首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibiotics are usually prescribed to cure infections but they also have significant modulatory effects on the gut microbiota. Several alterations of the intestinal bacterial community have been reported during antibiotic treatment, including the reduction of beneficial bacteria as well as of microbial alpha-diversity. Although after the discontinuation of antibiotic therapies it has been observed a trend towards the restoration of the original condition, the new steady state is different from the previous one, as if antibiotics induced some kind of irreversible perturbation of the gut microbial community. The poorly absorbed antibiotic rifaximin seem to be different from the other antibiotics, because it exerts non-traditional effects additional to the bactericidal/bacteriostatic activity on the gut microbiota. Rifaximin is able to reduce bacterial virulence and translocation, has anti-inflammatory properties and has been demonstrated to positively modulate the gut microbial composition. Animal models, culture studies and metagenomic analyses have demonstrated an increase in Bifidobacterium, Faecalibacterium prausnitzii and Lactobacillus abundance after rifaximin treatment, probably consequent to the induction of bacterial resistance, with no major change in the overall gut microbiota composition. Antibiotics are therefore modulators of the symbiotic relationship between the host and the gut microbiota. Specific antibiotics, such as rifaximin, can also induce eubiotic changes in the intestinal ecosystem; this additional property may represent a therapeutic advantage in specific clinical settings.  相似文献   

2.
The gut microbiota plays important roles in nutrient absorption, immune system development, and pathogen colonization resistance. Perturbations early in life may be detrimental to host health in the short and the long-term. Antibiotics are among the many factors that influence the development of the microbiota. Because antibiotics are heavily administered during the first critical years of gut microbiota development, it is important to understand the effects of these interventions. Infants, particularly those born prematurely, represent an interesting population because they receive early and often extensive antibiotic therapy in the first months after birth. Gibson et al. recently demonstrated that antibiotic therapy in preterm infants can dramatically affect the gut microbiome. While meropenem, ticarcillin-clavulanate, and cefotaxime treatments were associated with decreased species richness, gentamicin and vancomycin had variable effects on species richness. Interestingly, the direction of species richness response could be predicted based on the abundance of 2 species and 2 genes in the microbiome prior to gentamicin or vancomycin treatment. Nonetheless, all antibiotic treatments enriched the presence of resistance genes and multidrug resistant organisms. Treatment with different antibiotics further resulted in unique population shifts of abundant organisms and selection for different sets of resistance genes. In this addendum, we provide an extended discussion of these recent findings, and outline important future directions for elucidating the interplay between antibiotics and preterm infant gut microbiota development.  相似文献   

3.
Neutropenias, especially extended an long-lasting stages, lead to life-threatening endogenous infection. Therefore, after taking off materials for bacteriological investigations an empirical schedule of a combined high dose, treatment with broad-band antibiotics and/or antimycotics has immediately to be introduced and to continue until the body temperature and the peripheral blood granulocytes are normalized. In case of treatment failure one should complete the therapy by other additional antibiotics or correct the combination of its in respect to the results of the microbiological investigations. Supplements of this antimicrobial treatments are immunoglobulins and growth factors (G-CSF, GM-CSF). In case of an expected neutropenica the use of the selective gut decontamination or the reverse isolation of the patient can be of essential advantage.  相似文献   

4.
The impact of antibiotics on the human gut microbiota is a significant concern. Antibiotic-associated diarrhea has been on the rise for the past few decades with the increasing usage of antibiotics. Clostridium difficile infections (CDI) have become one of the most prominent types of infectious diarrheal disease, with dramatically increased incidence in both the hospital and community setting worldwide. Studies show that variability in the innate host response may in part impact upon CDI severity in patients. That being said, CDI is a disease that shows the most prominent links to alterations to the gut microbiota, in both cause and treatment. With recurrence rates still relatively high, it is important to explore alternative therapies to CDI. Fecal microbiota transplantation (FMT) and other types of bacteriotherapy have become exciting avenues of treatment for CDI. Recent clinical trials have generated excitement for the use of FMT as a therapeutic option for CDI; however, the exact components of the human gut microbiota needed for protection against CDI have remained elusive. Additional investigations on the effects of antibiotics on the human gut microbiota and subsequent CDI will help reduce the socioeconomic burden of CDI and potentially lead to new therapeutic modalities.  相似文献   

