首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Th1 CD4+ T cells and their derived cytokines are crucial for protection against Mycobacterium tuberculosis. Using multiparametric flow cytometry, we have evaluated the distribution of seven distinct functional states (IFN‐γ/IL‐2/TNF‐α triple expressors, IFN‐γ/IL‐2, IFN‐γ/TNF‐α or TNF‐α/IL‐2 double expressors or IFN‐γ, IL‐2 or TNF‐α single expressors) of CD4+ T cells in individuals with latent M. tuberculosis infection (LTBI) and active tuberculosis (TB). We found that triple expressors, while detectable in 85–90%TB patients, were only present in 10–15% of LTBI subjects. On the contrary, LTBI subjects had significantly higher (12‐ to 15‐fold) proportions of IL‐2/IFN‐γ double and IFN‐γ single expressors as compared with the other CD4+ T‐cell subsets. Proportions of the other double or single CD4+ T‐cell expressors did not differ between TB and LTBI subjects. These distinct IFN‐γ, IL‐2 and TNF‐α profiles of M. tuberculosis‐specific CD4+ T cells seem to be associated with live bacterial loads, as indicated by the decrease in frequency of multifunctional T cells in TB‐infected patients after completion of anti‐mycobacterial therapy. Our results suggest that phenotypic and functional signatures of CD4+ T cells may serve as immunological correlates of protection and curative host responses, and be a useful tool to monitor the efficacy of anti‐mycobacterial therapy.  相似文献   

2.
We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4+ and CD8+ T cells secreting gamma interferon (IFN-γ) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis. We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8+ T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8+ PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4+ T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8+ T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease.  相似文献   

3.
The nontoxic B subunit of cholera toxin (CTB) has been used as an adjuvant in experimental systems of mucosal vaccination. However, the mechanisms behind its adjuvant effects remain unclear. Here, we have used an ex vivo system to elucidate these mechanisms in antigen-specific T cells. Using splenocytes from keyhole limpet haemocyanin (KLH)-immunized mice, initial experiments showed that recombinant CTB (rCTB) did not affect the KLH-specific proliferation of splenocytes isolated from mice immunized 2 weeks earlier. However, rCTB strongly enhanced the KLH-specific proliferation of splenocytes from mice immunized with KLH 4 weeks prior. This adjuvant effect was dose-dependent, with maximum at 30-300 ng/ml rCTB. At higher doses of CTB this effect declined because of the induction of apoptosis. Using antibody depletion and coculture systems, we show that rCTB directly costimulates KLH-specific CD4+ and CD8+ T-cell proliferation but not B cells. Enzyme-linked immunospot (ELISPOT) assays revealed that rCTB also enhanced the KLH-specific CD4+ T-cell-mediated production of interleukin-2 (IL-2), IL-4 and interferon-gamma(IFN-gamma) by four to fivefold. Characterizing the adjuvant effect of rCTB in vivo confirmed the results above, i.e. rCTB mediated a twofold increase in the ex vivo T-cell response when used as a classical adjuvant in a secondary, but not in a primary KLH-immunization regimen. Together these data show that rCTB can act as a strong adjuvant, by directly costimulating antigen-primed CD4+ and CD8+ T cell in a dose-dependent manner. This new insight might be valuable in the future rational design of bacterial toxin-based vaccines.  相似文献   

