首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的探讨ghrelin对RAW264.7源性泡沫细胞迁移的影响及相关机制。方法油红O检测泡沫细胞模型的构建,胆固醇氧化酶法检测泡沫细胞内总胆固醇(TC)、游离胆固醇(FC)和胆固醇酯(CE)含量,transwell小室实验检测ghrelin对RAW264.7源性泡沫细胞迁移的影响,Western blot检测Akt、p-Akt和cleaved Caspase-3蛋白的表达,免疫荧光检测p-Akt和cleaved Caspase-3的表达,细胞骨架荧光探针检测细胞骨架的变化。观察PI3K特异性抑制剂LY294002是否影响RAW264.7源性泡沫细胞的迁移能力及相关蛋白的表达。结果 10-7mol/L ghrelin处理RAW264.7源性泡沫细胞可以促进泡沫细胞迁移,此过程可以被LY294002逆转。Western blot结果显示10-7mol/L ghrelin可显著升高RAW264.7源性泡沫细胞p-Akt的表达,降低cleaved Caspase-3的表达(P0.05),并明显改善RAW264.7源性泡沫细胞的迁移能力(P0.05),LY294002可逆转以上变化。免疫荧光检测显示Akt在RAW264.7细胞明显表达,ghrelin组表达增多,LY294002组明显降低。结论 ghrelin可促进RAW264.7源性泡沫细胞迁移,其分子机制可能与激活PI3K/Akt信号通路有关。  相似文献   

2.
3.
Jia  Li  Luo  Shihua  Ren  Xiang  Li  Yang  Hu  Jialei  Liu  Bing  Zhao  Lifen  Shan  Yujia  Zhou  Huimin 《Digestive diseases and sciences》2017,62(12):3447-3459
Digestive Diseases and Sciences - Metastasis is a leading cause of cancer-related death including colorectal cancer (CRC). MicroRNAs are known to regulate cancer pathways and to be expressed...  相似文献   

4.
5.
6.
Metabolic Brain Disease - Neuroinflammation can cause multiple neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease...  相似文献   

7.
In this study, we examined the role of c-kit receptor (KIT) signal transduction on the proliferation and invasion of colorectal cancer cells. We found that c-kit was expressed in 2 colorectal cancer cell lines as determined by RT-PCR, Western blot, and flow cytometry. In KIT-positive lines, KIT was activated by stem cell factor (SCF). SCF enhanced cellular proliferation of positive lines as demonstrated by the WST-1 proliferation assay. Furthermore, SCF enhanced the invasive ability of KIT-positive cell lines. SCF stimulation upregulated p44/42 mitogen-activated protein kinase (MAPK) and Akt as shown by Western blot. We examined the roles played by p44/42 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt pathways in proliferation and invasion. PI3K/Akt activity strongly correlated with proliferation and invasion and p44/42 MAPK was correlated with only invasion. In conclusion, the SCF-enhanced proliferation and invasion of KIT-positive colorectal cancer cells is achieved mainly through the PI3K/Akt pathway.  相似文献   

8.
目的探讨肺癌中磷脂酰肌醇-3-激酶(P13K)/AKT信号通路对S期激酶相关蛋白2(Skp2)的调控机制。方法体外培养4种类型肺癌细胞系H460、LK2、H446和A549,经LY294002处理细胞24h后实时RT—PCR法检测Skp2基因表达变化;Westernblot检测E2F1蛋白表达变化。结果实时RT—PCR显示LY294002作用后4种肺肿瘤细胞系中skp2基因表达均下降;Westernblot结果表明在小细胞肺癌、肺鳞癌、大细胞肺癌中E2F1蛋白表达降低,肺腺癌中E2F1蛋白未表达。结论肺癌中P13K/AKT通路可在转录水平调节Skp2表达,在小细胞肺癌、肺鳞癌、大细胞肺癌中此种调节可能通过转录因子E2F1发挥作用,而肺腺癌中E2F1不参与此种调节。  相似文献   

