首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Carbomethoxy-4-(p-carbomethoxyphenyl)cyclohexanone was prepared in a four-step process and thermally condensed with 2,4,6-triaminopyrimidine to afford methyl 2,4-diamino-4-deoxy-7-hydroxy-5,10-ethano-5,10-dideazapteroate+ ++. Reduction of the 7-oxo function with borane gave the 7,8-dihydro pterin which was subsequently oxidized to the fully aromatic pteroate ester with dicyanodichlorobenzoquinone. Saponification of the benzoate ester, coupling with diethyl glutamate and final ester hydrolysis afforded the title compound. This novel deazaaminopterin analogue was approximately as potent as methotrexate in vitro in terms of DHFR and L1210 cell growth inhibition. There are indications of diastereomeric differences in the enzyme inhibition measurements. A significant transport advantage over MTX for influx into L1210 cells was observed. The compound was active against the E 0771 murine mammary solid tumor, but further investigation with individual diastereomers is required to define the ED50.  相似文献   

2.
The effect of sulfasalazine and olsalazine on the transport of [3H]folic acid and of [3H]methotrexate (MTX) was investigated in organ-cultured endoscopic biopsy specimens of small intestinal mucosa from normal subjects. Biopsy specimens obtained from patients undergoing routine diagnostic upper gastrointestinal endoscopy were organ-cultured at pH 5.5 and the effect of these two drugs on the initial rate of uptake of the two folates was determined. Both drugs inhibited the transport of [3H]folic acid with similar Ki values (1.38 and 1.32 mM for sulfasalazine and olsalazine, respectively). However, the uptake of [3H]MTX was only partially inhibited by sulfasalazine and was unaffected by olsalazine. Sulfasalazine inhibited 26.2% of the total flux of MTX, in close agreement with the fraction of MTX flux that has been shown previously to be inhibited by folic acid. These data corroborate previous findings of heterogeneity of transport of MTX in the mucosa of the human small intestine.  相似文献   

3.
The unnatural diastereoisomer of l-5-formyltetrahydrofolate was 20-fold less effective as a competitive inhibitor of [3H] methotrexate influx than the natural diastereoisomer during carrier-mediated membrane transport in L1210, S180 and Ehrlich cells. Values derived for Ki, were 1.84 to 2.29 μM for the natural derivative and 35.2 to 53.8 μM for the unnatural derivative. Values for Ki derived with a chemically synthesized mixture containing equal amounts of both natural and unnatural diastereoisomers were 2-fold greater than values obtained for the natural diastereoisomer. The unnatural diastereoisomer was 100-fold less effective and the chemically synthesized mixture was 2-fold less effective than the natural diastereoisomer in preventing inhibition by methotrexate of L1210 cell growth in culture. These results indicate that the unnatural diastereoisomer competes relatively ineffectively with the natural diastereoisomer or methotrexate for transport in these murine tumor cells.  相似文献   

4.
The affinities of adenosine and 2-chloroadenosine for the nucleoside transport system of guinea pig myocytes were evaluated indirectly by studying the inhibition of the binding of [3H]nitrobenzylthioinosine and directly by measuring the influx of [3H]radiolabeled substrates. Maximal transport velocities of the two nucleosides were also obtained. [3H]Nitrobenzylthioinosine bound to a single class of high-affinity sites (KD of 0.8 nM) which possessed a maximal binding capacity (Bmax) of 870,000 sites/cell. Adenosine, 2-chloroadenosine or the nucleoside transport inhibitor, dipyridamole, competitively inhibited the site-specific binding of [3H]nitrobenzylthioinosine with Ki values of 318 microM, 22 microM and 75 nM respectively. Both [3H]adenosine and [3H]2-chloroadenosine entered myocytes in a saturable and inhibitible manner. Observed transport kinetic constants (Km and Vmax) were 146 microM and 24.2 pmoles/10(6) cells/sec, respectively, for adenosine and 36 microM and 11.7 pmoles/10(6) cells/sec, respectively for 2-chloroadenosine. Affinities of adenosine, 2-chloroadenosine, nitrobenzylthioinosine and dipyridamole for the nucleoside transport system derived from binding and influx methodologies were equivalent which confirms that [3H]nitrobenzylthioinosine binding sites are closely associated with the nucleoside transporter.  相似文献   

