首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Dental materials》2022,38(8):1419-1431
ObjectiveTo determine whether smear layer management, via conservative etching protocols, and the hydrophobic-rich content of hybrid layers would affect the fatigue strength of resin-dentin interfaces.MethodsBar-shaped dentin beams obtained from sound third molars were wet-polished for 30 s. Dentin was etched with 32 % ortho-phosphoric acid for 3 or 15 s, 10 % meta-phosphoric acid for 15 s or by a prime-and-rinse application using a mild universal adhesive (Scotchbond Universal, 3M ESPE). Self-etch application served as control. Coating was performed with a solvent-free bisGMA-based resin. Composite buildups were made with a nanofilled composite. Resin-dentin beams with twin-bonded interfaces were sectioned and stored in deionized water for 24 h at 37 ℃ before 4-point flexural quasi-static monotonic testing (n = 16). Stress-life fatigue behavior was evaluated under cyclic loading (n = 35) by the staircase method at 4 Hz. The tension side of cyclic-loaded unfractured beams were evaluated under SEM, along with the micro-morphology of etched dentin surfaces. Monotonic data was analyzed by two-way ANOVA followed by the Tukey Test and cyclic-loaded data by Kruskal-Wallis on Ranks (α = 0.05).ResultsEtching protocols and higher hydrophobic-rich content produced significantly higher fatigue life distributions (p < 0.05). Dentin demineralization was ranked as OPA 15 s > MPA 15 s > OPA 3 s > P + R > SE. Less aggressive etching and coating reduced crack formation at hybrid layers.SignificanceCurrent oversimplification trends in resin-dentin bonding constitute a trade-off between hybridization quality and easier adhesive handling. Controlled dentin etching and increasing the hydrophobic-rich content of hybrid layers may be necessary to extend the longevity of mild universal adhesives.  相似文献   

2.
宣桂红  傅柏平 《口腔医学》2011,31(4):210-212
目的 评价自酸蚀树脂水门汀ResiCem的牙本质粘结强度并探讨酸蚀对其粘结强度的影响。方法 选择离体无龋第三恒磨牙15颗。沿垂直于牙体长轴方向将磨牙冠中1/3处切开,将牙本质面分别用自酸蚀树脂水门汀Panavia F和Resi-Cem原位对位粘结。其中ResiCem组牙本质面分别用磷酸酸蚀0、5、10、15 s。用低速切片机把样本切割成约1 mm×1 mm×8mm条块后进行微拉伸测试,并通过扫描电镜观察粘结界面。结果 ResiCem的牙本质微拉伸粘结强度[(16.9±5.3)MPa]与Panavia F[(17.0±5.2)MPa]间差异无统计学意义(P>0.05)。磷酸酸蚀显著地降低ResiCem与牙本质间的粘结强度(P<0.05),并随着酸蚀时间的延长而降低。结论 ResiCem的牙本质微拉伸粘结强度与Panavia F相当,但酸蚀会降低ResiCem的牙本质粘结强度。  相似文献   

3.
BackgroundThe authors conducted a study to evaluate the influence of dentin moisture on the degradation of the resin-dentin interface in primary teeth under clinical and laboratory conditions.MethodsThe authors prepared 40 Class I restorations (five teeth per group) by using a cylindrical diamond bur, leaving a flat dentin surface on the pulpal floor. They vigorously rubbed two coats of a simplified etch-and-rinse adhesive on either dry or wet demineralized dentin under clinical or laboratory conditions. After performing restorative procedures, the authors extracted teeth prepared under clinical conditions after 20 minutes (immediately) or the teeth exfoliated after six months. The authors also tested the teeth prepared under laboratory conditions immediately or after six months of being stored in water. They sectioned the teeth to obtain resin-dentin bonded specimens for microtensile testing and for silver nitrate uptake (SNU) under scanning electron microscopy. They performed a three-way analysis of variance and Tukey test (α = .05) on the SNU bond strength data.ResultsStatistically higher bond strength values (megapascals [standard deviation]) were observed when bonding was performed under laboratory conditions (clinical = 25.2 [3.6] MPa versus laboratory = 28.5 [4.4] MPa; P < .05). Degradation occurred only in the wet dentin groups under both experimental conditions (immediately = 31.3 [4.5] MPa versus after six months = 21.3 [2.1] MPa; P < .05). SNU occurred in all groups and was statistically higher after six months of clinical function or water storage (immediately = 13.9 [4.9 SD] percent versus after six months = 34.1 [4.5 SD] percent; P < .05).ConclusionsThe bonding of adhesives to dry demineralized dentin produces adhesive interfaces that are more resistant to degradation regardless of the bonding condition.Clinical ImplicationsResin-dentin bond strengths produced under laboratory conditions in primary teeth may be higher than those obtained under clinical circumstances, although both conditions (clinical and laboratory) seemed to yield similar results. Bonding to dry demineralized primary tooth dentin produced resin-dentin interfaces that were more resistant to degradation.  相似文献   

