首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《Dental materials》2021,37(9):1325-1336
ObjectiveTo fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers.MethodsPRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30 wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60 wt%) by PRG-Ca fillers (wt%): E0 (0) – control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey’s HSD test (α = 0.05).ResultsAll composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2 = E3 = E4 = E5 = E6. Ra and KHN were not influenced by PRG-Ca fillers (p < 0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p < 0.05). Wsp increased linearly with the content of PRG-Ca fillers (p < 0.05). E6 presented the highest Wsl (p < 0.05), while the Wsl of the other composites were not different from each other (p > 0.05).SignificanceIncorporation of 10–40 wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.  相似文献   

2.
ObjectiveThis study investigated the anti-demineralizing and antibacterial effects of a propolis ethanolic extract (EEP) against Streptococcus mutans dental biofilm.DesignBlocks of sound bovine enamel (n = 24) were fixed on polystyrene plates. S. mutans inoculum (ATCC 25175) and culture media were added (48 h–37 °C) to form biofilm. Blocks with biofilm received daily treatment (30 μL/1 min), for 5 days, as following: G1 (EEP 33.3%); G2 (chlorhexidine digluconate 0.12%); G3 (ethanol 80%); and G4 (Milli-Q water). G5 and G6 were blocks without biofilm that received only EEP and Milli-Q water, respectively. Final surface hardness was evaluated and the percentage of hardness loss (%HL) was calculated. The EEP extract pH and total solids were determined. S. mutans count was expressed by log10 scale of Colony-Forming Units (CFU/mL). One way ANOVA was used to compare results which differed at a 95% significance level.ResultsG2 presented the lowest average %HL value (68.44% ± 12.98) (p = 0.010), while G4 presented the highest (90.49% ± 5.38%HL) (p = 0.007). G1 showed %HL (84.41% ± 2.77) similar to G3 (87.80% ± 6.89) (p = 0.477). Groups G5 and G6 presented %HL = 16.11% ± 7.92 and 20.55% ± 10.65; respectively (p = 0.952). G1 and G4 differed as regards to S. mutans count: 7.26 ± 0.08 and 8.29 ± 0.17 CFU/mL, respectively (p = 0.001). The lowest bacterial count was observed in chlorhexidine group (G2 = 6.79 ± 0.10 CFU/mL) (p = 0.043). There was no difference between S. mutans count of G3 and G4 (p = 0.435). The EEP showed pH 4.8 and total soluble solids content = 25.9 Brix.ConclusionThe EEP seems to be a potent antibacterial substance against S. mutans dental biofilm, but presented no inhibitory action on the de-remineralization of caries process.  相似文献   

3.
《Dental materials》2020,36(1):68-75
ObjectiveTo evaluate the addition of dimethylaminohexadecyl methacrylate (DMAHDM) and chlorhexidine diacetate on cytotoxicity, antimicrobial activity, physical, and mechanical properties of a self-cured resin.Methods132 disk-shaped and 48 rectangular specimens were divided into four experimental groups as described: Control Group (CG – no addition), dCHX (1%), DMAHDM (5%), and DMAHDM + dCHX (5% + 1%). The biofilm viability, flexural strength (FS - ISO 20795-1:2013), surface roughness (SR), and color stability (ΔE) were analyzed after being stored for 4 weeks in distilled water and immersed for 72 h in coffee. Cytotoxicity was measured after 24 h, 3, and 7 days of elution using an MTT test on L929 cells (ISO 10993-5:2009). SR and ΔE were measured by a contact profilometer and a spectrophotometer using the CIELab parameter. Data were submitted to ANOVA and Bonferroni’s/Tukey’s tests (p  0.05).ResultsSignificant antimicrobial activity against Streptococcus mutans and Candida albicans was detected in all groups when compared to the CG (p < 0.05). Only the dCHX group, in 24 h of elution, demonstrated no cytotoxicity effects. There was a statistical difference for FS on the tested groups (p < 0.05). No differences were detected in the initial roughness’ measurements among the groups (p > 0.05). However, after storage and immersion in coffee, the groups containing DMAHDM presented with rougher surfaces and significantly lower color stability compared to the control (p < 0.05).SignificanceThe addition of dCHX and DMAHDM in self-cured resin presented antimicrobial properties; however, cytotoxicity, physical, and mechanical properties were compromised.  相似文献   

