首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant human enzymes expressed in membranes obtained from Escherichia coli transformed with cytochrome P450 (P450) and NADPH-P450 reductase cDNAs were used to identify the human P450 enzymes that are most active in catalyzing the oxidative transformation of benzo[a]pyrene in vitro. Activation of benzo[a]pyrene to genotoxic products that cause induction of umu gene expression in Salmonella typhimurium NM2009 by P450 1A1 and P450 1B1 enzymes was found to be enhanced by inclusion of purified epoxide hydrolase (isolated from rat or human livers) with the reaction mixture. High-performance liquid chromatographic analysis showed that P450 1B1 catalyzed benzo[a]pyrene to trans-7, 8-dihydroxy-7,8-dihydrobenzo[a]pyrene at level of approximately 3 nmol min(-)(1) nmol of P450(-)(1) only when epoxide hydrolase was present and P450 1A1 (with the hydrolase) was able to catalyze benzo[a]pyrene at one-tenth of the activity catalyzed by P450 1B1. Kinetic analysis showed that ratio of V(max) to K(m) for the formation of trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene in this assay system was 3.2-fold higher in CYP1B1 than in CYP1A1. Other human P450s (including P450s 1A2, 2E1, and 3A4) were found to have very low or undetectable activities toward the formation of trans-7, 8-dihydroxy-7,8-dihydrobenzo[a]pyrene. A reconstituted system containing purified P450 1B1, rabbit liver NADPH-P450 reductase, and human liver epoxide hydrolase was found to catalyze benzo[a]pyrene to trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene at a rate of 0.86 nmol min(-)(1) nmol of P450(-)(1); the activities were found to be largely dependent on the presence of sodium cholate in the system. These results suggest that P450 1B1 is a principal enzyme in catalyzing the oxidation of benzo[a]pyrene to trans-7,8-dihydroxy-7, 8-dihydrobenzo[a]pyrene and that the catalytic functions of P450 1B1 may determine the susceptibilities of individuals to benzo[a]pyrene carcinogenesis.  相似文献   

2.
The catalytic activities of hepatic microsornes from untreated, phenobarbital-treated and 3-methylcholanthrene-treated adult rabbits with respect to benzo[a]pyrene hydroxylation and the activation of (?)(rflw-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene[(?)trans-7,8-diol] to DNA-binding metabolites were determined in the absence and presence of mixed-function oxidase inhibitors and compared to the corresponding activities of the individual enzyme systems. Treatment of rabbits with phnobarbital led to induction of P-450LM2 and a concomitant 3-fold enhancement in microsomal benzo[a]pyrene hydroxylase activity, whereas the conversion of (?)trans-7,8-diol to DNA-binding products was unaffected. Homogeneous phenobarbital-inducible P-450LM2 exhibited the highest activity and specificity toward benzo[a]pyrene and the lowest activity toward (?)trans-7,8-diol. Conversely, P-450LM4 was the major form of cytochrome P-450 induced in rabbit liver by 3-methylcholanthrene or β-naphthoflavone, and this was associated in microsomes with an increase in the metabolism of (?)trans-7, 8-diol but not of benzo[a]pyrene. Homogeneous P-450LM4 preferentially Catalyzed the oxygénation of (?)trans-7,8-diol, but was largely ineffective with benzo[a]pyrene. Partially purified P-450LM7 lacked substrate specificity, for it metabolized both benzo[a]pyrene and (?)trans-7, S-diol at comparable rates. Additionally, 7,8-benzoflavone strongly inhibited benzo[a]pyrene hydroxylation by P-450LM4 and phenobarbital-induced microsomes, as well as (?)trans-7,8-diol metabolism by P-450LM4 and 3-methyl-cholanthrene-induced microsomes; in contrast, the activity of control microsomes with either substrate, and the activities of P-450LM4 and LM2 with benzo[a]pyrene and (?)trans-7 ,8-diol, respectively, were only partially or slightly decreased by 7,8-benzoflavone. Unlike 7,8-benzoflavone, butylated hydroxytoluene inhibited benzo[a]pyrene hydroxylation only. Thus, different forms of rabbit liver microsomal cytochrome P-450 were involved in the metabolism of benzo[a]pyrene and its 7,8-dihydrodiol. The results also demonstrate that the changes in substrate specificity and inhibitor sensitivity seen in phenobarbital- and 3-methylcholanthrene-induced microsomes relative to control rabbit liver microsomes can be accounted for by the catalytic properties of a specific form of cytochrome P-450 that prevails in these preparations, P-450LM2 and LM4, respectively.  相似文献   