5.
The manipulation of the gut microbiota by diet, antibiotics, or probiotics could promote, prevent, or reverse the development of specific diseases, including obesity. A link has been proposed between obesity and the growth promoters (probiotics and antibiotics) that have been used in animals for more than 40 years to induce weight gain. Several species of the Lactobacillus genus that are frequently used as probiotics for human consumption merit particular attention because they are increased in the gut microbiota under high-fat diets, are more abundant in obese humans, and are selected by growth-promoter antibiotics; moreover, the administration of these bacteria in experimental models is linked to the development of obesity. However, other species or strains of the same genus are associated with an antiobesity effect. Newborns and infants are a particularly susceptible population in which the administration of antibiotics or probiotics could be related to the development of obesity in adulthood.  相似文献   

6.
Diet-induced mating preference in Drosophila melanogaster results from amplification of the commensal bacterium Lactobacillus plantarum, providing a new role for gut microbiota and support for the hologenome concept of evolution. When the flies were treated with antibiotics prior to changing their diet, mating preference did not occur. These data also indicate that other potentially beneficial bacteria could be irreversibly lost by antibiotic treatment and that their replacement could provide a health benefit. We suggest that D. melanogaster can be a useful model organism to study the activities of gut microbiota and their interaction with the immune system.  相似文献   

7.
《Gut microbes》2013,4(3):190-192
Diet-induced mating preference in Drosophila melanogaster results from amplification of the commensal bacterium Lactobacillus plantarum, providing a new role for gut microbiota and support for the hologenome concept of evolution. When the flies were treated with antibiotics prior to changing their diet, mating preference did not occur. These data also indicate that other potentially beneficial bacteria could be irreversibly lost by antibiotic treatment and that their replacement could provide a health benefit. We suggest that D. melanogaster can be a useful model organism to study the activities of gut microbiota and their interaction with the immune system.  相似文献   

8.
Salmonella infections (salmonellosis) pose serious health risks to humans, usually via food-chain contamination. This foodborne pathogen causes major food losses and human illnesses, with significant economic impacts. Overuse of antibiotics in the food industry has led to multidrug-resistant strains of bacteria, and governments are now restricting their use, leading the food industry to search for alternatives to secure food chains. Bacteriophages, viruses that infect and kill bacteria, are currently being investigated and used as replacement treatments and prophylactics due to their specificity and efficacy. They are generally regarded as safe alternatives to antibiotics, as they are natural components of the ecosystem. However, when specifically used in the industry, they can also make their way into humans through our food chain or exposure, as is the case for antibiotics. In particular, agricultural workers could be repeatedly exposed to bacteriophages supplemented to animal feeds. To our knowledge, no studies have investigated the effects of such exposure to bacteriophages on the human gut microbiome. In this study, we used a novel in-vitro assay called RapidAIM to investigate the effect of a bacteriophage mixture, BAFASAL®, used in poultry farming on five individual human gut microbiomes. Multi-omics analyses, including 16S rRNA gene sequencing and metaproteomic, revealed that ex-vivo human gut microbiota composition and function were unaffected by BAFASAL® treatment, providing an additional measure for its safety. Due to the critical role of the gut microbiome in human health and the known role of bacteriophages in regulation of microbiome composition and function, we suggest assaying the impact of bacteriophage-cocktails on the human gut microbiome as a part of their safety assessment.  相似文献   

9.
Gut bacteria are involved in a number of host metabolic processes and have been implicated in the development of obesity and type 2 diabetes in humans. The use of antibiotics changes the composition of the gut microbiota and there is accumulating evidence from observational studies for an association between exposure to antibiotics and development of obesity and type 2 diabetes. In the present paper, we review human studies examining the effects of antibiotics on body weight regulation and glucose metabolism and discuss whether the observed findings may relate to alterations in the composition and function of the gut microbiota.  相似文献   

10.
ABSTRACT

Background

Increasing evidence indicates that gut microbiota plays an important role in cancer progression. However, the underlying mechanism remains largely unknown. Here, we report that broad-spectrum antibiotics (ABX) treatment leads to enhanced metastasis by the alteration of gut microbiome composition.  相似文献   