4.
《Dental materials》2020,36(8):1071-1085
ObjectivesTo develop dental composites incorporating fluorapatite (FA) crystals as a secondary filler and to characterise degree of conversion, key mechanical properties and fluoride release.MethodsFA rod-like crystals and bundles were hydrothermally synthesised and characterised by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD) and 19F MAS-NMR. Composites were formulated containing BisGMA/TEGDMA/BisEMA and barium-aluminium-silicate glass (0FA). FA crystals were incorporated at 10 (10FA), 20 (20FA), 30 (30FA) and 40 wt% (40FA) maintaining a filler content of 80 wt% (63–67 vol%). Degree of conversion (DC), flexural strength (FS), flexural modulus (FM), fracture toughness (K1C), Vickers hardness (HV) and 2-body wear were measured. Fluoride release was measured in neutral and acidic buffers.ResultsXRD and 19F MAS-NMR confirmed that only FA was formed, whilst SEM revealed the presence of single rods and bundles of nano-rods. DC ranged between 56–60% (p > 0.05). FA composites showed lower FM and lower FS (p < 0.05), but comparable wear resistance and HV (p > 0.05) to 0FA. 30FA and 40FA showed similar K1C to 0FA (p > 0.05), with SEM showing evidence of toughening mechanisms, whereas 10FA and 20FA showed lower K1C (p < 0.05). FA containing composites released fluoride that was proportional to the amount of FA incorporated (p < 0.05) but only under acidic conditions.SignificanceThe addition of FA to the experimental composites reduced strength and stiffness but not the DC, hardness or wear rate. 30FA and 40FA had a higher K1C compared to other FA groups. Fluoride release occurred under an accelerated acidic regime, suggesting potential as a bioactive ‘smart’ composite.  相似文献   

5.
ObjectiveThe purpose of this study was evaluate, for the first time, the impact of incorporation of nanostructured silver vanadate (β-AgVO3) in antibiofilm and mechanical properties of dental acrylic resins (poly(methyl methacrylate), PMMA).DesignThe β-AgVO3 was synthesized and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and microanalysis (SEM/EDS). Resins specimens were prepared with 0–10% wt.% β-AgVO3 and characterized by SEM, XRD and optical microscopy. The antibiofim activity of the samples against Candida albicans and Streptococcus mutans was investigated by XTT reduction test, colony-forming units (CFUs), and confocal laser scanning microscopy (CLSM). The flexural strength, hardness, and surface roughness of the samples containing β-AgVO3 were compared with the pure PMMA matrix.ResultsThe incorporation of 10% β-AgVO3 significantly reduced the metabolic activity of C. albicans and S. mutans (p < 0.05). There was a reduction in microbial load (CFU/mL) of microorganisms for the different concentrations used (p < 0.05), which was confirmed by confocal microscopy. The addition of β-AgVO3 did not change the mechanical properties of hardness and surface roughness of the resins (p > 0.05). However, flexural strength decreased with the addition of amounts greater than 1% (p < 0.05).Conclusionsβ-AgVO3 additions in dental acrylic resin may have an impact on inhibition of biofilm of main microorganisms associated with dental prostheses. However, the viability of clinical use should be evaluated in function of changed promoted in some mechanical properties.  相似文献   