3.
32P-Postlabeling was employed for analysis of DNA adducts produced in mouse skin following topical administration of enantiomers of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol). Deoxynucleoside 3'-monophosphates were isolated by digestion of epidermal DNA with micrococcal endonuclease and spleen phosphodiesterase and phosphorylated with [gamma-32P]ATP. 32P-Labeled deoxynucleoside 3',5'-bisphosphate adducts to diastereomeric benzo[a]pyrene dihydrodiol epoxides (BPDE) were separated by four-directional thin-layer chromatography on poly(ethylenimine)-cellulose plates using a recently described solvent system [Reddy, A. P., Pruess-Schwartz, D., and Marnett, L. J. (1992) Chem. Res. Toxicol. (preceding paper in this issue)]. When (+)-BP-7,8-diol was topically administered, a major adduct spot was detected that cochromatographed with a standard produced by reaction of 7(S),8(R)-dihydroxy-9-(S),10(R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-syn-BPDE] with DNA. The level of this adduct increased in a dose- and time-dependent fashion and was elevated in animals pretreated with beta-naphthoflavone. Relatively small amounts of radioactivity cochromatographed with standards of deoxynucleoside 3',5'-bisphosphate adducts derived from 7(S),8(R)-dihydroxy-9(R),10(S)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-anti-BPDE]. Following topical administration of (-)-BP-7,8-diol, a single adduct spot was detected that cochromatographed with a standard of the major deoxyguanosine adduct derived from 7(R),8(S)-dihydroxy-9-(S),10(R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-BPDE]. The stereochemistry of epoxidation of the enantiomers of BP-7,8-diol indicates that cytochrome P-450 catalyzes the terminal activation step of benzo[a]pyrene activation to an ultimate carcinogen in mouse skin, a target organ for its carcinogenic activity.  相似文献   

4.
1. Metabolism of 14C-labelled benzo[a]pyrene (-)trans-7,8-dihydrodiol to protein- and DNA-binding products in a reconstituted enzyme system proceeds 5 to 10 times faster with rabbit cytochrome P-450 LM4 than with LM2. 2. Either cytochrome converts the substrate to ethyl acetate- and water-soluble metabolites, identified by h.p.l.c. Water-soluble metabolites comprise 78% of the total products with cytochrome P-450 LM2, but only 50% of those formed by LM4. The relative proportion of the two types of metabolites is differentially affected by certain modifiers such as 7,8-benzoflavone. 3. Half of the radioactivity in the aqueous phase of reaction mixtures containing cytochrome P-450 LM4 represents (-)trans-7,8-diol metabolites in complex primarily with NADPH and phosphate. The remaining water-soluble products are bound covalently to proteins in the reconstituted system. 4. Polyacrylamide gel electrophoresis, autoradiography, and measurement of the radioactivity in individual bands indicate that a larger fraction of metabolites is bound to cytochrome P-450 LM4 than to NADPH-cytochrome P-450 reductase, and only marginal binding to cytochrome P-450 LM2 is seen. Metabolite binding to added DNA is likewise substantially greater in magnitude when cytochrome P-450 LM4, as opposed to LM2, catalyses (-)trans-7,8-diol oxygenation. Thus, the degree of metabolite binding to monoxygenase proteins and to DNA correlates well with the catalytic activity of cytochrome P-450 LM4 and LM2 towards (-)trans-7,8-diol. 5. DNA causes a dramatic enhancement in the activity of cytochrome P-450 LM4 with (-)trans-7,8-diol, indicating that the cytochrome and/or the reductase may be functionally impaired by metabolites of this substrate. Such an effect may alter the balance between detoxication and activation of the carcinogenic benzo[a]pyrene.  相似文献   