4.
ObjectiveImperfect polymer formation as well as collagen’s susceptibility to enzymatic degradation increase the vulnerability of hybrid layers over time. This study investigated the effect of new dimethyl sulfoxide (DMSO)-containing pretreatments on long-term bond strength, hybrid layer quality, monomer conversion and collagen structure.MethodsH3PO4-etched mid-coronal dentin surfaces from extracted human molars (n = 8) were randomly treated with aqueous and ethanolic DMSO solutions or following the ethanol-wet bonding technique. Dentin bonding was performed with a three-step etch-and-rinse adhesive. Resin-dentin beams (0.8 mm2) were stored in artificial saliva at 37 °C for 24 h and 2.5 years, submitted to microtensile bond strength testing at 0.5 mm/min and semi-quantitative SEM nanoleakage analysis (n = 8). Micro-Raman spectroscopy was used to determine the degree of conversion at different depths in the hybrid layer (n = 6). Changes in the apparent modulus of elasticity of demineralized collagen beams measuring 0.5 × 1.7 × 7 mm (n = 10) and loss of dry mass (n = 10) after 30 days were calculated via three-point bending and precision weighing, respectively.ResultsDMSO-containing pretreatments produced higher bond strengths, which did not change significantly over time presenting lower incidence of water-filled zones. Higher uniformity in monomer conversion across the hybrid layer occurred for all pretreatments. DMSO-induced collagen stiffening was reversible in water, but with lower peptide solubilization.SignificanceImproved polymer formation and higher stability of the collagen-structure can be attributed to DMSO’s unique ability to simultaneously modify both biological and resin components within the hybrid layer. Pretreatments composed of DMSO/ethanol may be a viable-effective alternative to extend the longevity of resin-dentin bonds.  相似文献   

5.
ObjectivesThe aim of this study was to investigate dentin bonding durability of different etch-and-rinse (ER) adhesive systems under fatigue stress and to compare morphological features of resin/dentin interfaces using SEM.MethodsTwo three-step ER adhesives, a two-step ER adhesive, and a universal adhesive in ER mode were evaluated. Before application of either primer or adhesive, phosphoric acid etching of human dentin was completed. Fifteen bonded specimens for each adhesive system were stored in distilled water at 37 °C for 24 h, then subjected to a shear bond strength (SBS) test. Bonding durability was assessed from the perspective of biomechanical stress. 25 bonded specimens for each adhesive system were subjected to shear fatigue strength (SFS) testing with a repeated subcritical load at a frequency of 20 Hz for 50,000 cycles or until failure.ResultsMean SBS and SFS values ranged from 33.3 to 41.2 MPa, and from 18.3 to 20.3 MPa, respectively. Three-step adhesives showed higher SBS and SFS values than the other adhesive systems. Under SEM, resin tags in different adhesive systems showed similar features, but morphology below the hybrid layer was material dependent. The universal adhesive in ER mode showed an obvious thin, high-density reaction layer below the hybrid layer.SignificanceThree-step adhesives showed higher dentin bond durability than the other ER adhesives; no significant differences in SFS were found between the universal adhesive in ER mode and the three-step ER adhesives. The results of this in vitro study indicate that some ER adhesives might establish chemical bonding with intact dentin below the hybrid layer in addition to micromechanical retention.  相似文献   

6.

Objective

To determine the role of an anti-oxidant agent (ascorbic acid-AA) on resin-dentin bonds resistance to degradation of two adhesives.