6.
《Dental materials》2019,35(8):1155-1165
ObjectiveThe aim of this study was to formulate and evaluate experimental orthodontic adhesives with different concentrations of 1-n-butyl-3-methylimidazoilium bis(trifluoromethanesulfonyl)imide (BMIM.NTf2).MethodsThe experimental orthodontic adhesives were formulated with methacrylate monomers, photoinitiators and silica colloidal. The ionic liquid BMIM.NTf2 was synthesized and characterized. BMIM.NTf2 was added at 5 (G5%), 10 (G10%) and 15 (G15%) wt.%. One group contained no BMIM.NTf2 to function as control (GCtrl). The adhesives were evaluated for polymerization kinetics, degree of conversion (DC), Knoop hardness and softening in solvent, ultimate tensile strength (UTS), shear bond strength (SBS), thermogravimetric analysis (TGA), antibacterial activity and cytotoxicity.ResultsBMI.NTf2 showed the characteristic chemical peaks. The polymerization kinetics were different among the groups. G10% and G15% showed higher DC (p < 0.05). G5% and GCtrl had no differences for softening in solvent (p > 0.05). There were no differences for UTS (p > 0.05) and SBS (p > 0.05). TGA showed one different peak for G15%. All groups with BMIM.NTf2 showed antibacterial activity compared to GCtrl (p < 0.05) without cytotoxicity (p > 0.05).SignificanceTo reduce biofilm formation around brackets and to prevent demineralization at susceptible sites, materials have been developed with antibacterial properties. In this study, a new experimental orthodontic adhesive was formulated with an imidazolium ionic liquid (BMIM.NTf2) as antibacterial agent. The incorporation of 5 wt.% of ionic liquid decreased biofilm formation without affecting the physico-chemical properties and cytotoxicity of an experimental orthodontic resin.  相似文献   

7.
ObjectivesThe main reason for restoration failure is secondary caries caused by biofilm acids. Replacing the failed restorations accounts for 50–70% of all operative work. The objectives of this study were to incorporate a new quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) and nanoparticles of silver (NAg) into a primer and an adhesive, and to investigate their effects on antibacterial and dentin bonding properties.MethodsScotchbond Multi-Purpose (SBMP) served as control. DMADDM was synthesized and incorporated with NAg into primer/adhesive. A dental plaque microcosm biofilm model with human saliva was used to investigate metabolic activity, colony-forming units (CFU), and lactic acid. Dentin shear bond strengths were measured.ResultsMinimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the new DMADDM were orders of magnitude lower than those of a previous quaternary ammonium dimethacrylate (QADM). Uncured primer with DMADDM had much larger inhibition zones than QADM (p < 0.05). Cured primer/adhesive with DMADDM-NAg greatly reduced biofilm metabolic activity (p < 0.05). Combining DMADDM with NAg in primer/adhesive resulted in less CFU than DMADDM alone (p < 0.05). Lactic acid production by biofilms was reduced by 20-fold via DMADDM-NAg, compared to control. Incorporation of DMADDM and NAg into primer/adhesive did not adversely affect dentin bond strength.ConclusionsA new antibacterial monomer DMADDM was synthesized and incorporated into primer/adhesive for the first time. The bonding agents are promising to combat residual bacteria in tooth cavity and invading bacteria at tooth-restoration margins to inhibit caries. DMADDM and NAg are promising for use into a wide range of dental adhesive systems and restoratives.  相似文献   

8.
ObjectivesIn vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator.MethodsA simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR.ResultsCompared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p < 0.0001) whereas 2% xylitol decreased it (p < 0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p < 0.05). Increasing the concentration (2%–5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose.ConclusionsThe continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations.  相似文献   

9.
《Dental materials》2020,36(7):838-845
ObjectiveThis investigation tested pre-shaded 3Y-TZP materials on optical, mechanical and structural properties and calculated correlations between these properties.MethodsSeven A2-shaded 3Y-TZP zirconia materials were investigated on translucency (T) via UV–vis-spectrophotometer, fracture load of 3-unit FDPs (FL), biaxial flexural strength (FS), Chevron-Notch Beam (CNB), fracture toughness (KIC) and Martens parameter (hardness: HM and indentation modulus: EIT). FL, FS and KIC were measured in a universal testing machine. The grain size was evaluated by scanning electron microscopy (SEM). Data was analyzed using one-way ANOVA followed by post hoc Scheffé, Kruskal–Wallis-, Mann–Whitney-U- and Pearson-test (p < 0.05).ResultsFor translucency, negative correlations were found with results of facture load (R = −0.444, p < 0.001) and KIC (R = −0.503, p < 0.001). While a positive correlation was found between translucency and flexural strength (R = 0.238, p = 0.019), between fracture load and EIT (R = 0.227, p < 0.029), between fracture load and KIC (R = 0.362, p < 0.001) as well as between fracture load and the grain size (R = 0.598, p = 0.007). While the grain size positively correlated with EIT (R = 0.534, p = 0.017) as well as EIT with HM (R = 0.720, p < 0.001).SignificanceDespite of being based on the same raw material, tested zirconia materials significantly differed regarding optical, mechanical (except biaxial flexural strength and Martens hardness) and structural properties. Materials with highest optical properties were those with lowest mechanical properties (CER, COP).  相似文献   

