequent losses were at 18q21q22, 18q12, 19p, and 3p12p14. High-level gains were observed on 8q23q24, 5p, and 1p21p22. MK revealed the most common translocations in the four cell lines were t(8;9), t(1;3), t(3;5), t(1;13), t(2;6), t(3;17), t(1;15), t(10;20), and t(6;20). Chromosomes 1, 3, 8, 9, and 20 were most frequently involved in translocation events. The concordance rate of aberrations in CGH and translocations in MK was 76%. MK was useful to identify the chromosomal alterations and as a supplement to the CGH results in three of four chromosomes. 相似文献
6.
T. Ried Marek Liyanage Stan du Manoir Kerstin Heselmeyer Gert Auer Merryn Macville Evelin Schröck 《Journal of molecular medicine (Berlin, Germany)》1997,75(11-12):801-814
Fluorescence in situ hybridization techniques allow the visualization and localization of DNA target sequences on the chromosomal and cellular level and have evolved as exceedingly valuable tools in basic chromosome research and cytogenetic diagnostics. Recent advances in molecular cytogenetic approaches, namely comparative genomic hybridization and spectral karyotyping, now allow tumor genomes to be surveyed for chromosomal aberrations in a single experiment and permit identification of tumor-specific chromosomal aberrations with unprecedented accuracy. Comparative genomic hybridization utilizes the hybridization of differentially labeled tumor and reference DNA to generate a map of DNA copy number changes in tumor genomes. Comparative genomic hybridization is an ideal tool for analyzing chromosomal imbalances in archived tumor material and for examining possible correlations between these findings and tumor phenotypes. Spectral karyotyping is based on the simultaneous hybridization of differentially labeled chromosome painting probes (24 in human), followed by spectral imaging that allows the unique display of all human (and other species) chromosomes in different colors. Spectral karyotyping greatly facilitates the characterization of numerical and structural chromosomal aberrations, therefore improving karyotype analysis considerably. We review these new molecular cytogenetic concepts, describe applications of comparative genomic hybridization and spectral karyotyping for the visualization of chromosomal aberrations as they relate to human malignancies and animal models thereof, and provide evidence that fluorescence in situ hybridization has developed as a robust and reliable technique which justifies its translation to cytogenetic diagnostics. 相似文献
7.
Rummukainen J Kytölä S Karhu R Farnebo F Larsson C Isola JJ 《Cancer Genetics and Cytogenetics》2001,126(1):1-7
Comparative genomic hybridization (CGH) studies have shown that chromosome 8 is a frequent target for chromosomal aberrations in breast cancer. We characterized these aberrations of chromosome 8 in 16 breast cancer cell lines (BT-474, BT-549, CAMA-1, DU-4475, MCF-7, MDA-MB-134, MDA-MB-157, MDA-MB-361, MDA-MB-415, MDA-MB-436, MPE600, SK-BR-3, T-47D, UACC-812, UACC-893 and ZR-75-1) by CGH, fluorescence in situ hybridization (FISH) with arm- and locus-specific probes, and spectral karyotyping (SKY). Chromosome 8 was structurally abnormal in 13 of 16 cell lines. Loss of 8p was detected in nine cell lines, gain of entire 8q in six cell lines, 8q21-qter in three, 8q23-qter in two, and 8q12-qter and 8p21-q21 in one cell line. Extra copies of the C-MYC oncogene were found in 11 cell lines, but high-level amplification only in SK-BR-3. Derivative chromosomes including material from chromosomes 8 were complex, and the breakpoints were strikingly dissimilar. Chromosome 11 was the most frequent translocation partner with chromosome 8 (in 7 cell lines). Isochromosomes and/or isoderivative 8q were found in four cell lines. The high frequency and complexity of alterations at 8q indicate a significant pathogenetic role in breast cancer. The high-level amplification of c-myc is less common than previously thought. 相似文献
8.