9.
10.
This study aims to investigate the effects and mechanism of pantoprazole on multidrug resistant leukemia K562/A02 and K562/ADM cell lines. K562/A02 and K562/ADM cells at logarithmic growth phase were pre-treated with different concentration of pantoprazole (0, 50, 100, 200 μg/mL) for 24 h. Flow cytometry was used to measure the cell growth cycle and apoptosis. RT-PCR and Western blot were used to measure the expression of p-PI3K, p-AKT, p-mTOR, P-glycoprotein (P-gp) and multidrug resistance-associated protein-1 (MRP1). Pantoprazole pretreatment significantly increased the ratio of G0/G1 phase but decreased the S phase of K562/A02 and K562/ADM cells in dose-dependent manner (p < 0.05). Flow cytometry analysis indicated that pretreatment of leukemic cells with pantoprazole induced apoptosis in a dose-dependent manner. RT-PCR and Western blot analysis indicated that pantoprazole pretreatment inhibited the mRNA and protein expression of p-PI3K, p-Akt, p-mTOR, P-gp and MRP1 in K562/A02 and K562/ADM cells in a dose-dependent manner (p < 0.05). Pantoprazole arrested cell cycle and induced apoptosis of multidrug resistant leukemic cells by inhibiting the expression of P-gp and MRP1 through PI3K/Akt/mTOR signaling pathway.  相似文献   

11.
12.
李建琦  陈敏  张松  王军  许春红  邹晓平 《胃肠病学》2012,17(10):579-586
背景:前期实验显示质子泵抑制剂(PPIs)可抑制空泡型质子泵(V-H+-ATPases)和多药耐药蛋白P—gP、MRP1表达,增强胃癌细胞的化疗敏感性。目的:探讨PPIs抑制空泡型质子泵逆转胃癌细胞化疗多药耐药与P13K/Akt/mTOR信号通路的关系。方法:应用不同浓度埃索美拉唑或泮托拉唑预处理人胃腺癌细胞敏感株SGC7901和多药耐药株SGC7901/MDR,或以V—H+-ATPasessiRNA干扰SGC7901/MDR细胞内的V-H+-ATPases表达,或以雷帕霉素阻断mTOR表达,以蛋白质印迹法检测经不同方式处理的细胞内V—H+ATPases、P—SP、MRPl蛋白表达以及P13K/Akt/mT0R/HIF—1α信号通路及其信号旁路TSCl/2-Rheb中的相关蛋白表达;以免疫荧光法检测经埃索美拉唑预处理的SGC7901/MDR细胞内的V-H+ATPases、P—gP蛋白表达和定位。结果:PPIs可呈浓度依赖性地抑制SGC7901/MDR细胞内的V—H+ATPases、P13K、Akt、roTOR、HIF-1仅、TSCI、TSC2、Rheb、P—gP、MRP1表达以及Akt底物和TSC2磷酸化,改变V-H+ATPases、P—gP的胞内定位,对SGC7901细胞则无上述影响。以V—H+-ATPasessiRNA抑制SGC7901/MDR细胞内的V—H+-ATPases表达,作用与PPIs预处理相似。以雷帕霉素阻断mTOR可呈浓度依赖性地抑制SGC7901/MDR细胞内的HIF-1α、P—gP表达。结论:PPIs抑制空泡型质子泵逆转胃癌细胞化疗多药耐药的机制与抑制P13K/Akt/mTOR信号通路有关。  相似文献   

13.
Icaritin, a hydrolytic product of icaritin, is isolated from the traditional Chinese medicinal herb epimedium. Icaritin inhibits the proliferation of several tumor cell lines, but its effect on acute myeloid leukemia (AML) and underlying mechanisms remain to be identified. In the present study, we demonstrated that icaritin inhibits the proliferation of human AML cell lines NB4, HL60, and U937, in a dose- and time-dependent manner. Importantly, icaritin showed anti-leukemia activity on bone marrow mononuclear cells from 15 newly diagnosed AML patients. Flow cytometry analyses indicated that icaritin induces AML cells apoptosis. Icaritin induced activation of caspase-9, -3, -7 and the cleavage of PARP as measured by Western blotting. Icaritin downregulates p-ERK and p-AKT and inhibits the expression of c-myc. These results suggest that icaritin is a promising candidate drug for the treatment of AML. The underlying mechanisms of icaritin anti-AML activity are associated with inhibition of the MAPK/ERK and PI3K/AKT signals and downregulation of c-myc.  相似文献   