10.
ObjectiveTo evaluate the anti-inflammatory effect of pretreatment for three days with a fatty acid mixture with high ω-9:ω-6 ratio and low ω-6:ω-3 ratio on rats submitted to dental extraction.Material and methodsThirty-two male Wistar rats (270–310 g) were randomly distributed in four groups (n = 8/group): the sham control group and the negative control group received saline; the high omega-6/low omega-9 group received isolipid fatty acid with high ω-6:ω-3 ratio and low ω-9:ω-6 ratio; the high omega-3/low omega-6 group received fatty acid with low ω-6:ω-3 ratio and high ω-9:ω-6 ratio. Saline and oils were administered by gavage for 4 days before exodontia and 3 days after surgery, followed by euthanasia. Masseter edema was evaluated clinically and tissue samples were submitted to osteoclast count (H&E), myeloperoxidase assay, and western blotting (tumor necrosis factor-alpha and interleukin-1beta).ResultsIn the high omega-3/low omega-6 group, a significant decrease was observed in masseter edema (p < 0.0001), myeloperoxidase (p < 0.0001), osteoclasts (p = 0.0001) and TNF-α expression (p < 0.0001), but not in IL-1β expression.ConclusionThe ingestion of fatty acid with high ω-9:ω-6 ratio and low ω-6:ω-3 ratio significantly reduced inflammatory response in rats submitted to dental extraction.  相似文献   

11.
Background and objectivePeriodontal disease is an infectious disease resulting from the immunoinflammatory response of the host to microorganisms present in the dental biofilm which causes tissue destruction. The objective of this study was to evaluate the immunohistochemical expression of matrix metalloproteinase 7 (MMP-7), extracellular matrix metalloproteinase inducer (EMMPRIN) and cyclophilin A (CypA) in periodontal disease.DesignGingival tissue samples were divided as follows: clinically healthy gingiva (n = 32), biofilm-induced gingivitis (n = 28), and chronic periodontitis (n = 30). Histological sections of 3 μm were submitted to immunoperoxidase method and undergone quantitative analysis. The results were analyzed statistically by the Mann-Whitney and Spearman correlation tests, with the level of significance set at 0.05 (α = 0.05).ResultsImmunopositivity for MMP-7, EMMPRIN and CypA differed significantly between the three groups, with higher percentages of staining in chronic periodontitis specimens, followed by chronic gingivitis and healthy gingiva specimens (p < 0.05). Immunoexpression of CypA and MMP-7 was higher in the intense inflammatory infiltrate observed mainly in cases of periodontitis (p < 0.05). CypA expression was positively correlated with MMP-7 (r = 0.831; p < 0.001) and EMMPRIN (r = 0.289; p = 0.006). In addition, there was a significant positive correlation between probing depth and expression of MMP-7 (r = 0.726; p < 0.001), EMMPRIN (r = 0.345; p = 0.001), and CypA (r = 0.803; p < 0.001).ConclusionThese results suggest that MMP-7, EMMPRIN and CypA are associated with the pathogenesis and progression of periodontal disease.  相似文献   