Methods

Flat dentin surfaces from 48 human molars were bonded as per manufacturer's instructions with: a two-step etch-and-rinse self-priming adhesive (Single Bond-SB) and a two-step self-etch adhesive (Clearfil SE Bond-CSE). Half of the specimens were bonded with the same adhesives, but after the addition of 10% AA into their formulation. Resin composite build-ups were constructed incrementally and sectioned into resin-dentin beams (1.0 mm2) that were stored under four conditions: (1) water immersion for 24 h; (2) water immersion for 1 year; (3) water immersion for 4 years; and (4) chemical challenging (immersion in 10% NaOCl for 5 h). Beams were pulled to failure in tension at 0.5 mm/min. Mean microtensile bond strength (MTBS) data were analysed with ANOVA and multiple comparisons tests (P < 0.05). Analysis of debonded dentin beams was performed by scanning electron microscopy (SEM).

Results

After 24 h, SB and CSE performed equally, regardless of AA incorporation. Inclusion of AA on CSE formulation decreased MTBS following one-year water storage, but maintained SB bond strength values even after four years of water storage. NaOCl challenge diminished MTBS for both adhesives, but when AA was added to SB, this reduction was significantly lower.

Conclusions

The inclusion of AA on adhesive's formulation exerts a protective role on resin-dentin bonds resistance to degradation when SB is used. Bonding durability of CSE may be compromised by the addition of sodium ascorbate.  相似文献   

7.
《Dental materials》2020,36(9):1151-1160
ObjectivesTo evaluate the effect of experimental dentin pre-treatment solutions formulated with different flavonoids on microtensile bond strength (μTBS), nanohardness (NH) and ultra-morphological characteristics of artificial caries-affected dentin (CAD) bonded using a universal bonding system.MethodsA microbiological method was used to create an artificial CAD in 91 human molars. Five experimental pre-treatment solutions were created using the following flavonoids: quercetin (QUE); hesperidin (HES); rutin (RUT); naringin (NAR), or proanthocyanidin (PRO). A placebo solution (PLA) with no flavonoids added was also evaluated. The flavonoids or placebo solutions were applied to the CAD prior to the application and photoactivation of a universal adhesive (Scotchbond Universal, 3M Oral Care). A control group (CON), in which only the bonding agent was applied without any flavonoid solution, was also evaluated. A 3-mm-thick block of resin composite (Opallis, FGM) was built up on the flat bonded CAD surfaces and was light-cured following the manufacturer’s instructions. Specimens were sectioned to obtain resin-dentin slices and sticks (cross-sectional area of 0.8 mm2). The μTBS, NH, and confocal ultramorphology analysis of resin-dentin interface was evaluated at 24 h and after thermo-cycling aging (25,000 cycles). The results were analyzed using 2-way ANOVA followed by Bonferroni's post hoc test (pre-set α = 0.05).ResultsThe specimens from groups QUE, NAR, and RUT presented greater μTBS values than those from CON group (p<0.05). Specimens from some of these experimental groups presented greater nanomechanical properties (p<0.05), and no morphological degradation at the resin-dentin interface after aging.SignificanceThe use of exogenous cross-linkers as dentin pre-treatment before bonding procedures may represent a suitable strategy to improve the longevity of universal adhesive systems applied to caries-affected dentin.  相似文献   

8.

PURPOSE

This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique.

MATERIALS AND METHODS

Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey''s tests (α=.05).

RESULTS

Overall, PAN adhesive cement showed significantly higher mean bond strength (12.5 ± 2.3 - 14.1 ± 2.4 MPa) than CSA cement (9.3 ± 1.4 - 13.9 ± 1.9 MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions.

CONCLUSION

In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period.  相似文献   

9.
OBJECTIVE: To evaluate the resistance to degradation of resin-dentin bonds formed with a one-step acetone-containing and HEMA-free adhesive. METHODS: Flat, mid-coronal dentin surfaces were bonded with G Bond under dry and wet conditions. The bonded teeth were subjected to fatigue loading (90 or 250 N) using 5000 or 50000 cycles (at 3.0 Hz) and to chemical degradation (10% NaOCl immersion for 5 h). Specimens were sectioned into beams and tested for microtensile bond strength. Fractographic analysis was performed by scanning electron microscopy (SEM). Additional specimens were processed for morphological examination of the interfaces. RESULTS: Bond strength significantly decreased after the chemical challenge (p<0.05), but not after load cycling. Dentinal moisture did not affect bond strength. Most of the recorded failures were adhesive and located at the top of the hybrid layer. A poorly infiltrated hybrid layer with bubbles entrapped within the adhesive was observed in all groups. CONCLUSIONS: A discrepancy between water/solvent evaporation rate and convective and evaporative water fluxes from the underlying dentin may be responsible of the droplet formation within the adhesive layer, thus reducing bond strength. A "stress relieving" effect may occur during loading. A loss of bonding effectiveness is expected overtime, mainly due to chemical degradation of the hybrid layer.  相似文献   