4.
Li Q  Li L  Liu Y  Fu X  Wang H  Lao S  Yang B  Wu C 《Immunology letters》2011,134(2):113-121
Cell surface molecules are present on several lymphocyte subsets and are differentially expressed during lymphocyte development and activation. Human Leukocyte Differentiation Antigen (HLDA) Workshops have played an essential role in the identification and characterization of the molecules found in the membrane of hematopoietic cells. In the present study, the reactivities of sixty-five monoclonal antibodies (mAbs) submitted to the HLDA9 Workshop were tested. A multicolor flow cytometric analysis was performed in order to determine the expression profiles of these proteins on peripheral blood lymphocytes, hematopoietic cell lines, and tonsil B-cells. The following B-cell subsets were assessed: mature na?ve, pre-germinal center, germinal center, unswitched and switched memory, plasmablasts, and plasma cells. Immunohistochemical analysis on formalin-fixed paraffin-embedded tonsils was also carried out. Remarkably, a large group of immunoglobulin family inhibitory cell surface molecules were observed on several distinct B-cell subsets including: CD152 (CTLA4), CD170 (Siglec-5), CD272 (BTLA), CD305 (LAIR1), CD307d (FCRL4), and CD329 (Siglec-9). The following molecules were also found to be differentially expressed on B-cell subsets (CD80, CD185 (CXCR5), CD196 (CCR6), CD270 (TNFRSF14), CD307a-c (FCRL1-3), CD319 (SLAMF7) and CD362 (SDC2)) or delineated B-cell subpopulations (CD126 (IL-6R), CD255 (TNFSF12), CD264 (TNFRSF10D), CD267 (TNFRSF13B) and CD329 (Siglec-9)). Of these, only CD307a, CD307b, and CD307d presented a B-cell-specific expression pattern. Our results show that several of these molecules are capable of further subdividing the known B-cell subsets and, in fact, may represent new markers for research, diagnosis, and eventually targets for the treatment of B-cell malignancies and autoimmune diseases.  相似文献   

5.
6.
Upregulation of CD137 on recently activated CD8+ T cells has been used to identify rare viral and tumour antigen‐specific T cells from the peripheral blood. We aimed to evaluate the accuracy of CD137 for identifying Mycobacterium tuberculosis (Mtb)‐reactive CD4+ T cells in the peripheral blood of infected individuals by flow cytometry and to investigate the characteristics of these CD137+CD4+ T cells. We initially enrolled 31 active tuberculosis (TB) patients, 31 individuals with latent TB infection (LTBI) and 25 healthy donors. The intracellular CD137 and interferon‐γ (IFN‐γ) production by CD4+ T cells was simultaneously detected under unstimulated and CFP10‐stimulated (culture filtrate protein 10, a Mtb‐specific antigen) conditions. In unstimulated CD4+ T cells, we found that the CD137 expression in the TB group was significantly higher than that in the LTBI group. Stimulation with CFP10 largely increased the CD4+ T cell CD137 expression in both the TB and LTBI groups. After CFP10 stimulation, the frequency of CD137+CD4+ T cells was higher than that of IFN‐γ+CD4+ T cells in both the TB and LTBI groups. Most of the CFP10‐activated IFN‐γ‐secreting cells were CD137‐positive, but only a small fraction of the CD137‐positive cells expressed IFN‐γ. An additional 20 patients with TB were enrolled to characterize the CD45RO+CCR7+, CD45RO+CCR7 and CD45RO subsets in the CD137+CD4+ T cell populations. The Mtb‐specific CD137+CD4+ T cells were mainly identified as having an effector memory phenotype. In conclusion, CD137 is a useful marker that can be used for identifying Mtb‐reactive CD4+ T cells by flow cytometry.  相似文献   

7.
The search to identify Mycobacterium tuberculosis antigens capable of conferring protective immunity against tuberculosis has received a boost owing to the resurgence of tuberculosis over the past two decades. It has long been recognized that lymphoid cells are required for protection against M. tuberculosis. While traditionally the CD4(+) populations of T cells were believed to predominantly serve this protective function, a pivotal role for CD8(+) T cells in this task has been increasingly appreciated. We show that the 50- to 55-kDa Apa protein, specified by the Rv1860 gene of M. tuberculosis, can elicit both lymphoproliferative response and gamma interferon (IFN-gamma) production from peripheral blood mononuclear cells (PBMC) of purified protein derivative (PPD)-positive individuals, with significant differences recorded in the levels of responsiveness between PPD-positive healthy controls and pulmonary tuberculosis patients. Flow cytometric analysis of whole blood stimulated with the recombinant Apa protein revealed a sizeable proportion of CD8(+) T cells in addition to CD4(+) T cells contributing to IFN-gamma secretion. PBMC responding to the Apa protein produced no interleukin-4, revealing a Th1 phenotype. A DNA vaccine and a poxvirus recombinant expressing the Apa protein were constructed and tested for their ability to protect immunized guinea pigs against a challenge dose of virulent M. tuberculosis. Although the DNA vaccine afforded little protection, the poxvirus recombinant boost after DNA vaccine priming conferred a significant level of protective immunity, bringing about a considerable reduction in mycobacterial counts from the challenge bacilli in spleens of immunized guinea pigs, a result comparable to that achieved by BCG vaccination.  相似文献   