11.
《Gut microbes》2013,4(2):103-108
We have recently shown that alteration of the gut commensal microbiota with antibiotics can modify the susceptibility to autoimmune demyelinating processes of the central nervous system. Treatment of mice with a broad spectrum of antibiotics not only induced significant changes in the regulatory T cell populations of the gut associated lymphoid tissues (GALT) and peripheral lymphoid organs but reduced the susceptibility to EAE, the most widely used animal model for human multiple sclerosis. Here, we show further that oral antibiotic treatment of EAE mice induced a CD5+B cell subpopulation that conferred protection against the disease. Protection was associated with an enhanced frequency of CD5+B cells in distal lymphoid sites such as cervical LN. In vitro stimulation with LPS increased the production of IL-10 by splenic CD5+B cells. Adoptive transfer of CD5+B cells from antibiotic treated mice reduced significantly the severity of EAE by shifting the immune responses from Th1/Th17 towards anti-inflammatory Th2-type responses. Our results demonstrate that this specific B cell population appears to be involved in the immune regulation of autoimmunity, in particular this experimental demyelinating disease of the central nervous system by gut commensal microflora.  相似文献   

12.
Proton pump inhibitors (PPIs), used to treat gastro-esophageal reflux and prevent gastric ulcers, are among the most widely used drugs in the world. The use of PPIs is associated with an increased risk of enteric infections. Since the gut microbiota can, depending on composition, increase or decrease the risk of enteric infections, we investigated the effect of PPI-use on the gut microbiota. We discovered profound differences in the gut microbiota of PPI users: 20% of their bacterial taxa were statistically significantly altered compared with those of non-users. Moreover, we found that it is not only PPIs, but also antibiotics, antidepressants, statins and other commonly used medication were associated with distinct gut microbiota signatures. As a consequence, commonly used medications could affect how the gut microbiota resist enteric infections, promote or ameliorate gut inflammation, or change the host's metabolism. More studies are clearly needed to understand the role of commonly used medication in altering the gut microbiota as well as the subsequent health consequences.  相似文献   

13.
We have recently shown that alteration of the gut commensal microbiota with antibiotics can modify the susceptibility to autoimmune demyelinating processes of the central nervous system. Treatment of mice with a broad spectrum of antibiotics not only induced significant changes in the regulatory T cell populations of the gut associated lymphoid tissues (GALT) and peripheral lymphoid organs but reduced the susceptibility to EAE, the most widely used animal model for human multiple sclerosis. Here, we show further that oral antibiotic treatment of EAE mice induced a CD5(+)B cell subpopulation that conferred protection against the disease. Protection was associated with an enhanced frequency of CD5(+)B cells in distal lymphoid sites such as cervical LN. In vitro stimulation with LPS increased the production of IL-10 by splenic CD5(+)B cells. Adoptive transfer of CD5(+)B cells from antibiotic treated mice reduced significantly the severity of EAE by shifting the immune responses from Th1/Th17 towards anti-inflammatory Th2-type responses. Our results demonstrate that this specific B cell population appears to be involved in the immune regulation of autoimmunity, in particular this experimental demyelinating disease of the central nervous system by gut commensal microflora.  相似文献   

14.
Inflammatory bowel diseases are thought to develop as a result of dysregulation of the relationship that exists between the gut microbiota, host genetics and the immune system. The advent of culture‐independent techniques has revolutionised the ability to characterise the role of the gut microbiota in health and disease based on the microbiota's genetic make‐up. Inflammatory bowel diseases are characterised by dysbiosis which is an imbalance between pro‐ and anti‐inflammatory bacteria and a reduction in bacterial diversity. Emerging data suggest that it is not only the presence of the gut microbiota but the functional activity of the microbiota that appears to play an important role in health and disease. Current strategies to manipulate therapeutically the gut microbiota using dietary modification, prebiotics, probiotics, antibiotics and faecal microbiota transplantation aim to restore the balance to a state of normobiosis. However, the ability of such strategies to correct dysbiosis and thereby achieve therapeutic benefit is yet to be fully characterised.  相似文献   

15.
Digestive Diseases and Sciences - Since gut microbiota is involved in the pathogenesis of inflammatory bowel disease (IBD), antibiotics or probiotics may be attractive options for the treatment of...  相似文献   

16.
Antibiotics disturb the gastrointestinal tract microbiota and in turn reduce colonization resistance against Clostridium difficile. The mechanism for this loss of colonization resistance is still unknown but likely reflects structural (microbial) and functional (metabolic) changes to the gastrointestinal tract. Members of the gut microbial community shape intestinal metabolism that provides nutrients and ultimately supports host immunity. This review will discuss how antibiotics alter the structure of the gut microbiota and how this impacts bacterial metabolism in the gut. It will also explore the chemical requirements for C. difficile germination, growth, toxin production and sporulation. Many of the metabolites that influence C. difficile physiology are products of gut microbial metabolism including bile acids, carbohydrates and amino acids. To restore colonization resistance against C. difficile after antibiotics a targeted approach restoring both the structure and function of the gastrointestinal tract is needed.  相似文献   