10.
《Dental materials》2022,38(2):231-241
ObjectivesTo determine whether the composition of universal adhesives and the use of silane coupling agents could affect the fatigue strength of composite repair.MethodsComposite samples were aged in water at 37 °C for 90 days and bonded to fresh composite to produce twin-bonded bar-shaped composite specimens (2 × 2 × 12 mm). Five universal adhesives, a multistep composite repair system and a hydrophobic solvent-free resin associated to a separate silane coupling agent application were used for bonding. Composite samples were tested under 4-pointflexure initially at quasi-static loading (n = 12) followed by cyclic loading (n = 25). The stress-life fatigue behavior was evaluated following the staircase method at 4 Hz. The unfractured side of cyclic loaded beams were evaluated under SEM to determine crack initiation sites. Fatigue data was analyzed by ANOVA and Tukey test and Wilcoxon Rank Sum Test (α = 0.05).ResultsBonding protocols were unable to restore the cohesive strength of the nanofilled composite (p < 0.05). Fatigue testing was more discriminative to reveal discrepancies in composite repair than conventional quasi-static loading. While the composition of universal adhesives affected composite repair potential, the highest endurance limits occurred for the separate silane coupling agent application. Crack propagation sites were mostly located on the aged composite surface.SignificanceAlthough a trend for simplification invariably overruns current adhesive dentistry, composite repair using solely universal adhesives may result in inferior repair potential. The additonal use of silane coupling agents remains as an important procedure in composite repairs.  相似文献   

11.
This aim of this study was to compare universal adhesives and two‐step self‐etch adhesives in terms of dentin bond fatigue durability in self‐etch mode. Three universal adhesives – Clearfil Universal, G‐Premio Bond, and Scotchbond Universal Adhesive – and three‐two‐step self‐etch adhesives – Clearfil SE Bond, Clearfil SE Bond 2, and OptiBond XTR – were used. The initial shear bond strength and shear fatigue strength of resin composite bonded to adhesive on dentin in self‐etch mode were determined. Scanning electron microscopy observations of fracture surfaces after bond strength tests were also made. The initial shear bond strength of universal adhesives was material dependent, unlike that of two‐step self‐etch adhesives. The shear fatigue strength of Scotchbond Universal Adhesive was not significantly different from that of two‐step self‐etch adhesives, unlike the other universal adhesives. The shear fatigue strength of universal adhesives differed depending on the type of adhesive, unlike those of two‐step self‐etch adhesives. The results of this study encourage the continued use of two‐step self‐etch adhesive over some universal adhesives but suggest that changes to the composition of universal adhesives may lead to a dentin bond fatigue durability similar to that of two‐step self‐etch adhesives.  相似文献   

12.
Objectives

To evaluate the effects of air-blowing time and storage time on microtensile bond strength (μTBS) of universal adhesives to dentin.

Materials and methods

Ninety flat dentin surfaces from extracted human third molars were bonded with three universal adhesives (Clearfil Universal Bond-CU; G-Premio Bond-GP; Scotchbond Universal Adhesives-SB). Bonded dentin surfaces were air-dried for 5 s, 15 s, or 30 s followed by resin composite built-up. Resin-dentin beams were tested with μTBS test after different storage time in distilled water (24 h and 1 year). Data were analyzed by three-way ANOVA and Duncan test at (α = 0.05). Failure mode and resin-dentin interfaces were observed using a scanning electron microscope (SEM). Specific features of fractured beams after μTBS were further observed using SEM at high magnification.