8.
CD4(+) CD25(+) regulatory T cells are increasingly recognized as central players in the regulation of immune responses. In vitro studies have mostly employed allogeneic or polyclonal responses to monitor suppression. Little is known about the ability of CD4(+) CD25(+) regulatory T cells to suppress antigen-specific immune responses in humans. It has been previously shown that CD4(+) CD25(+) regulatory T cells anergize CD4(+) T cells and turn them into suppressor T cells. In the present study we demonstrate for the first time in humans that CD4(+) CD25(+) T cells are able to inhibit the proliferation and cytokine production of antigen specific CD4(+) and CD8(+) T cells. This suppression only occurs when CD4(+) CD25(+) T cells are preactivated. Furthermore, we could demonstrate that CD4(+) T-cell clones stop secreting interferon-gamma (IFN-gamma), start to produce interleukin-10 and transforming growth factor-beta after coculture with preactivated CD4(+) CD25(+) T cells and become suppressive themselves. Surprisingly preactivated CD4(+) CD25(+) T cells affect CD8(+) T cells differently, leading to reduced proliferation and reduced production of IFN-gamma. This effect is sustained and cannot be reverted by exogenous interleukin-2. Yet CD8(+) T cells, unlike CD4(+) T cells do not start to produce immunoregulatory cytokines and do not become suppressive after coculture with CD4(+) CD25(+) T cells.  相似文献   

9.
TB10.4 is a newly identified antigen of Mycobacterium tuberculosis recognized by human and murine T cells upon mycobacterial infection. Here, we show that immunization with Mycobacterium bovis BCG induces a strong, genetically controlled, Th1 immune response against TB10.4 in mice. BALB/c and C57BL/6 strains behave as high and low responders to TB10.4 protein, respectively. The TB10.4:74-88 peptide was identified as an immunodominant CD4+ T-cell epitope for H-2d mice. Since recent results, as well as the present study, have raised interest in TB10.4 as a subunit vaccine, we analyzed immune responses induced by this antigen delivered by a new vector, the adenylate cyclase (CyaA) of Bordetella pertussis. CyaA is able to target dendritic cells and to deliver CD4+ or CD8+ T-cell epitopes to the major histocompatibility complex class II/I molecule presentation pathways, triggering specific Th1 or cytotoxic T-lymphocyte (CTL) responses. Several CyaA harboring either the entire TB10.4 protein or various subfragments containing the TB10.4:20-28 CTL epitope were shown to induce TB10.4-specific Th1 CD4+ and CD8+ T-cell responses. However, none of the recombinant CyaA, injected in the absence of adjuvant, was able to induce protection against M. tuberculosis infection. In contrast, TB10.4 protein administered with a cocktail of strong adjuvants that triggered a strong Th1 CD4+ T-cell response induced significant protection against M. tuberculosis challenge. These results confirm the potential value of the TB10.4 protein as a candidate vaccine and show that the presence of high frequencies of CD4+ T cells specific to this strong immunogen correlates with protection against M. tuberculosis infection.  相似文献   

10.
The contribution of CD8+ and CD4+ T cell-mediated effector functions against Mycobacterium tuberculosis infection elicited by i.m. vaccination with plasmid DNA encoding the immunodominant Ag85A antigen of M. tuberculosis was studied. Ag85A DNA-vaccinated beta2-microglobulin gene-deficient (beta2m-/-) mice, which lack CD8+ T cells, produced Ag85-specific antibodies and Th1 type cytokines similar to wild-type mice. Although beta2m-/- mice were more susceptible to M. tuberculosis infection, following vaccination they efficiently controlled bacterial replication in spleen and lungs 4 weeks post-infection. In contrast, mice lacking CD4+ T cells were neither sensitized by the Ag85A DNA vaccine to produce Ag85-specific antibodies or Th1 type cytokines nor did they contain a M. tuberculosis challenge infection. In addition, Ag85A DNA-vaccinated IFN-gamma gene knockout mice produced Ag85-specific antibodies and IL-2 but died rapidly following a M. tuberculosis challenge infection. Collectively, these data support the view that IFN-gamma-producing CD4+ T cells, independently of CD8+ T cells, may mediate the protective effect of the Ag85A DNA vaccine.  相似文献   