5.
The inhibition of de novo nucleotide, serine, and methionine biosynthesis in mammalian cells treated with antifolates has been attributed generally to a reduction in the levels of tetrahydrofolate cofactors. In L1210 leukemia cells grown in tritiated folic acid (1 microM), most of the endogenous radiolabeled folates were present as formyl-substituted tetrahydrofolates (60-73%, including 10- and 5-formyl and 5,10-methenyl tetrahydrofolate), with lower levels of tetrahydrofolate (including 5,10-methylene tetrahydrofolate), 5-methyl tetrahydrofolate, and non-metabolized folic acid. Trimetrexate (1 microM) caused an elevation of dihydrofolate levels within 5 min following drug addition, from approximately 1 to 20% of the total folates. Whereas total reduced folates were preserved, losses in the levels of individual forms ranged from minor changes in the formyl tetrahydrofolates (approx. 10% decrease), to significant losses in the levels of tetrahydrofolate (approx. 60%) and 5-methyl tetrahydrofolate (95%). Under these conditions, the incorporations of [3H]deoxyuridine into TMP and [14C]glycine into purines or of [14C]formate into biosynthetic products were inhibited (69-95%). The majority (59-100%) of the endogenous radiolabeled folates in L1210 cells grown in various concentrations (0.2 to 3 microM) of [3H]folic acid was bound to soluble intracellular proteins when cell-free extracts were fractionated by rapid gel filtration or charcoal adsorption. Total intracellular folate levels increased in proportion to the changes in medium folic acid concentration; however, cofactor binding was saturable. At low concentrations, below that which supported maximal growth (less than 0.75 microM), all of the intracellular folates were protein-bound; only when maximal growth was achieved, could unbound folates be detected. Incubation with trimetrexate (1 or 10 microM), methotrexate (10 microM), or calcium leuvovorin (50 microM) did not alter significantly the levels of total and protein-bound [3H]folates in cells grown in 1 microM [3H]folic acid. Under all conditions, formyl tetrahydrofolates were the major intracellular derivatives; however, these forms were poorly represented in the bound fraction. Conversely, all of the other intracellular folate forms were completely bound. Tetrahydrofolate was the predominant protein-bound derivative in control cells; in antifolate-treated cells, both bound tetrahydrofolate and 5-methyl tetrahydrofolate were largely replaced by protein-bound dihydrofolate. This interconversion in drug-treated cells was independent of (i) sustained levels of [3H]formyl tetrahydrofolates, or (ii) high extracellular concentrations of unlabeled calcium leucovorin (50 microM). Hence, protein-bound tetrahydrofolates must not only be substrates for enzyme mediated reactions (i.e. TMP synthesis) but also must slowly equilibrate with unbound cofactor. In this fashion, binding of endogenous folates to soluble proteins may function to "segregate' intracellular cofactor pools.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A series of eighteen 2,4-diaminoquinazoline analogues of folic, isofolic, pteroic and isopteroic acids having various substituents at position 5 was studied. Each compound was evaluated as an inhibitor of L1210 dihydrofolate reductase, methotrexate influx into L1210 leukemia cells, and growth of methotrexate-sensitive and -resistant L1210 cells in vitro. Bridge reversal at positions 9 and 10 reduced the effectiveness of the classical analogues only with regard to the inhibition of the drug-sensitive cells as compared to methotrexate (MTX). Absence of the glutamate moiety adversely affected the potency of the compounds, particularly when coupled with reversal of the 9,10-bridge. However, the presence of -Cl at position 5 restored significantly the potency of these compounds. The pteroate and isopteroate analogue ethyl esters were generally more effective inhibitors of cell growth than their non-esterified counterparts. Regarding the effects of substituents at position 5, the data suggest that -Cl greater than -CH3 greater than -H for inhibition of methotrexate transport and growth of methotrexate-sensitive L1210 cells. The 5-Cl pteroate analogue and its corresponding ethyl ester were highly effective as growth inhibitors of methotrexate-resistant, transport-defective, L1210 cells in vitro.  相似文献   