Results

Extension of air-blowing time from 5 s to 30 s increased the 24 h μTBS of CU only. Bond strength of all adhesives significantly decreased after 1-year storage except for CU at 5 s and 30 s of air-blowing time. One-year μTBS were significantly higher when air-blowing times were extended to 15 s for SB and 30 s for CU. Air-blowing time had no influence on GP.

Conclusion

The effect of air-blowing time and storage time on resin-dentin bond was material-dependent.

Clinical relevance

Extended air-blowing time increased the bond strength and bond durability of CU. Extension of air-blowing time to 15 s and 30 s improve the long-term bond strength of SB and CU, respectively.

  相似文献   

13.
PURPOSE: To compare nanoleakage patterns of an unfilled (OS; One-Step), a 6 wt% spherical silica-filled (OSs; One-Step Plus) and a 15 wt% glass-filled (OSg) version of a two-step, acetone-based self-priming adhesive. Permeability of bonded dentin treated with OS and OSs was also examined. METHODS: Deep, coronal dentin from extracted third molars were etched and bonded using these adhesives. One-mm thick sections were immersed in 50 wt% ammoniacal silver nitrate (pH 9.5) for 24 hours. Unstained, undemineralized sections were examined by TEM. The permeability of dentin bonded with OS and OSs were investigated at 20 cm of H2O hydrostatic pressure and compared with the osmotic conductance determined with 4.8 M CaCl2 at zero hydrostatic pressure. Composite-dentin beams bonded with OS, OSs and OSg that were fractured after microtensile bond testing were examined by SEM. RESULTS: Two types of nanoleakage patterns were recognized along the resin-dentin interfaces. The reticular type consisted of discontinuous islands of silver deposits and was exclusively seen in hybrid layers. The spotted type consisted of isolated silver grains and was evident throughout the hybrid and adhesive layers in OS. These two patterns were seen to variable extents in the two filled adhesive versions OSs and OSg and their distribution was independent of one another. OS and OSs bonded dentin were permeable to fluid filtration. However, part of this fluid movement was due to the permeability of the adhesive layer, as demonstrated by osmotic fluid conductance in the absence of hydrostatic pressure. Fractographic analysis revealed denuded collagen fibrils within fractured hybrid layers that were indicative of incomplete resin infiltration.  相似文献   

14.

Objective

To compare microtensile bond strengths (MTBS) subsequent to load cycling of resin bonded acid-etched or EDTA-treated dentin using a modified ethanol wet-bonding technique.

Methods

Flat dentin surfaces were obtained from extracted human molars and conditioned using 37% H3PO4 (PA) (15 s) or 0.1 M EDTA (60 s). Five experimental adhesives and one commercial bonding agent were applied to the dentin and light-cured. Solvated experimental resins (50% ethanol/50% comonomers) were used as primers and their respective neat resins were used as the adhesives. The resin-bonded teeth were stored in distilled water (24 h) or submitted to 5000 loading cycles of 90 N. The bonded teeth were then sectioned in beams for MTBS. Modes of failure were examined by scanning electron microscopy.

Results

The most hydrophobic resin 1 gave the lowest bond strength values to both acid and EDTA-treated dentin. The hydrophobic resin 2 applied to EDTA-treated dentin showed lower bond strengths after cycling load but this did not occur when it was bonded to PA-etched dentin. Resins 3 and 4, which contained hydrophilic monomers, gave higher bond strengths to both EDTA-treated or acid-etched dentin and showed no significant difference after load cycling. The most hydrophilic resin 5 showed no significant difference in bond strengths after cycling loading when bonded to EDTA or phosphoric acid treated dentin but exhibited low bond strengths.

Significance

The presence of different functional monomers influences the MTBS of the adhesive systems when submitted to cyclic loads. Adhesives containing hydrophilic comonomers are not affected by cycling load challenge especially when applied on EDTA-treated dentin followed by ethanol wet bonding.  相似文献   