5.
6.
The biotransformation of (+/-)-trans-4,5-dihydroxy-4, 5-dihydrobenzo[a]pyrene (trans-B[a]P-4,5-diol), the K-region dihydrodiol of B[a]P, by beta-naphthoflavone (BNF)-induced rat liver microsomes was studied. trans-B[a]P-4,5-diol was metabolized to six major products as characterized by NMR, MS, and UV spectroscopy, and all were identified as bis-diols: two diastereomers of trans,trans-4, 5:7,8-tetrahydroxy-4,5:7,8-tetrahydrobenzo[a]pyrene (trans, trans-B[a]P-4,5:7,8-bis-diol), two diastereomers of trans,trans-4, 5:9,10-tetrahydroxy-4,5:9,10-tetrahydrobenzo[a]pyrene (trans, trans-B[a]P-4,5:9,10-bis-diol), and two diastereomers of the somewhat unusual trans,trans-1,2:4,5-tetrahydroxy-1,2:4, 5-tetrahydrobenzo[a]pyrene (trans,trans-B[a]P-1,2:4,5-bis-diol). BNF-induced rat liver microsomes also metabolized B[a]P to the same trans-B[a]P-4,5-diol-derived bis-diols. The ability of trans-B[a]P-4, 5-diol to form DNA adducts was investigated using (32)P-postlabeling techniques specifically designed to detect stable polar DNA adducts. Four DNA adducts were detected after microsomal activation of trans-B[a]P-4,5-diol with calf thymus DNA. Further analyses indicated that each of these stable polar DNA adducts was derived from the further metabolic activation of the trans,trans-B[a]P-4,5:7, 8-bis-diols. We conclude that trans-B[a]P-4,5-diol can be metabolized to a series of B[a]P-bis-diols, and can also be metabolically activated to form stable polar DNA adducts. The trans, trans-B[a]P-4,5:7,8-bis-diols were shown to be metabolic intermediates in the formation of these DNA adducts.  相似文献   

7.
8.
9.
The relative reactivity of the chemical carcinogen (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+/-)-anti-BPDE] to the guanine bases of the first two coding exons of the human c-Ha-ras1 protooncogene is determined to test if (+/-)-anti-BPDE reactivity is correlated with mutations reported for human c-Ha-ras1 protooncogene activation. Plasmid DNA containing the sequence for the human c-Ha-ras1 gene is modified with (+/-)-anti-BPDE to provide approximately 1 covalent adduct per 250 bp. High-resolution mapping of the covalent adducts is achieved by laser-induced photolysis of 32P-labeled restriction fragments of the BPDE-modified plasmid DNA. The (+/-)-anti-BPDE binding profiles to exons 1 and 2 of the human c-Ha-ras1 protooncogene show enhanced reactivity to guanine-rich regions. The guanine bases of oncogene-activating codons 12 (GGC) and 13 (GGT) are 5 times more reactive than the least reactive guanine analyzed within this region of the gene. The guanine base of oncogene-activating codon 61 (CAG) exhibits intermediate reactivity relative to the guanines analyzed within this region of the gene. Although preferential chemical reactivity plays a role in the activation of the c-Ha-ras1 protooncogene, the in vivo activation of the c-Ha-ras1 protooncogene by (+/-)-anti-BPDE is a complex process, with other important factors involved in the chemically induced activation.  相似文献   

10.
Racemic, (7R,8S)-(+)-, and (7S,8R)-(?)-9,10-dihydrobenzo[a]pyrene 7,8-oxides (DBPOs) showed markedly different mutagenicity towards Salmonella typhimurium TA 98 in the order of (7R,8S)-(+)- > racemic > (7S,8R)-(?)-DBPOs. The enantiomeric epoxides were inactivated at significantly different rates by preincubating with rat liver cytosol fortified with glutathione (GSH) in the order of (7S,8R)-(?)- > racemic > (7R,8S)-(+)-DBPOs. Two non-mutagenic water-soluble metabolites were isolated from the preincubation mixture containing racemic DBPO as a substrate, separated by hplc, and identified by 13C nmr and uv absorption spectroscopy as diastereoisomers of S-(8-hydroxy-7,8,9,10-tetrahydrobenzo [a]pyren-7-yl)glutathione (conjugates I and II). Conjugates I and II were specifically yielded from (7R,8S)-(+)- and (7S,8R)-(?)-DBPOs, respectively, at different rates by rat liver cytosol; apparent values of Km, were 20.1 and 15.6 μM and of Vmax 17.2 and 26.7 nmole/mg protein/min for (7R,8S)-(+)- and (7S,8R)-(?)-DBPOs, respectively. Conjugates I and II, therefore, were reasonably assigned to have (7S,8S)- and (7R,8R)-configurations, respectively. Conjugate II was yielded preferentially to conjugate I from racemic DBPO at an early stage of the enzymic reaction.  相似文献   