7.
《Biochemical pharmacology》1996,51(7):975-982
Two ATP-dependent efflux systems for methotrexate have been identified in inside-out vesicles from an L1210 mouse cell variant with a defective influx carrier for methotrexate. Transport at 40 μM [3H]methotrexate was separated by inhibitors into two components comprising 62 and 38% of total transport activity. The predominant route was inhibited by low concentrations of indoprofen (Ki = 2.5 μM), 4-biphenylacetic acid (Ki = 5.3 μM), and flurbiprofen (Ki = 5.2 μM), whereas the second component showed a high sensitivity to the glutathione conjugates of bromosulfophthalein (Ki = 0.08 μM), ethacrynic acid (Ki = 0.52 μM), and 1-chloro-2,4-dinitrobenzene (Ki = 0.77 μM). Bilirubin ditaurate was a potent inhibitor of both transport components (Ki = 1.5 and 0.17 μM, respectively). Separation of transport activities without interference from the other route was achieved by adding an excess (100 μM) of either the glutathione conjugate of ethacrynic acid or biphenylacetic acid. Double-reciprocal plots of transport at various substrate concentrations gave Km values of 170 and 250 μM for methotrexate transport via the anion-sensitive and conjugate-sensitive routes, respectively. A comparison of inhibitor specificities indicated that the anion-sensitive transport activity in vesicles represents efflux system II for methotrexate in intact cells and is the same system identified previously in vesicles as an anion/anion conjugate pump. The conjugate-sensitive activity corresponds to efflux system I for methotrexate in intact cells and is the same system identified in vesicles as the high-affinity glutathione conjugate pump.  相似文献   

8.
Folate influx at low pH was characterized in MTXrA cells, an L1210 mouse leukemia cell line with a functional defect in the reduced folate carrier. Folic acid influx in MTXrA cells was negligible at pH 7.5, increased 13-fold as the pH was decreased to 6.0, and was indistinguishable from that in L1210 cells. In contrast, while methotrexate (MTX) influx in MTXrA cells at pH 6.0 was 15-fold higher than at pH 7.5, in L1210 cells it was decreased by half. Influx of MTX, folic acid, 5-methyltetrahydrofolate and 5-formyltetrahydrofolate in MTXrA cells was increased at pH < 7.0, but their pH optima and profile differed substantially. Influx of MTX and 5-methyltetrahydrofolate at pH 6.0 showed saturability, with a Kt of 2.65 and 0.56 microM, and a Vmax of 0.45 and 0.083 nmol/g dry wt/min, respectively. MTX influx mediated by the low pH transporter was insensitive to the anionic composition of the transport buffer and affected minimally (approximately 20%) by Na+ substitution. The anion transport inhibitors sulfobromophthalein, diisothiocyanatostilbene disulfonic acid, and acetamidoisothiocyanatostilbene disulfonic acid were not effective inhibitors of the low pH route. MTX transport at low pH did not increase in MTXrA-R16 cells, an MTXrA derivative with 10-fold overexpression of the reduced folate carrier (RFC) due to transfection with RFC1 cDNA. Inhibition of reduced folate carrier activity with acetamidoisothiocyanatostilbene disulfonic acid resulted in identical MTX influx in L1210, MTXrA, and MTXrA-R16 cells at pH 5.5. Finally, low pH-mediated MTX influx was reduced by energy inhibitors and partially inhibited by ionophores (nigericin > monensin > valinomycin). The data indicate that L1210 and MTXrA cells express similar activities of a low pH folate transporter that has properties distinct from, and independent of, the reduced folate carrier.  相似文献   

9.
A dansyl-l-lysine analogue of methotrexate, Nα-(4-amino-4-deoxy-10-methylpteroyl)-Nε-(5-[N,N-dimethylamino]-1-naphthalenesulfonyl]-1-naphthalenesulfonyl)-l-lysine, is a potent inhibitor of murine L1210 dihydrofolate reductase. The dansyl fluorescence emission was enhanced approximately 3-fold with a 10 nm blue shift upon binding to L1210 dihydrofolate reductase. The fluorescent analogue was only 10-fold less potent than methotrexate in inhibiting the growth of methotrexate-sensitive and -resistant L1210 cells and competes effectively for [3H]methotrexate transport with a Ki of 7.02 μM, a value virtually identical to the Kt for methotrexate in both cell lines. In addition, strong dansyl fluorescence was found to be associated with dihydrofolate reductase from methotrexate-resistant, dihydrofolate reductase-overproducing L1210 cells following incubation of viable cells with the fluorescent methotrexate analogue for 4 hr. The results demonstrate that the dansyl-l-lysine analogue of methotrexate was rapidly transported into L1210 cells where it formed a high-affinity, fluorescent complex with intracellular dihydrofolate reductase.  相似文献   