15.
《Dental materials》2022,38(2):421-430
ObjectivesTo determine the long-term effect on the stability of dentin-resin interfaces after the addition of polylactide (PLA) capsules containing proanthocyanidin (PAC) to adhesive resin.MethodsSub-micron (SM) and micron (M) size capsules containing PACs were produced using a combination of emulsification and solvent evaporation techniques and characterized. Human dentin surfaces (n = 8) were etched (35% glycolic acid) and primed (15% enriched Vitis vinifera extract solution - VVe), followed by the application of an experimental adhesive containing 0 (control), 1.5 wt% of SM or M PAC-filled PLA capsules light cured for 40 s. A crown was built using commercial composite. After 24 h-immersion (37 °C) in simulated body fluid, specimens were serially sectioned into resin-dentin beams. Microtensile bond strength (TBS), micro-permeability and fracture pattern were assessed immediately and after 1 and 2 years. Data were statistically analyzed using two-way ANOVA and post-hoc test (α = 0.05).ResultsPolydisperse capsules were manufactured with average diameter of 0.36 µm and 1.08 µm for SM and M, respectively. The addition of capsules did not affect TBS (p = 0.889). After 2 years, TBS significantly decreased in SM (p = 0.006), whereas M showed similar initial values (p = 0.291). Overall, less micro-permeability was found in M than the control and SM group (p < 0.001). After 2 years, fractured surfaces from capsule-containing groups failed within the adhesive layer while control fractured at the bottom of the hybrid layer.SignificanceThe addition of PAC-filled PLA microcapsules in a dental adhesive did not affect the bond strength while increased and sustained the protection against micro-permeability in the interface, likely due to release of PACs.  相似文献   

16.
目的:研究冷热循环对牙本质粘结强度和粘结界面纳米渗漏的影响.方法:选取30个无龋损人磨牙,用600目碳化硅砂纸在流水冲洗下预备牙本质粘结面,分别用3种(Prime&Bond NT,Adper Prompt和Contax)粘结剂进行粘结处理,复合树脂充填.纵向片切牙齿,制备粘结面积为1 mm2的条形树脂牙本质试样.冷热循...  相似文献   

17.
OBJECTIVES: To evaluate the longevity of sound (SD) and caries-affected dentin (CAD) bonds made with etch-and-rinse and self-etching adhesives after a 6-month water-storage period, using bond strength and morphological evaluations. METHODS: Extracted human molars with coronal carious lesions were selected. Flat surfaces of CAD surrounded by SD were bonded with etch-and-rinse (Adper Scotchbond 1) or with self-etching (Clearfil Protect Bond and AdheSE) adhesives. Trimmed resin-dentin bonded interfaces (1mm2) were stored in distilled water for 24h or 6 months and subjected to microtensile bond strength (microTBS) evaluation. The quality of the dentin beneath fractured specimens was measured by Knoop microhardness (KHN). ANOVA and multiple comparisons tests were used (P<0.05). Fractographic analysis and interfacial nanoleakage evaluation were performed by scanning electron microscopy (SEM). Resin-dentin bonded sections (10microm thick) were stained with Masson's trichrome and examined using light microscopy. Collagen exposure and adhesive penetration were examined qualitatively. RESULTS: microTBS to SD was significantly higher than that to CAD for all bonding agents. Bonds made with AdheSE were weaker than the other adhesives after 6-months storage regardless of the dentin substrate. CAD bonded specimens presented a significant muTBS decrease over time. Lower KHN was recorded in CAD compared to SD. An increase in the exposed collagen zone and a decrease in the quality of the adhesive infiltration were observed in CAD interfaces. SIGNIFICANCE: CAD bonded interfaces are more prone to hydrolytic degradation than SD bonds. Additionally, as compared to SD, there were remarkable differences in depth of demineralization, adhesive infiltration and interfacial bond strength with CAD.  相似文献   

18.

Objectives

This study examined the effect of saliva contamination on the microtensile bond strength (μTBS) of resin luting cements to dentin.

Methods

For RelyX ARC (ARC, 3M ESPE), dentin surfaces were etched with 32% phosphoric acid. The subgroups were: ARC-control (uncontaminated), ARC-I (saliva contamination, blot-dried), ARC-II (saliva contamination, rinse, blot-dried) and ARC-III (saliva contamination, rinse, re-etch, rinse, blot-dried). For Panavia F 2.0 (PF, Kuraray), the subgroups were: PF-control (uncontaminated), PF-I (saliva contamination, dried), PF-II (saliva contamination, rinse, dried), PF-III (primer, saliva contamination, dried), PF-IV (primer, saliva contamination, dried, primer re-applied) and PF-V (primer, saliva contamination, rinse, dried, primer re-applied). Composite blocks were luted onto dentin using the two cements. Bonded specimens were sectioned into 0.9 mm × 0.9 mm beams for μTBS testing. Representative fractured beams were prepared for fractographic analysis.