11.
The binding sites and relative reactivity of (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+/-)-anti-BPDE] covalently bound to restriction fragments of pBR322 DNA are determined. (+/-)-anti-BPDE-modified DNA undergoes a photodissociation at the site of these adducts when irradiated with 355-nm laser light, resulting in a scission of the DNA sugar-phosphate backbone producing DNA fragments similar to those of Maxam-Gilbert sequencing reactions. The binding sites of (+/-)-anti-BPDE with each DNA base are determined by sequencing gel analysis of the BPDE-mediated photolysis and laser densitometry of the resulting banding patterns. This technique was used to analyze the binding of (+/-)-anti-BPDE to the 5' and 3' strands of the EcoRI/EcoRV and BamHI/SalI restriction fragments of pBR322 DNA. The reactivity of (+/-)-anti-BPDE to guanine bases within guanine-rich regions of DNA is enhanced by as much as a factor of 17 relative to the least reactive guanines which are flanked by non-guanine bases. The results also show enhanced photocleavage of the backbone corresponding to non-guanine bases in guanine-rich regions. These results suggest either that non-guanine basis in guanine-rich regions are more reactive than identical bases in other regions of the restriction fragment or that photocleavage of the backbone occurs adjacent to a BPDE-modified guanine. The binding profiles of (+/-)-anti-BPDE to pBR322 DNA at a binding density of 0.52 and 0.93 BPDE adduct per strand gave essentially identical binding patterns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Substitution of a methyl group in the bay region can enhance the tumorigenicity of polycyclic aromatic hydrocarbons such as chrysene, benz[a]anthracene, and others. This phenomenon has been related to facile DNA adduct formation of bay region diol epoxides with a methyl group and epoxide ring in the same bay. While anti-7, 8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene and its DNA adduct formation have been studied extensively, it is not known whether a methyl substituent in the bay region alters the reactivity of DNA in this system. This is of interest because 11-methylbenzo[a]pyrene, which has a bay region methyl group, is more tumorigenic than benzo[a]pyrene. To examine the question, we have devised and employed an efficient synthesis based on photochemical cyclization, and prepared anti-7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydro-11-methylbenzo[a]pyrene, the likely ultimate carcinogen of 11-methylbenzo[a]pyrene. We have then reacted anti-7,8-dihydroxy-9,10-epoxy-7,8,9, 10-tetrahydro-11-methylbenzo[a]pyrene with calf thymus DNA and found that it gives three major adducts. These were identified as having resulted from cis- and trans-ring opening of the (S,R,R, S)-enantiomer and from trans-ring opening of the (R,S,S, R)-enantiomer. The standard deoxyguanosine adduct markers were prepared, and their structures were tentatively assigned on the basis of their CD and 1H NMR spectra. The adduct distribution of anti-7,8-dihydroxy-9,10-epoxy-7,8,9, 10-tetrahydro-11-methylbenzo[a]pyrene is quite different from that observed in the reaction of DNA with the corresponding diol epoxides of benzo[a]pyrene or with 5-methylchrysene. The heterogeneity of adducts obtained with anti-7,8-dihydroxy-9,10-epoxy-7,8,9, 10-tetrahydro-11-methylbenzo[a]pyrene thus may be related to the enhanced tumorigenicity of 11-methylbenzo[a]pyrene.  相似文献   

13.
Incubation of (S)-[5-3H]nicotine with rabbit liver microsomes in the presence of dioxygen and NADPH results in the formation of metabolites that bind covalently to microsomal macromolecules (250-550 pmol/mg of protein/hr). The partition ratio [(S)-nicotine metabolized/(S)-nicotine equivalents covalently bound] ranged between 250:1 and 500:1. The addition of SKF 525-A, cytochrome c, or n-octylamine inhibited both (S)-nicotine metabolism and covalent binding whereas phenobarbital pretreatment increased the rates of metabolism and covalent binding. Sodium cyanide, which forms stable adducts with the cytochrome P-450-generated iminium ion metabolites of (S)-nicotine and a variety of other tertiary amines, inhibited covalent binding but also decreased the rate of (S)-nicotine metabolism. The metabolism-dependent covalent binding of (S)-nicotine and its conversion to the delta 1',5'-iminium species were observed also in microsomal incubations prepared from rabbit lung and human liver tissues.  相似文献   