10.
Both methotrexate-γ-glutamate and methotrexate-γ-aspartate are equivalent to metho-trexate as inhibitors of L1210 cell dihydrofolate reductase. However, the initial influx of both peptides into L1210 cells during transport studies is substantially lower than that of methotrexate. The apparent Km tor influx of methotrexate-γ-glutamate and methotrexate-γ-aspartate is 15-fold and 100-fold greater than methotrexate respectively. Efflux measurements, which were possible only for methotrexate-γ-glutamate, showed a similar rate for this peptide and methotrexate. The intracelluiar accumulation and subsequent metabolism to methotrexate of methotrexate-γ-glutamate, but not of methotrexate-γ-aspartate, were confirmed by bioautographic analysis of cell extracts. After correction for extracellular cleavage of both peptides mediated by enzymes in calf serum supplementing the culture medium, the relative growth (L1210 cell)-inhibitory potency for the three agents was 1:18:210 for methotrexate, methotrexate-γ-glutamate and methotrexate-γ-aspartate respectively. Both the relative inhibitory potency and the difference in absolute inhibitory concentration among the three agents were predictable solely from the data on the influx of each measured during transport studies. Methotrexate-γ-aspartate is apparently more resistant to enzymic cleavage than is methotrexate-γ-glutamate.  相似文献   

11.
12.
Purpose. The brain is relatively resistant to folic acid deficiency, indicating specialized transport systems may exist for this vitamin localized within the brain capillary endothelial wall, which makes up the blood-brain barrier (BBB) in vivo. The present studies quantify the BBB transport of [3H]-methyltetrahydrofolic acid (MTFA) in vivo and in isolated human brain capillaries in vitro. Methods. BBB transport of [3H]-MTFA was compared to that of [14C]-sucrose, a plasma volume marker, following either intravenous injection or intracarotid perfusion in anesthetized rats. Competition by 10 M MTFA or 10 M folic acid was examined to determine whether folic acid is also transported by the MTFA uptake system. Results. The BBB permeability-surface area (PS) product of [3H]-MTFA, 1.1± 0.3 L/min/g, was 6-fold greater than that of [14C]-sucrose following intravenous injection. The BBB PS product determined by intracarotid arterial perfusion was not significantly different from the BBB PS product calculated following intravenous injection. A time- and temperature- dependent uptake of [3H]-MTFA in human brain capillaries was observed. The uptake of [3H]-MTFA by either rat brain in vivo or by human brain capillaries in vitro was equally inhibited by 10 M concentrations of either unlabeled MTFA or unlabeled folic acid. Conclusions. (1) A saturable transport system exists at the BBB for folic acid derivatives and since this transport is equally inhibited by either folic acid or MTFA, it is inferred that this transport system is the folic acid receptor, and not the reduced folic acid carrier. (2) The presence of a folate transport system at the BBB may offer an endogenous transport system for brain drug delivery of conjugates of folates and drugs that do not normally cross the BBB in vivo.  相似文献   