Padilla-Nash HM Nash WG Padilla GM Roberson KM Robertson CN Macville M Schröck E Ried T 《Genes, chromosomes & cancer》1999,25(1):53-59
The bladder cancer cell line BK-10 was established from a grade III-IV transitional cell carcinoma (TCC). BK-10 is near-tetraploid (+/-4n) and consists of two subclones with 20-25 structural aberrations. Here we report the cytogenetic analysis of BK-10 by G-banding, spectral karyotyping (SKY), and FISH. SKY refers to the hybridization of 24 differentially labeled chromosome painting probes and the simultaneous visualization of all human chromosomes using spectral imaging. SKY enabled us to confirm 12 markers in BK-10 previously described by G-banding, redefine 11 aberrations, and detect 4 hidden chromosomal rearrangements, 2 of which had been identified as normal or deleted copies of chromosome 20 and 1 as a normal chromosome 3. Twenty out of 21 translocations identified were unbalanced. FISH analysis of BK-10 using chromosome arm-specific paints, centromere probes, and oncogene/tumor suppressor gene-specific probes revealed a deletion of CDKN2A (p16) in all copies of chromosome 9, a low-level amplification of MYC (five copies), and loss of one copy of TP53; detected the presence of the Y chromosome in a hidden translocation; and detected four copies of ERBB-2. A probe set for BCR and ABL verified breakpoints for all translocations involving chromosomes 9 and 22. A new karyotype presentation, "SKY-gram," is introduced by combining data from G-banding, SKY, and FISH analysis. This study demonstrates the approach of combining molecular cytogenetic techniques to characterize fully the multiple complex chromosomal rearrangements found in the bladder cancer cell line BK-10, and to refine the chromosomal breakpoints for all translocations. 相似文献
9.
10.
11.
Briana J. Williams Emma Jones James M. Kozlowski Robert Vessella Arthur R. Brothman 《Genes, chromosomes & cancer》1997,18(4):299-304
Conventional cytogenetic analysis of two prostate tumor xenografts, LuCaP 23.1 and RP22090, was unsatisfactory for comprehensive genetic evaluation of the cell lines. Fluorescence in situ hybridization (FISH) for chromosome enumeration and comparative genomic hybridization (CGH) for numerical imbalance detection were performed and resulted in a more complete molecular cytogenetic characterization of these lines. Both xenografts were hypertriploid and had significant numerical imbalances. For example, LuCaP 23.1 had gain of all or part of chromosomes 3, 5, 6, 7, 8, 11, and 12 and the X chromosome and loss of all or part of chromosomes 2, 3 6, 8, 9, 10, 17, and 18. In RP22090, gain of all or part of chromosomes 5, 7, 8, 9, 10, 12, 14, and 15 was seen, whereas loss was seen for all or part of chromosomes 4, 6, 8, 15, 16, 17, 19, 20, and 22. Both xenografts reflect the high frequency of chromosomal changes seen in some late-stage prostate cancers, including many novel changes and some changes such as the loss of 8p and gain of 8q, which have been reported previously in primary and metastatic prostate cancers. Consistent changes in both lines, such as loss of chromosomes 6 and chromosome arm 8p and gain of chromosome 7 and chromosome arm 8q, may represent genetic events specific for prostate cancer development, but imbalances on other chromosomes such as 3, 9, 19, and 20, not frequently reported in prostate cancers, may reflect potentially important changes that should also be examined. Genes Chromosom. Cancer 18:299–304, 1997. © 1997 Wiley-Liss, Inc. 相似文献
12.
Tada K Oka M Hayashi H Tangoku A Oga A Sasaki K 《Cancer Genetics and Cytogenetics》2000,117(2):108-112
Cancer is characterized by autonomous growth of cells, and it is widely accepted that cell proliferation is primarily influenced by individual cell genetics. To elucidate the mechanisms of cancer cell proliferation, we studied differences in genetic aberrations for different type of tumors with different proliferation characteristics. We employed comparative genomic hybridization (CGH) to detect genetic aberrations in six cell lines of esophageal squamous cell carcinoma (ESCC). Three cell lines (YES-1, -2, and -3) grow in culture without fetal calf serum (group A), while others require serum to be maintained in vitro (group B). Both groups showed very similar cytogenetic aberrations: over-representations of 11q13 (6/6), 8q23-qter (5/6), Xq25-qter (5/6), 3q26-qter (4/6), 5p (4/6), 7p15-pter (4/6), 8q21.3-q22 (4/6), 17p (4/6), and 20q13 (4/6), and under-representations of 18q21-qter (6/6), 4q28-q33 (4/6), and 9p21 (4/6). Six amplification loci were mapped to chromosomal regions of 6q23 (1 case), 7p12 (2 cases), 9p21 (1 case), 11p11.2-12 (3 cases), 11q13 (2 cases), and 17p12 (2 cases). However, some differences were detected. DNA copy number increases at 7p12-p13, 11q14-q22, and 11q22-qter and under-representations of 4p, 8p, and 11p14-pter. In contrast, gains at 12p and 20p, and losses at 3p and 5q were detected only in group-B cell lines. These observations suggest that cytogenetic differences between the two groups may be linked to differences in cell growth characteristics in vitro, and that the genes in these chromosomal regions may play important roles in cell proliferation. 相似文献
13.