14.
(+/-)-7,8-Dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol), a proximate carcinogen derived from benzo[a]pyrene (BP) requires further metabolic activation to exert its carcinogenic effects. Two principal pathways have been implicated, and these involve either the formation of (+/-)-trans-7,8-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) catalyzed by P450 1A1/P450 1B1 (NADPH-dependent monoxygenases) or the formation of benzo[a]pyrene-7,8-dione (BP-7,8-dione) catalyzed by human aldo-keto reductases AKR1A1 and AKR1C1-AKR1C4 [NAD(P)(H)-dependent oxidoreductases]. The relative contributions of the two pathways to PAH activation are unknown. In this study, BP-7,8-diol metabolism was studied in human bronchoalveolar H358 cell extracts. Parental H358 cells do not constitutively express P450 1A1/P450 1B1 or AKRs but were manipulated by induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to express P450 1A1/P450 1B1 or by stable transfection to express AKR1A1 (aldehyde reductase). TCDD induction of AKR1A1 transfectants provided a cell line that expressed both pathways. Extracts derived from parental H358 cells plus TCDD (P450 induction) produced electrophilic anti-BPDE, which hydrolyzed to benzo[a]pyrene tetrahydrotetrols (BP-tetrols), extracts derived from AKR1A1-transfected cells (AKR1A1 expression) produced reactive and redox-active BP-7,8-dione, which was trapped in situ as its mono(thioether) conjugate, and extracts derived from AKR1A1 transfectants plus TCDD (coexpression of P450 1A1/P450 1B1 and AKR1A1) produced both anti-BPDE and BP-7,8-dione. The competing activation of BP-7,8-diol by P450 1A1/P450 1B1 and AKR1A1 was studied with varied NADPH:NAD+ ratios. The system with a relatively higher concentration of NADPH favored formation of anti-BPDE via P450 1A1/P450 1B1, while the system with the higher concentration of NAD+ favored formation of BP-7,8-dione via AKR1A1. Under conditions that mimic the cellular redox state, 10 microM NADPH and 1 mM NAD+, equal amounts of BP-tetrols and BP-7,8-dione were formed. This suggests that P450 1A1/P450 1B1 and AKR1A1 play competing roles in the metabolic activation of BP-7,8-diol and that the dominant pathway of BP-7,8-diol activation depends on the redox state of the cells. These model systems provide a cellular context in which the dominant DNA adducts/lesions formed by either pathway may be compared.  相似文献   

15.
In the first 9 d after topical application of a single dose of benzo[a]pyrene to the dorsal skin of C3H mice, the half-lives of benzo[a]pyrene diol epoxide-DNA adducts and of DNA were determined to be approximately 5 d. These data indicate that, in proliferating mouse skin, benzo[a]pyrene diol epoxide-DNA lesions are not repaired, but are diluted from the genome at a rate equivalent to DNA turnover (i.e., replication versus degradation). Subsequent to this initial period, benzo[a]pyrene diol epoxide-DNA adduct removal continues, but at a much reduced rate. At 30 d posttreatment with benzo[a]pyrene, approximately 15% of the adducts are still detectable; however, their half-lives had increased to 30 d. Similar experiments with a hairless mouse showed that, although the amount of adduct formation was lower initially, the kinetics of adduct disappearance and persistence were essentially the same as found with the C3H mouse. The data obtained in this work are consistent with the hypothesis that benzo[a]pyrene diol epoxide adducts persist in a subpopulation of skin cells long after their disappearance by DNA turnover would predict.  相似文献   

16.
Indole-3-carbinol (I-3-C) is a compound present in many cruciferous vegetables that has been shown to reduce aryl hydrocarbon-induced neoplasia in experimental animals. We examined the relationship between the ability of I-3-C to alter the activity of hepatic aryl hydrocarbon hydroxylase (AHH), and its ability to inhibit the covalent binding of benzo[a]pyrene (BaP) metabolites to DNA and protein. Using an in vitro system and a hepatic postmitochondrial fraction from mice that had been treated by gavage with I-3-C, we found that up to 90% of the covalent binding of BaP metabolites to macromolecules was eliminated, while AHH activity was unchanged. In experiments in vivo, treatment of mice by gavage with I-3-C before [14C]BaP resulted in up to an 80% decrease in covalent binding of 14C to DNA or protein with no concomitant decrease in hepatic AHH activity. These results suggest that I-3-C administered in vivo confers protection against the binding of BaP oxidation products to hepatic cellular macromolecules.  相似文献   