13.
2-Desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583) is a more water-soluble analogue of the quinazoline-based thymidylate synthase (TS) inhibitor, N10-propargyl-5,8-dideazafolic acid (CB3717). A 3-fold loss in TS inhibitory activity (murine and human TS, Ki = 10 nM) was accompanied by a 40-fold increase in growth inhibitory potency against L1210 and W1L2 cells in vitro (IC50 = 0.085 and 0.05 microM, respectively) when compared with CB3717. In L1210 cells a concentrative uptake mechanism was demonstrated for [3H]ICI 198583 (Kt = 2.9 microM). The L1210:1565 cell line, with an impaired ability to transport reduced folates or methotrexate (MTX), was resistant (100-fold relative to the wild-type L1210 line) to ICI 198583 (but not CB3717) and did not take up [3H]ICI 198583 significantly. The measurement of folylpolyglutamate synthetase (FPGS) substrate activity demonstrated a Km of 40 microM for ICI 198583 and a Vmax/Km (relative to folic acid) of 3.5. The formation of intracellular polyglutamate derivatives was demonstrated in both L1210 (mouse) and WIL2 (human) cells grown in vitro after exposure to 1 microM [3H]ICI 198583. In L1210 cells, by 4 hr, approximately 50% of the intracellular 3H(approximately 1 microM) was found as polyglutamate forms of ICI 198583, principally as tri- and tetraglutamates. After 24 hr the ICI 198583 polyglutamate pool had expanded, the tetraglutamate metabolite predominated and there was significant formation of the pentaglutamate. Upon resuspension of L1210 cells in drug free medium, ICI 198583 was largely lost from the cells but the polyglutamates were preferentially retained, after 24 hr approximately 70% remained. Synthetic ICI 198583 polyglutamates were shown to be up to 100-fold more potent as inhibitors of isolated TS than the parent compound. Following in vivo administration (500 mg/kg i.v.) ICI 198583 was cleared rapidly from the plasma of mice (T1/2 beta = 16 min, clearance = 42 mL/min/kg). Despite this clearance there was prolonged, dose-dependent inhibition of TS in L1210:NCI cells in vivo. Thus, following 500 mg/kg i.v. the flux through TS was inhibited by greater than 80% for at least 24 hr. Administration of five doses at 5 mg/kg daily of ICI 198583 to L1210:ICR tumour-bearing mice resulted in greater than 60% of the mice being cured, a 10-fold improvement in potency over CB3717. The maximum tolerated dose (MTD) for ICI 198583 using this schedule was greater than 500 mg/kg/day compared with 200 mg/kg/day of CB3717.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Human organic anion-transporting polypeptide (OATP) 2B1 (OATP-B; SLCO2B1) is expressed in the apical membrane of the small intestine and the hepatocyte basolateral membrane and transports structurally diverse organic anions with a wide spectrum of pH sensitivities. This article describes highly pH-dependent OATP2B1-mediated antifolate transport and compares this property with that of sulfobromophthalein (BSP), a preferred OATP2B1 substrate. At pH 5.5 and low substrate concentrations (~2.5 μM), only [(3)H]pemetrexed influx [in contrast to methotrexate (MTX), folic acid, and reduced folates] could be detected in OATP2B1-transfected HeLa R1-11 cells that lack endogenous folate-specific transporters. Influx was optimal at pH 4.5 to 5.5, falling precipitously with an increase in pH >6.0; BSP influx was independent of pH. Influx of both substrates at low pH was markedly inhibited by the proton ionophore 4-(trifluoromethoxy)phenylhydrazone; BSP influx was also suppressed at pH 7.4. At 300 μM MTX, influx was one-third that of pemetrexed; influx of folic acid, (6S)5-methyltetrahydrofolate, or (6S)5-formyltetrahydrofolate was not detected. There were similar findings in OATP2B1-expressing Xenopus laevis oocytes. The pemetrexed influx K(m) was ~300 μM; the raltitrexed influx K(i) was ~70 μM at pH 5.5. Stable expression of OAPT2B1 in HeLa R1-11 cells resulted in substantial raltitrexed, but modest pemetrexed, growth inhibition consistent with their affinities for this carrier. Hence, OATP2B1 represents a low-affinity transport route for antifolates (relative affinities: raltitrexed > pemetrexed > MTX) at low pH. In contrast, the high affinity of this transporter for BSP relative to antifolates seems to be intrinsic to its binding site and independent of the proton concentration.  相似文献   