S D Pack J D Karkera Z Zhuang E D Pak K V Balan P Hwu W S Park T Pham D O Ault M Glaser L Liotta S D Detera-Wadleigh R G Wadleigh 《Genes, chromosomes & cancer》1999,25(2):160-168
Esophageal cancer is the third most prevalent gastrointestinal malignancy in the world. The tumor responds poorly to various therapeutic regimens and the genetic events underlying esophageal carcinogenesis are not well understood. To identify overall chromosomal aberrations in esophageal squamous cell carcinoma, we performed comparative genomic hybridization (CGH). All 17 tumor samples were found to exhibit multiple gains and losses involving different chromosomal regions. The frequency of chromosomal loss associated with this type of tumor was as follows: in 2q (100%), 3p (100%), 13q (100%), Xq (94%), 4 (82%), 5q (82%), 18q (76%), 9p (76%), 6q (70%), 12q (70%), 14q (65%), 11q (59%), and 1p (53%). Interstitial deletions on 1p, 3p, 5q, 6q, 11q, and 12q were detected also. Chromosomal gains were displayed by chromosomes and chromosome areas: 19 (100%), 20q (94%), 22 (94%), 16p (65%), 17 (59%), 12q (59%), 8q (53%), 9q (53%), and 3q (50%). Two sites showing apparent amplification were 11q (70%) and 5p15 (47%). To validate the CGH data, we isolated a BAC clone mapping to 18q12.1. This clone was used as a probe in interphase fluorescence in situ hybridization of tumor touch preparations and allelic loss was clearly revealed. This study represents the first whole-genome analysis in esophageal squamous cell carcinoma for associated chromosomal aberrations that may be involved in either the genesis or progression of this malignancy. 相似文献
14.
Chromosomal aberrations in nasopharyngeal carcinoma analyzed by comparative genomic hybridization. 总被引:20,自引:0,他引:20
Y J Chen J Y Ko P J Chen C H Shu M T Hsu S F Tsai C H Lin 《Genes, chromosomes & cancer》1999,25(2):169-175
To investigate the genomic imbalances associated with nasopharyngeal carcinoma (NPC), we have performed chromosome analysis by comparative genomic hybridization (CGH) on 51 tumors, including 25 primary and 26 recurrent tumors. The most common copy number increases occurred on chromosome arms 12p (59%), 1q (47%), 17q (47%), 11q (41%), and 12q (35%). The minimal overlapping regions were at 12p12-13, 1q21-22, 17q21, 17q25, 11q13, and 12q13. The most frequent losses were from chromosome arms 3p (53%), 9p (41%), 13q (41%), 14q (35%), and 11q (29%). The minimal overlapping regions were at 3p12-14, 3p25-26, 9p21-23, 13q21-32, 14q12-21, and 11q14-23. Compared with the primary cancers, no additional chromosomal change was found in the recurrent tumors; however, the most frequent gain in the recurrent NPCs was at 11q13 (53%) instead of 12p in the primary tumors. An increase of gene alterations correlated with clinical stage. Our results provide a first comprehensive view of the genomic changes associated with NPC and reveal several new sites of genomic imbalance, indicating the possible involvement of novel oncogenes/tumor suppressor genes in the carcinogenesis of NPC. 相似文献
15.