17.
18.
Leukotriene B(4) (LTB(4)) is a potent, proinflammatory mediator involved in the pathogenesis of a number of diseases including inflammatory bowel disease, psoriasis, rheumatoid arthritis, and asthma. The enzyme LTA(4) hydrolase represents an attractive target for pharmacological intervention in these disease states, since the action of this enzyme is the rate-limiting step in the production of LTB(4). Our previous efforts focused on the exploration of a series of analogues related to screening hit SC-22716 (1, 1-[2-(4-phenylphenoxy)ethyl]pyrrolidine) and resulted in the identification of potent, orally active inhibitors such as 2. Additional structure-activity relationship studies around this structural class resulted in the identification of a series of alpha-, beta-, and gamma-amino acid analogues that are potent inhibitors of the LTA(4) hydrolase enzyme and demonstrated good oral activity in a mouse ex vivo whole blood LTB(4) production assay. The efforts leading to the identification of clinical candidate SC-57461A (8d, 3-[methyl[3-[4-(phenylmethyl)phenoxy]propyl]amino]propanoic acid) are described.  相似文献   

19.
Structural characterizations of the DNA adducts derived from reaction of the racemic bay region anti-diol epoxides of dibenz[a,j]anthracene and 7-methyldibenz[a,j]anthracene with calf thymus DNA are presented. Quantities of adducts necessary for spectroscopic characterization were obtained from reactions of the respective diol epoxides with individual deoxyribonucleotides. Both hydrocarbon diol epoxides showed similar adduct profiles upon reaction with calf thymus DNA in vitro which were composed mainly of three deoxyguanosine and four deoxyadenosine adducts. No significant modification of pyrimidine bases in DNA was detected with either of the diol epoxides. Approximately 3 times more deoxyguanosine than deoxyadenosine residues in the DNA were found to be modified by both diol epoxides. The DNA reactions showed very similar stereo- and enantioselectivities with both diol epoxides. The stereochemistries of addition of the purine bases to the diol epoxides were determined from analysis of the NMR spectra of individual adducts. The predominant adducts formed were products of trans addition of the exocyclic amino group of purines to the diol epoxides. The enantiomeric nature of the various adducts was determined from reaction of the individual deoxyribonucleotides with the pure (+)-anti-diol epoxide of dibenz[a,j]anthracene. The major deoxyguanosine and deoxyadenosine adducts from reactions with DNA were found to arise from the (+)-enantiomer of both hydrocarbon diol epoxides. The high reactivities of both diol epoxides (24-38%) with DNA in solution are consistent with the high tumor-initiating activity exhibited by the diol epoxide of dibenz[a,j]anthracene relative to the parent hydrocarbon.  相似文献   

20.
The new bradycardic agent UL-FS 49 (1,3,4,5-tetrahydro-7,8-dimethoxy-3-[3-[[2-(3,4-dimethoxyphenyl]ethyl] methylimino]propyl]-2H-3-benzazepin-2-on-hydrochloride) was investigated in isolated guinea pig atria. In spontaneously beating preparations UL-FS 49, (0.03 and 0.1 microgram/ml) reduced the rate of contraction and decreased the maximal effect of isoprenaline added thereafter. The cumulative concentration-response curve of isoprenaline was antagonized, but not in a competitive manner, excluding an interaction at the beta-adrenoceptor. The rate of spontaneous electrical activity in sinoatrial node preparations was increased by superfusion with isoprenaline (0.1 microgram/ml). Addition of UL-FS 49 (0.1 microgram/ml) as well as propranolol (0.3 microgram/ml) reduced rate to control values. In electrically driven (1 Hz) left atria UL-FS 49 (1 microgram/ml) did not reduce contractile force and did not antagonize the positive inotropic effect of isoprenaline added cumulatively thereafter. When contractile force was first elevated by isoprenaline (0.1 microgram/ml), addition of UL-FS 49 (0.1 microgram/ml) did not affect contractility, whereas propranolol (0.3 microgram/ml) abolished the positive inotropic effect of isoprenaline. The experiments, therefore, demonstrate the specificity of UL-FS 49 to decrease heart rate but not contractility during beta-adrenoceptor stimulation. In contrast to propranolol (0.3 microgram/ml) UL-FS 49 (0.1 microgram/ml) also reduced sinoatrial rate elevated by histamine (1 microgram/ml) or theophylline (300 micrograms/ml), thus indicating a possible use as an antitachycardic drug at tachycardias of various origins. In sinus node preparations depolarized by high external K+ concentrations (10.8 mM), the bradycardic effect of UL-FS 49 (0.1 microgram/ml) was diminished.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号