12.
《Archives of oral biology》2014,59(12):1384-1390
ObjectiveSince some probiotic bacteria are cariogenic themselves, their suitability for caries management is questionable. Inactivated bacteria or their supernatants have been found to exert probiotic effects, whilst having several advantages compared with living bacteria. We hypothesized that viable and heat-inactivated Bifidobacterium animalis BB12 reduces the cariogenicity of Streptococcus mutans (SM) in vitro.DesignWe assessed mono- and mixed species biofilms of SM and viable or heat-inactivated BB12. Biofilms were grown in a continuous-culture-system under cariogenic conditions on smooth proximal enamel or cavitated dentine. For each of eight experimental subsets (4 biofilms × 2 hard-tissue conditions), a total of 32 specimens was used. After 10 days, bacterial numbers of 12 biofilms per group were analysed, and all specimens submitted to transversal microradiography.ResultsMineral loss was higher in cavitated dentine than smooth enamel for all biofilms (p < 0.001, t-test). BB12-monospecies biofilms induced significantly less mineral loss than SM in both enamel (p < 0.05) and dentine (p < 0.001). Viable BB12 did not significantly reduce cariogenicity of SM (p > 0.05), whilst heat-inactivated BB12 decreased cariogenicity of SM in dentinal cavities (p < 0.01). Bacterial numbers were higher on dentine than enamel (p < 0.05), but not significantly influenced by biofilm species (p > 0.05).ConclusionsHeat-inactivated BB12 reduced the cariogenicity of SM in dentinal cavities in vitro. Inactivated probiotics might be suitable for caries control.  相似文献   

13.
ObjectiveTo evaluate the cytotoxicity and mineralization effects of TEGDMA in human dental pulp cells (hDPCs) under hypoxic and normoxic culture conditions.DesignCell viability was evaluated using XTT assay after incubation periods of 24, 48, or 72 h. The expression of mineralization-related genes (osteonectin, osteopontin, dentin sialophosphoprotein, collagen type 1) and heme oxygenase 1 (HO-1) was assessed by quantitative real-time polymerase chain reaction at 24 and 72 h.ResultsIn XTT assay, viability was higher in 0.3, 1, 2, 4, and 5 mM groups in the presence of 21% O2 after 24 h (p < 0.05). Additionally, while 0.3, 1, 2 mM groups had higher cell viability in the presence of 21% O2 after 48 h (p < 0.05), in 3 mM groups cell viability was higher under 3% O2 than 21% O2 after both 24 and 48 h (p < 0.05). 1–3 mM groups had higher cell viability under 3% O2 after 72 h (p < 0.05). There was no difference between 4 and 5 mM groups with regards to cell viability after 48 or 72 h (p > 0.05). In the gene expression study, TEGDMA-treated hDPCs showed lower mineralization potential in the presence of 3% than with 21% O2 (p < 0.05). hDPCs revealed higher HO 1 expression in 0.3 and 1 mM groups under hypoxic than under normoxic conditions after a 72-h time period (p < 0.001).ConclusionsHypoxic conditions increased cell survival in accordance with the culture period but inhibited the odontoblastic differentiation of hDPCs treated with TEGDMA.  相似文献   

14.
ObjectiveTo evaluate cytotoxicity and effect on protease activity of epigallocatechin-gallate extracted from experimental restorative dental copolymers in comparison to the control compound chlorhexidine.MethodsCopolymer disks were prepared from bis-GMA/TEGDMA (70/30 mol%) containing no compound (control) or 1% w/w of either epigallocatechin-gallate or chlorhexidine. MDPC-23 odontoblast-like cells were seeded with the copolymer extracts leached out into deionized water. Cell metabolic activity was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay at 24, 48, 72 h. Inhibition of protease activity by resin extracts was measured by a collagenolytic/genatinolytic enzyme activity assay and gelatin zymography. Data for MTT and protease inhibition were analyzed using two-way ANOVA followed by Tukey or Bonferroni post hoc tests (α = 0.05).ResultsThe MTT revealed that at 72 h, extracts from control (16.7%) and chlorhexidine (22.3%) copolymers induced significant reduction in cell metabolism (p < 0.05). All copolymer extracts caused enzymatic inhibition in a dose dependent manner (p < 0.01). Even when highly diluted, epigallocatechin-gallate extract had a significant antiproteolytic activity (p < 0.05). Zymograms showed that all extracts reduced activity of MMP-2 and MMP-9 (pro- and active forms), with MMP-9 exhibiting the highest percentage inhibition revealed by densitometry.ConclusionsEpigallocatechin-gallate and chlorhexidine extracts did not exert cytotoxicity on evaluated cells when compared to control extracts. Both compounds retained antiproteolytic activity after extraction from a dental copolymer.Clinical significanceOnce extracted from a dental copolymer, epigallocatechin-gallate is not cytotoxic and retains antiproteolytic activity. These results may allow incorporation of epigallocatechin-gallate as a natural-safe alternative to chlorhexidine in functionalized restorative materials.  相似文献   