17.
The last ten years’ wide progress in the gut microbiota phylogenetic and functional characterization has been made evidencing dysbiosis in several gastrointestinal diseases including inflammatory bowel diseases and irritable bowel syndrome (IBS). IBS is a functional gut disease with high prevalence and negative impact on patient’s quality of life characterized mainly by visceral pain and/or discomfort, representing a good paradigm of chronic gut hypersensitivity. The IBS features are strongly regulated by bidirectional gut-brain interactions and there is increasing evidence for the involvement of gut bacteria and/or their metabolites in these features, including visceral pain. Further, gut microbiota modulation by antibiotics or probiotics has been promising in IBS. Mechanistic data provided mainly by animal studies highlight that commensals or probiotics may exert a direct action through bacterial metabolites on sensitive nerve endings in the gut mucosa, or indirect pathways targeting the intestinal epithelial barrier, the mucosal and/or systemic immune activation, and subsequent neuronal sensitization and/or activation.  相似文献   

18.
《Gut microbes》2013,4(4):279-283
Alterations in the gut microbiota have been implicated to play a role in potentiating inflammatory bowel diseases in both humans and mice. Mice lacking the flagellin receptor, toll-like receptor 5 (TLR5), are prone to develop spontaneous gut inflammation, but are significantly protected when treated with antibiotics or maintained in germ-free conditions. However, given that the incidence of spontaneous inflammation in TLR5KO mice is quite variable in conventional conditions (typically ~10% show clear colitis), this result is far from definitive and does not rule out that TLR5KO mice might be prone to develop inflammation even in the absence of a microbiota. Herein, we demonstrate that neutralization of IL10 signaling induces colitis in 100% of TLR5KO mice which provide a more rigorous approach to evaluate the role of microbiota in gut inflammation. Mice treated with antibiotics or maintained in germ-free condition are substantially protected against IL-10R neutralization-induced colitis, underscoring that gut inflammation in TLR5KO mice is dependent upon the presence of a gut microbiota.  相似文献   

19.
Alterations in the gut microbiota have been implicated to play a role in potentiating inflammatory bowel diseases in both humans and mice. Mice lacking the flagellin receptor, toll-like receptor 5 (TLR5), are prone to develop spontaneous gut inflammation, but are significantly protected when treated with antibiotics or maintained in germ-free conditions. However, given that the incidence of spontaneous inflammation in TLR5KO mice is quite variable in conventional conditions (typically ∼10% show clear colitis), this result is far from definitive and does not rule out that TLR5KO mice might be prone to develop inflammation even in the absence of a microbiota. Herein, we demonstrate that neutralization of IL10 signaling induces colitis in 100% of TLR5KO mice which provide a more rigorous approach to evaluate the role of microbiota in gut inflammation. Mice treated with antibiotics or maintained in germ-free condition are substantially protected against IL-10R neutralization-induced colitis, underscoring that gut inflammation in TLR5KO mice is dependent upon the presence of a gut microbiota.  相似文献   

20.
Patients with inflammatory bowel disease (IBD) exhibit impaired control of the microbiome in the gut, and ‘dysbiosis’ is commonly observed. Western diet is a risk factor for the development of IBD, but it may have different effects on gut microbiota between IBD and non‐IBD individuals. Exclusive enteral nutrition (EEN) can induce remission in pediatric Crohn's disease with a decrease in gut microbial diversity. Although there are some theoretical benefits, actual treatment effects of prebiotics and probiotics in IBD vary. High‐quality studies have shown that VSL#3 (a high‐potency probiotic medical food containing eight different strains) exhibits benefits in treating ulcerative colitis, and gut microbial diversity is reduced after treated with VSL#3 in animal models. The effect of fecal microbiome transplantation on IBD is controversial. Increasing microbial diversity compared with impaired handling of bacteria presents a dilemma. Antibiotics are the strongest factors in the reduction of microbiome ecological diversity. Some antibiotics may help to induce remission of the disease. Microbiome alteration has been suggested to be an intrinsic property of IBD and a potential predictor in diagnosis and prognosis. However, the effects of therapeutic modulations are variable; thus, more questions remain to be answered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号