A continuously growing human hepatocellular carcinoma (HCC) cell line was established from a Chinese male, carrier of the hepatitis B virus (HBV). This cell line, designated HKCI-1, grows as an adhering monolayer of polygonal epithelial cells that embody one or more nuclei. HKCI-1 secretes alpha-fetoprotein but shows no evidence of HBV carriage. Conventional banding analysis of the short-term cultured primary tumor and the propagated HKCI-1 revealed a chromosome modal number of near-triploidy. It was, however, impossible to derive their complete karyotype due to the complex nature of chromosomal rearrangements and many marker chromosomes of uncertain origin. Spectral karyotyping (SKY) is a newly developed molecular cytogenetic technique that allows the unprecedented discernment of chromosomal abnormalities. Spectral karyotyping analysis on HKCI-1 and the primary tumor elucidated all aberrant chromosomes and revealed complex karyograms. Recurring aberrations detected in both primary tumor and HKCI-1 included der(X)t(X;11)(q10;p10), der(1)t(1;10)(q10;?pq), der(4)t(4;16)(p10;q10), i(5p), del(5)(q13), der(7)t(7;21)(q32q10::q10), der(8)t(8;17)(q10;p10), and der(9)t(9;22)(q34;?pq). Comparative genomic hybridization (CGH) was employed to monitor the culture evolution in vitro. Genomic imbalances in HKCI-1 involved chromosomal losses on 4q, 5q13-qter, 8p, 9pter-q33, 10q, 11q, 13q, 16q, 17q12-qter, and 22, and low-level gains on 6pter-q22, 7p, 8q, 9q34, 10p, 11p, 12, 17pter-q11.2, 18, 19, 20, 21, and Y. High-level amplifications were also detected on 5pter-q12, 7q11.2-qter, and Xq. The corresponding CGH finding on the primary tumor indicated similar imbalances. TP53 mutational analysis showed that both HKCI-1 and the primary tumor had the aflatoxin-associated mutation in codon 249 and an additional TP53 polymorphism in codon 72. Our present study demonstrates the value of combined SKY and CGH study in defining complex rearrangements and identifying cryptic translocations, and provides a comprehensive analysis on the chromosomal abnormalities in HKCI-1. 相似文献
16.
Genetic instability in human cancers is classified as chromosomal instability (CIN) or microsatellite instability (MIN). DNA amplification and translocations are observed frequently in various cancers. We used comparative genomic hybridization (CGH) and spectral karyotyping (SKY) to study seven human colon cancer cell lines and investigate the relations among genetic instability, DNA amplification, and chromosomal translocations. DNA amplification was found in five cell lines (COLO320DM, COLO201, WiDr, CoCM-1, and CACO-2), and all were aneuploid. In these five cell lines, segments of chromosomes were translocated to other chromosomes. In contrast, cell lines with MIN, DLD-1, and LoVo did not show DNA amplification. The LoVo cells with MIN were considered near diploid and contained translocations. These findings suggest that DNA amplification and chromosomal translocations are accompanied by CIN. 相似文献
17.
K M Carlson A Gruber E Liliemark R Larsson M Nordenskj?ld 《Cancer Genetics and Cytogenetics》1999,111(1):32-36
The development of resistance to cytostatic agents is a serious obstacle to the success of cancer therapy and has been the focus of many research efforts. Traditionally, cell lines are selectively cultured in the presence of cytostatic agents and the biochemical and cytogenetic properties of the cell lines are then analyzed. In order to better understand the mechanisms by which drug resistance is mediated, we have analyzed three cell lines, each derived from the parent line K562, which are resistant to vincristine, mitoxantrone, or idarubicin, using comparative genomic hybridization (CGH). In each case, CGH successfully identified amplifications and/or deletions unique to the drug-resistant selected cell lines. Further characterization of the genetic regions identified in the CGH analysis could greatly contribute to our understanding of acquired drug resistance, and could potentially impact the clinical management of cancer. 相似文献
18.
H. Avet-Loiseau L.E. Andree-Ashley D. Moore M.P. Mellerin J. Feusner R. Bataille M.G. Pallavicini 《Genes, chromosomes & cancer》1997,19(2):124-133
Comparative genomic hybridization (CGH) was used to identify recurrent regions of DNA sequence loss and gain in 21 multiple myeloma (MM) and plasma cell leukemia (PCL) primary tumor specimens and cell lines. Multiple regions of non-random sequence loss and gain were observed in 8/8 primary advanced stage tumors and 13/13 cell lines. Identification of sequence copy number changes was facilitated by statistical analyses that reduce subjectivity associated with identification of copy number changes and by requiring that sequence changes are visible using both red- and green-labeled tumor DNA. Loss of sequence on 13q and 14q and gain of sequence on 1q and chromosome 7 occurred in 50–60% of the population. In general, cell lines carry more and larger regions of sequence gain and loss than primary tumors. Regions of sequence copy number change that recur among MM cell lines and primary tumors include, in order of prevalence, enh(1q12qter), dim(13), enh(7), enh(3q22q29), enh(11q13.3qter), dim(14q11.2q31), enh(8q21qter), enh(3p25pter), dim(17p11.2p13), and dim(6q22.1q23). Population distributions of genome-wide changes in primary tumors reveal “hot-spots” of sequence loss from 13q12.1-q21, 13q32-q34, 14q11.2-q13, and 14q23-q31. Genomic changes detected using CGH are consistent with those identified using banding analyses, although recurrent involvement of additional regions of the genome are also evident. A higher prevalence of genomic changes is visible using CGH compared to banding. Identification of recurrent regions of sequence gain and loss provides opportunities to identify regions of the genome that may be involved in the malignant phenotype and/or disease progression. Genes Chromosom. Cancer 19:124–133, 1997. © 1997 Wiley-Liss, Inc. 相似文献
19.