15.
ObjectivesThe aim of this study was to evaluate differences in craniofacial morphology, head posture and hyoid bone position between mouth breathing (MB) and nasal breathing (NB) patients.MethodsMouth breathing patients comprised 34 skeletal Class I subjects with a mean age of 12.8 ± 1.5 years (range: 12.0–15.2 years). Thirty-two subjects with skeletal Class I relationship were included in the NB group (mean 13.5 ± 1.3 years; range: 12.2–14.8 years). Twenty-seven measurements (15 angular and 12 linear) were used for the craniofacial analysis. Additionally, 12 measurements were evaluated for head posture (eight measurements) and hyoid bone position (four measurements). Student’s t-test was used for the statistical analysis. Probability values <0.05 were accepted as significant.ResultsStatistical comparisons showed that sagittal measurements including SNA (p < 0.01), ANB (p < 0.01), A to N perp (p < 0.05), convexity (p < 0.05), IMPA (p < 0.05) and overbite (p < 0.05) measurements were found to be lower in MB patients compared to NB. Vertical measurements including SN-MP (p < 0.01) and PP-GoGn (p < 0.01), S-N (p <0.05) and anterior facial height (p < 0.05) were significantly higher in MB patients, while the odontoid proses and palatal plane angle (OPT-PP) was greater and true vertical line and palatal plane angle (Vert-PP) was smaller in MB patients compared to NB group (p < 0.05 for both). No statistically significant differences were found regarding the hyoid bone position between both groups.ConclusionsThe maxilla was more retrognathic in MB patients. Additionally, the palatal plane had a posterior rotation in MB patients. However, no significant differences were found in the hyoid bone position between MB and NB patients.  相似文献   

16.
ObjectiveGreen tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study.MethodsTwo-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria.ResultsGt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p < 0.05) and lower the adherence ability (p < 0.003) towards experimental pellicles.ConclusionCombination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products.  相似文献   

17.
ObjectivesThis paper aimed to compare the mode of action of a stannous fluoride-containing toothpaste with a conventional sodium fluoride-containing toothpaste on anti-biofilm properties.MethodsA three-species biofilm model that consists of Streptococcus mutans, Streptococcus sanguinis and Porphyromonas gingivalis was established to compare the anti-biofilm properties of a stannous fluoride-containing toothpaste (CPH), a conventional sodium fluoride-containing toothpaste (CCP) and a negative control (PBS). The 48 h biofilms were subjected to two-minute episodes of treatment with test agents twice a day for 5 consecutive days. Crystal violet staining and XTT assays were used to evaluate the biomass and viability of the treated biofilm. Live/dead staining and bacteria/extracellular polysaccharides (EPS) double-staining were used to visualize the biofilm structure and to quantify microbial/extracellular components of the treated biofilms. Species-specific fluorescent in situ hybridization and quantitative polymerase chain reaction (qPCR) were used to analyze microbial composition of the biofilms after treatment.ResultsThe biomass and viability of the biofilms were significantly reduced after CPH toothpaste treatment. The inhibitory effect was further confirmed by the live/dead staining. The EPS amounts of the three-species biofilm were significantly reduced by CCP and CPH treatments, and CPH toothpaste demonstrated significant inhibition on EPS production. More importantly, CPH toothpaste significantly suppressed S. mutans and P. gingvalis, and enriched S. sanguinis in the three-species biofilm. In all experiments CPH had a significantly greater effect than CCP (p < 0.05) and CCP had a greater effect than PBS (p < 0.05).ConclusionsStannous fluoride-containing toothpaste not only showed better inhibitory effect against oral microbial biofilm, but was also able to modulate microbial composition within multi-species biofilm compared with conventional sodium fluoride-containing toothpaste.  相似文献   