15.
L1210 cells contain a single transport system which mediates the influx of methotrexate and at least three routes for drug efflux [G. B. Henderson and E. M. Zevely, J. biol. Chem. 259, 1526 (1984)]; each of these processes is sensitive to probenecid. The influx carrier was inhibited reversibly and completely by probenecid with a Ki of 0.25 mM, while efflux via the same system was relatively unaffected by this compound (50% inhibition above 2.0 mM). The two remaining efflux routes (which do not contribute to methotrexate influx) showed a much higher sensitivity to probenecid. Efflux via these components was reduced half-maximally at probenecid concentrations of 0.08 and 0.22 mM, respectively, and a complete block was achieved with excess amounts (2.0 mM) of the inhibitor. Intracellular levels of ATP, glucose metabolism, and the membrane potential were also reduced by probenecid, indicating that the mechanism for inhibiting methotrexate efflux may involve the ability of probenecid to act as a metabolic inhibitor. Probenecid may have a broad capacity for inhibiting anion transport processes since it also reduced sulfate influx and efflux via the general anion carrier system.  相似文献   

16.
A series of six 2,4-diaminoquinazoline analogues of folic acid which bear close structural resemblance to methotrexate, 1a, were synthesized by unequivocal routes. Three of these have not been described previously, while complete structural characterization of the remaining compounds is presented for the first time. Each of the compounds was a potent inhibitor of dihydrofolate reductase (DHFR) from rat liver or L1210 leukemia cells having I50 values in a range similar to that of 1a. However, a wide divergence in inhibitory activity toward the growth of human gastrointestinal adenocarcinoma or L1210 leukemia cells in vitro was observed. Compounds having a normal folate configuration at positions 9 and 10 were more inhibitory than their isomeric reversed-bridge counterparts. The N-formyl modifications were the least active of the compounds studied. Unsubstituted or N-methyl modifications competed effectively with tritiated 1a for uptake into L1210 leukemia cells, while N-formyl modifications did not. Against an L1210 cell line resistant to 1a by virtue of altered transport and overproduction of DHFR, partial but not complete cross-resistance was observed for certain analogues. Of the three compounds selected for in vivo evaluation against L1210 leukemia in mice, two had a similar level of antitumor activity to that of 1a. The compound 5,8-dideazamethopterin, 2b, however, was slightly more active than 1a but at substantially reduced dose levels.  相似文献   

17.
In isolated hepatocytes the influence of cellular glutathione (GSH) on initial influx, net uptake and efflux of methotrexate (MTX) was determined. Endogenous glutathione in rat liver cells was depleted by either fasting of rats or by in vivo administration of phorone prior to cell preparation. The initial rate of influx of MTX was found to be higher in hepatocytes of fasted and phorone-treated rats than in those of untreated, fed control rats. The Km values for the methotrexate influx in GSH-deficient hepatocytes were up to 3 times lower than in normal cells, whereas Vmax remained unchanged. These results disclose an increased efficiency of the MTX transport system in cells with diminished cellular GSH levels. On the other hand, titration of external membrane SH groups by 203Hg p-CMBS revealed up to three times higher amounts of free SH groups on cells from starved and phorone-treated rats than on hepatocytes of fed rats. Increased efficiency of the MTX transport system in GSH-deficient cells may, therefore, be interpreted as increased capacity of the MTX transport carrier for which free membrane SH groups are known to be essential. Despite activation of initial transport of MTX here, later net accumulation of MTX became smaller than in cells with normal GSH levels. Efflux of MTX from liver cells was not influenced by fasting or phorone treatment of rats, however, the "nonexchangeable" pool of MTX was found to be decreased, which indicates inhibition of formation of MTX polyglutamates here. This inhibition was most likely responsible for the decreased amounts of MTX finally accumulated in GSH-deficient hepatocytes.  相似文献   