Knutsen T Pack S Petropavlovskaja M Padilla-Nash H Knight C Mickley LA Ried T Elwood PC Roberts SJ 《Genes, chromosomes & cancer》2003,37(3):270-281
Cytogenetic studies of patients with therapy-induced acute myeloid leukemia (t-AML) have demonstrated whole chromosome loss or q-arm deletion of chromosomes 5 and/or 7 in a majority of cases. We have established two cell lines, SAML-1 and SAML-2, from two patients who developed t-AML after radiation and chemotherapy for Hodgkin disease. In both cases, the leukemia cells contained 5q deletions. SAML-1 has 58 chromosomes and numerous abnormalities, including der(1)(1qter-->1p22::5q31-->5qter), der(5)(5pter-->5q22::1p22-->1pter), +8, der(13)i(13)(q10)del(13)(q11q14.1), and t(10;11). Fluorescence in situ hybridization (FISH) with unique sequence probes for the 5q31 region showed loss of IL4, IL5, IRF1, and IL3, and translocation of IL9, DS5S89, EGR1, and CSFIR to 1p. SAML-2 has 45 chromosomes, del(5)(q11.2q31) with a t(12;13)ins(12;5), leading to the proximity of IRF1 and RB1, and complex translocations of chromosomes 8 and 11, resulting in amplification of MYC and MLL. Comparative genomic hybridization and spectral karyotyping were consistent with the G-banding karyotype and FISH analyses. Because a potential tumor suppressor(s) in the 5q31 region has yet to be identified, these cell lines should prove useful in the study of the mechanisms leading to the development of t-AML. 相似文献
20.
Analysis of genetic alterations in primary nasopharyngeal carcinoma by comparative genomic hybridization 总被引:19,自引:0,他引:19
Fang Y Guan X Guo Y Sham J Deng M Liang Q Li H Zhang H Zhou H Trent J 《Genes, chromosomes & cancer》2001,30(3):254-260
To identify genetic alterations associated with the development and progression of human nasopharyngeal carcinoma (NPC), 57 tumors were analyzed by comparative genomic hybridization (CGH). In 47 cases, chromosomal imbalances were found. Several recurrent chromosomal abnormalities were identified in the present study. The most frequently detected chromosomal gains involved chromosome arms 12q (24 cases, 51%), 4q (17 cases, 36%), 3q (16 cases, 34%), 1q (15 cases, 32%), and 18q (15 cases, 32%). Common regions of gain involved 12q13--q15, 4q12--q21, and 3q21--q26. High-copy-number increases of chromosomal materials were detected in four chromosomal regions, 3q21--q26.2, 4p12--q21, 8p, and 12q14--q15. The most frequently detected loss of chromosomal materials involved chromosome arms 16q (26 cases, 55%), 14q (21 cases, 45%), 1p (20 cases, 43%), 3p (20 cases, 43%), 16p (19 cases, 40%), 11q (17 cases, 36%), and 19p (16 cases, 34%). The most common regions of loss involved 14q24--qter, 1pter--p36.1, 3p22--p21.3, 11q21--qter, and the distal region of 19p. Genomic alterations detected by CGH were compared and found to be largely consistent with those identified in banding analysis and loss of heterozygosity studies. However, several previously unrecognized recurrent alterations were also identified in the present study, including gain of 4q and 18q, and loss of 16q, 14q, and 19p. In addition, gain of 1q, 8q, 18q, and loss of 9q showed a statistically significant association with advanced clinical stages (P < 0.05). Identification of recurrent sites of chromosomal gain and loss identify regions of the genome that may contain oncogenes or tumor suppressor genes, respectively, which may be involved in the tumorigenesis of NPC. Published 2000 Wiley-Liss, Inc. 相似文献