Results

For ARC, salivary contamination of etched dentin (ARC-I) significantly lowered bond strength (p = 0.001). Rinsing saliva off with water (ARC-II) restored bond strength to control level. Re-etching dentin surface after rinsing (ARC-III) resulted in the lowest bond strength (p < 0.001). For PF, salivary contamination of dentin before (PF-I) and after application of primer (PF-III and PF-IV) significantly lowered bond strength (p < 0.001). Rinsing saliva off with water and re-application of primer (PF-II and PF-V) improved bond strength.

Conclusion

Saliva contamination during luting deteriorated the bond quality of resin cements. Decontamination by rinsing with water was most effective in restoring the bond strength of RelyX ARC. Decontamination by water-rinsing and primer re-application after rinsing improved the bond strength of Panavia F 2.0.  相似文献   

19.
IntroductionSmearing of unset root canal sealers over the pulp chamber dentin may adversely affect bonding of self-etching adhesives and jeopardize their coronal sealing potential. This study examined the influence of different sealer removal protocols on the microtensile bond strengths of two self-etching adhesives to AH Plus-contaminated dentin.MethodsCoronal dentin surfaces were prepared from extracted human third molars. In the positive control groups, these surfaces were not contaminated with sealer and were bonded with Clearfil SE Bond or Clearfil Tri-S Bond. For the experimental groups, dentin surfaces were contaminated with AH Plus and wiped with either dry cotton pellets, cotton pellets saturated with ethanol, or cotton pellets saturated with Endosolv R followed by rinsing the dissolved sealer with water prior to bonding with the two adhesives. Bonded specimens were sectioned into resin-dentin beams for microtensile bond strength evaluation. Additional specimens were prepared for transmission electron microscopy to examine the ultrastructure and nanoleakage within the hybrid layers.ResultsFor both adhesives, microtensile bond strengths significantly declined when the sealer was removed with dry cotton pellets or cotton pellets saturated with ethanol. Only the Endosolv R/water sealer removal protocol restored tensile bond strengths to those of the uncontaminated positive controls without adversely affecting hybrid layer formation in intact dentin or increasing nanoleakage within the resin-dentin interfaces.ConclusionThe Endosolv R sealer removal protocol appears to be effective in preventing the deterioration of bond strengths of the two self-etching adhesives to AH Plus–contaminated dentin and warrants further clinical investigation.  相似文献   

20.
《Dental materials》2021,37(11):1676-1687
ObjectiveTo determine whether the effect of dentin moisture on the etch-and-rinse bonding may be minimized by dry-bonding protocols utilizing aqueous or ethanolic dimethyl sulfoxide (DMSO) pretreatments.MethodsH3PO4-etched mid-coronal dentin surfaces from human molars were randomly blot- or air-dried for 30 s and pretreated with DMSO/H2O or DMSO/EtOH solutions. Untreated samples served as control. Moisture control was performed by either blot- or air-drying. Samples were bonded with a multistep etch-and-rinse adhesive. Restored crown segments (n = 8/group) were stored in distilled water for 24 h and sectioned for microtensile bond strength testing. Resin-dentin beams (0.8 mm2) were tested under tension until fracture (0.5 mm/min) after 24 h and two years of storage in artificial saliva at 37 °C.SEM nanoleakage evaluation was performed on aged samples. Collagen wettability was also measured by sessile drops of the hydrophilic and hydrophobic bonding resins (n = 8/group). Data were examined by factorial ANOVA followed by the Tukey test (α = 0.05).ResultsDry bonding to untreated collagen produced inferior immediate and long-term bond strengths than wet bonding (p < 0.05). Regardless of initial hydration and moisture control, DMSO-dry bonding produced initially higher and stable bond strengths after aging (p < 0.05). DMSO-pretreated groups presented improved collagen wettability with lower silver uptake (p < 0.05).SignificanceDespite the common belief that etch-and-rinse adhesives must be applied onto moist collagen, DMSO-dry bonding protocols not only improved bonding performance and hybrid layer integrity, but also brought more versatility to collagen hybridization by reducing overdrying-related issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号