14.
15.
16.
Diffuse large B cell lymphoma (DLBCL) represents the most common subtype of non-Hodgkin lymphoma and accounts for approximately 30 % of newly diagnosed lymphoid neoplasms in Western countries, and 40–50 % in China. A better understanding of the biology of DLBCL is needed for the development of potential therapeutic agents that target specific intracellular pathways. In this study, expression of the important components of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway and their clinical significance were investigated in 73 DLBCL cases. The effect of rituximab alone or combined with the PI3K/AKT/mTOR pathway inhibitor rapamycin was further evaluated in the DLBCL cell lines. A total of 73 patients were identified, including 45 men and 28 women aged 18 to 78 years (median age 50 years). Of these patients, p-AKT was positive in 40 cases (54.8 %), p-p70S6K in 34 cases (46.6 %), and p-4E-BP1 in 33 cases (45.2 %). Activation of the PI3K/AKT/mTOR pathway was related to poor disease outcome in DLBCL patients treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) but not in those treated with rituximab-CHOP. Rituximab combined with rapamycin synergically downregulated the PI3K/AKT/mTOR signaling pathway. Western blot analysis revealed a baseline activation status of the PI3K/AKT/mTOR pathway in DLBCL cell lines, with high levels of p-AKT, p-mTOR, in addition to downstream molecules p-p70S6K and p-4E-BP1. The results indicate that the PI3K/AKT/mTOR pathway is a potentially important signaling route and an unfavorable prognostic factor for DLBCL. Patients with PI3K/AKT/mTOR activation experience a more rapidly deteriorating clinical course with poor treatment response and decreased survival time. Addition of rituximab could downregulate PI3K/AKT/mTOR activation, reversing its negative effect on chemotherapy-treated patients. In addition, our results indicate that the combination of rituximab and inhibition of the activated PI3K/AKT/mTOR pathway could be a promising target for DLBCL therapeutic intervention in the future.  相似文献   

17.
Nora Diehl  Heiner Schaal 《Viruses》2013,5(12):3192-3212
As viruses do not possess genes encoding for proteins required for translation, energy metabolism or membrane biosynthesis, they are classified as obligatory intracellular parasites that depend on a host cell to replicate. This genome limitation forces them to gain control over cellular processes to ensure their successful propagation. A diverse spectrum of virally encoded proteins tackling a broad spectrum of cellular pathways during most steps of the viral life cycle ranging from the host cell entry to viral protein translation has evolved. Since the host cell PI3K/Akt signaling pathway plays a critical regulatory role in many cellular processes including RNA processing, translation, autophagy and apoptosis, many viruses, in widely varying ways, target it. This review focuses on a number of remarkable examples of viral strategies, which exploit the PI3K/Akt signaling pathway for effective viral replication.  相似文献   

18.
19.
《Pancreatology》2022,22(3):401-413
Background/objectivesRibonucleotide Reductase M2 subunit (RRM2) is elevated in pancreatic cancer and involved in DNA synthesis and cell proliferation. But its specific mechanism including genetic differences and upstream regulatory pathways remains unclear.MethodsWe analyzed RRM2 expression of 178 pancreatic cancer patients in Gene Expression Profiling Interactive Analysis (GEPIA) database. Besides, more pancreatic cancer specimens were collected and detected RRM2 expression by immunohistochemistry. RRM2 knockdown by shRNA was applied for functional and mechanism analysis in vitro. Xenograft tumor growth was significantly slower by RRM2 silencing in vivo.ResultsIt showed that high RRM2 expression had a poorer overall survival and disease free survival. RRM2 expression was higher in tumor grade 2 and 3 than grade 1. Immunohistochemistry data validated that high RRM2 expression predicted worse survival. RRM2 knockdown significantly reduced cell proliferation, inhibited colony formation and suppressed cell cycle progress. Further mechanism assay showed silencing RRM2 lead to inactivation of PI3K/AKT/mTOR pathway and inhibition of mutant p53, which induce S phase arrest and/or apoptosis. In panc-1 cells, S-phase arrest mediated by mutant p53 inhibition, p21 increase and cell cycle related proteins change. While in miapaca-2 cells, induction of apoptosis and S-phase arrest mediated by CDK1 played a coordinated role.ConclusionTaken together, high RRM2 expression was associated with worse prognosis. Importantly, RRM2 knockdown deactivated PI3K/AKT/mTOR pathway, resulting in cell cycle arrest and/or apoptosis. This study shed light on the molecular mechanism of RRM2 in pancreatic tumor progression and is expected to provide a new theoretical basis for pancreatic cancer treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号