18.
ObjectiveTo evaluate the association between polymorphisms in DLX1, DLX2, MMP13, TIMP1 and TIMP2 genes with dental fluorosis (DF) phenotype.DesignFour hundred and eighty one subjects (108 with DF and 373 DF free) from 6 to 18 years of age were recruited. This population lived in Rio de Janeiro, a city with fluoridation of public water supplies. DF was assessed using the Deańs index modified. Only erupted permanent teeth were assessed. Genetic polymorphisms in DLX1, DLX2, MMP13, TIMP1 and TIMP2 were analyzed by real-time PCR from genomic DNA. Association between DF, genotype, and allele distribution were evaluated using chi-square and logistic regression analyses with an alpha level of 5%.ResultsDF was more prevalent in Afro-descendants than in Caucasians (p = 0.08; OR = 1.83; CI 95% = 1.18–2.82). Logistic regression analysis adjusted by the ethnicity demonstrated a statistical difference for TIMP1 genotype (p = 0.033; OR = 2.93, 95%CI, 1.09–7.90). When only the severer cases of DF were analyzed, polymorphisms in DLX1 and DLX2 were associated with DF (p < 0.05).ConclusionOur results provided evidence that polymorphisms in TIMP1, DLX1 and DLX2 genes may be associated with DF phenotypes.  相似文献   

19.
ObjectivesThe objective of this study was to investigate the effects of dentine primer containing dual antibacterial agents, namely, 12-methacryloyloxydodecylpyridinium bromide (MDPB) and nanoparticles of silver (NAg), on dentine bond strength, dental plaque microcosm biofilm response, and fibroblast cytotoxicity for the first time.MethodsScotchbond Multi-Purpose (SBMP) was used as the parent bonding agent. Four primers were tested: SBMP primer control (referred to as “P”), P + 5% MDPB, P + 0.05% NAg, and P + 5% MDPB + 0.05% NAg. Dentine shear bond strengths were measured using extracted human teeth. Biofilms from the mixed saliva of 10 donors were cultured to investigate metabolic activity, colony-forming units (CFU), and lactic acid production. Human fibroblast cytotoxicity of the four primers was tested in vitro.ResultsIncorporating MDPB and NAg into primer did not reduce dentine bond strength compared to control (p > 0.1). SEM revealed well-bonded adhesive–dentine interfaces with numerous resin tags. MDPB or NAg each greatly reduced biofilm viability and acid production, compared to control. Dual agents MDPB + NAg had a much stronger effect than either agent alone (p < 0.05), increasing inhibition zone size and reducing metabolic activity, CFU and lactic acid by an order of magnitude, compared to control. There was no difference in cytotoxicity between commercial control and antibacterial primers (p > 0.1).ConclusionsThe method of using dual agents MDPB + NAg in the primer yielded potent antibacterial properties. Hence, this method may be promising to combat residual bacteria in tooth cavity and invading bacteria at the margins. The dual agents MDPB + NAg may have wide applicability to other adhesives, composites, sealants and cements to inhibit biofilms and caries.  相似文献   

20.
ObjectiveThis study provides an in vivo evaluation of the inflammatory response, levels of cell proliferation and apoptosis, and the presence of necrosis after dental bleaching with two concentrations of hydrogen peroxide (H2O2).DesignWistar rats were divided into Control (placebo gel), BLUE (20% H2O2, 1 × 50 min), and MAXX (35% H2O2, 3 × 15 min) groups. At 2 and 30 days, the rats were killed (n = 10). The jaws were processed for histology analysis and PCNA and Caspase-3-cleaved immunohistochemistry, and data were submitted to the Mann-Whitney or ANOVA test (P < 0.05).ResultsAt 2 days, the MAXX group showed necrosis and the BLUE group revealed moderate inflammation on the occlusal third of the crown (P < 0.05). At 30 days, tertiary dentin had formed and there was an absence of inflammation. The level of cell proliferation was higher in the middle third of the BLUE group (P < 0.05), and cervical of MAXX at 2 days (P < 0.05), decreasing at 30 days. The apoptosis was present at 2 days, particularly in the cervical third of the crown in the bleached groups (P < 0.05), with a decrease only at 30 days in the BLUE group (P < 0.05).ConclusionsThe concentration of H2O2 influences effects on the pulp tissue, where a higher concentration of H2O2 can cause necrosis in the pulp and a prolonged effect within the apoptotic process; lower concentrations of H2O2 provide moderate inflammation, cell proliferation and apoptosis with a reduction of these processes over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号