18.
A rapid and convenient tritium release assay for measuring thymidylate (dTMP) synthase activity and its inhibition within intact mammalian cells is described in detail. Short-term incubation of murine leukemia L1210 cells with an appropriately labeled substrate precursor, either deoxyuridine ([5-3H]dUrd) or deoxycytidine ([5-3H]dCyd), allowed for: (1) uptake and intracellular conversion to the substrate deoxyuridylate ([5-3H]dUMP); and (2) the obligatory displacement of tritium from [5-3H]-dUMP during the dTMP synthase catalyzed reaction. Tritium released into the aqueous environment was quantitated after a quick one-step separation of tritiated H2O from other radiolabeled materials and cell debris. The amount of tritium released was evaluated as a function of a number of variables, including the concentration of labeled substrate precursors, cell number, and incubation time. Tritium from [5-3H]dCyd was released significantly faster than from [5-3H]dUrd under a variety of conditions. Both 5-fluorodeoxyuridine (1 microM) and methotrexate (10 microM), which effectively block intracellular dTMP synthesis, completely inhibited the release of tritium from either [5-3H]dCyd or [5-3H]dUrd demonstrating that the release of tritium is mediated exclusively by the dTMP synthase catalyzed reaction. In addition, there was a good correlation between tritium release, cellular uptake, and incorporation of [2-14C]dUrd into DNA. The inhibitory effects of antifolates such as methotrexate were independent of the type of labeled precursor used. In contrast, preferential interference with the release of tritium from [5-3H]-dCyd by dCyd derivatives and from [5-3H]dUrd by dUrd derivatives was observed, suggesting that competition for uptake and/or phosphorylation may contribute to the overall effects of certain nucleoside analogues on cellular dTMP synthase activity measured using the tritium release assay.  相似文献   

19.
A subline (JT-1) of L1210 mouse leukemia cells that contains elevated levels of a high-affinity folate binding protein is sensitive to growth inhibition by homofolate. Inhibition was observed at nanomolar concentrations of folate or 5-formyltetrahydrofolate where the high-affinity binding protein is the predominant uptake route for folate compounds. At 1.0 nM folate, inhibition of growth by 50% occurred at 0.7 nM homofolate, and maximal inhibition exceeded 90% at homofolate concentrations above 10 nM. Homofolate also inhibited the uptake of 1.0 nM [3H]folate by L1210/JT-1 cells in 72-hr cultures, and the extent of uptake inhibition by 1.0 and 20 nM homofolate was comparable to the inhibition of cell growth by the same concentrations of homofolate. At a growth-limiting concentration of 5-formyltetrahydrofolate (0.5 nM), half-maximal inhibition of L1210/JT-1 cell growth occurred at 1.0 nM homofolate. When excess concentrations of folate (5 microM) or 5-formyltetrahydrofolate (0.5 microM) were added to the medium, no growth inhibition was observed for homofolate at concentrations up to 100 microM. Parental cells lacking the folate binding protein did not respond to homofolate either at growth-limiting (0.5 microM) or excess (5.0 microM) levels of folate. Binding measurements showed that homofolate has a high affinity for the folate-binding protein (Ki = 0.03 nM) but interacts poorly with the reduced-folate transport system (Ki = 203 microM). These results indicate that homofolate inhibits the growth of L1210 cells when intracellular folates are acquired via the high-affinity folate binding protein. The basis for this inhibition appears to be competition by homofolate for substrate binding and internalization.  相似文献   

20.
The characteristics of [3H]choline transport with high affinity were investigated using primary cultured neurons obtained from the mouse cerebral cortex. [3H]Choline uptake was saturable as a function of extracellular [3H]choline concentration. Analysis by Lineweaver-Burk plot revealed that [3H]choline was transported into neurons by a high affinity transport system with a Km value of 19.8 +/- 0.8 microM and Vmax value of 0.334 +/- 0.022 nmol/mg protein/min. This high affinity transport of [3H]choline was significantly inhibited by the withdrawal of sodium from the incubation medium, incubation at low temperature (4 degrees C) and addition of metabolic inhibitors such as monoiodoacetate. These results indicate that the high affinity [3H]choline uptake in primary cultured neurons is sodium- and energy-dependent. Hemicholinium-3 also showed a competitive inhibition on the [3H]choline transport. Depolarization by high K+ induced an enhancement of the [3H]choline uptake in the presence of Ca2+. The crude synaptosomal fraction obtained from primary cultured neurons possessed approximately forty-fold higher synthesizing activity of [3H]acetylcholine from [3H]choline than that found in the homogenate preparation of cultured neurons. The present results strongly suggest that the primary cultured neurons used in this study possess a sodium- and energy-dependent high-affinity choline uptake system as well as a synthesizing system for acetylcholine. Possible usefulness of these neurons for investigating neuronal uptake of choline and its functional role in the biosynthesis of acetylcholine are also suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号