11.
Naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells (CD25(+) Tregs) constitute a specialized population of T cells that is essential for the maintenance of peripheral self-tolerance. The immune regulatory function of CD25(+) Tregs depends upon their activation. We found that anti-CD4 antibodies activate the suppressive function of human CD25(+) Tregs in a dose-dependent manner. We demonstrate that CD4-activated CD25(+) Tregs suppress the proliferation of CD4(+) and CD8(+) T cells, their IL-2 and IFN-gamma production as well as the capacity of CD8(+) T cells to re-express CD25. By contrast, anti-CD4 stimulation did not induce suppressive activity in conventional CD4(+) T cells. These results identify CD4 as a trigger for the suppressive function of CD25(+) Tregs and suggest a possible CD4-mediated exploitation of these cells.  相似文献   

12.
Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells   总被引:19,自引:0,他引:19  
Anergic/suppressive CD4+CD25+ T cells have been proposed to play an important role in the maintenance of peripheral tolerance. Here we demonstrate that in humans these cells suppress proliferation to self antigens, but also to dietary and foreign antigens. The suppressive CD4+CD25+ T cells display a broad usage of the T cell receptor Vbeta repertoire,suggesting that they recognize a wide variety of antigens. They reside in the primed/memory CD4+CD45RO+CD45RB(low) subset and have short telomeres, indicating that these cells have the phenotype of highly differentiated CD4+ T cells that have experienced repeated episodes of antigen-specific stimulation in vivo. This suggests that anergic/suppressive CD4+CD25+ T cells may be generated in the periphery as a consequence of repeated antigenic encounter. This is supported by the observation that highly differentiated CD4+T cells can be induced to become anergic/suppressive when stimulated by antigen presented by non-professional antigen-presenting cells. We suggest that besides being generated in the thymus, CD4+CD25+ regulatory T cells may also be generated in the periphery. This would provide a mechanism for the generation of regulatory cells that induce tolerance to a wide array of antigens that may not be encountered in the thymus.  相似文献   

13.
14.
Active tuberculosis (TB) is associated with prolonged suppression of Mycobacterium tuberculosis (MTB)-specific immune responses, but mechanisms involved are understood incompletely. We investigated a potential role for CD4+CD25+ regulatory T cells in depressed anti-MTB immunity by evaluating serially CD4 cell phenotype and interferon (IFN)-gamma production by mononuclear cells from patients with TB. At diagnosis, frequencies of CD4+CD25+ T cells were increased in blood from TB patients compared to healthy purified protein derivative (PPD)-positive controls (with a history of prior TB exposure), and remained elevated at completion of therapy (6 months). By contrast, expression of another activation marker, CD69, by CD4 T cells was increased at diagnosis, but declined rapidly to control levels with treatment. Among CD4+CD25+ T cells from TB patients at diagnosis those expressing high levels of CD25, probably representing regulatory T cells, were increased 2.9-fold when compared to control subjects, while MTB-stimulated IFN-gamma levels in whole blood supernatants were depressed. A role for CD4+CD25+ T cells in depressed IFN-gamma production during TB was substantiated in depletion experiments, where CD25+-depleted CD4 T cells produced increased amounts of IFN-gamma upon MTB stimulation compared to unseparated T cells. At follow-up, IFN-gamma production improved most significantly in blood from TB patients with high baseline frequencies of CD4+CD25+ T cells (more than threefold higher than controls for both total and CD25hi+ CD4 T cells), who also had a significant drop in frequencies of both total and 'regulatory' CD4+CD25+ T cells in response to treatment. Expansion of CD4+CD25+ regulatory T cells during active TB may play a role in depressed T cell IFN-gamma production.  相似文献   

15.
We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4+ T cells and upregulate TCR‐triggered IFN‐γ secretion and cell proliferation in vitro. Here we examined the role of CD4+ T‐cell‐expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag‐specific T‐cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4+ T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1‐like response was observed in the context of both polyclonal and Ag‐specific TCR stimulation. To evaluate the role of T‐cell TLR2 in priming of CD4+ T cells in vivo, naive MTB Ag85B‐specific TCR transgenic CD4+ T cells (P25 TCR‐Tg) were adoptively transferred into Tlr2?/? recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3Cys‐SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN‐γ‐secreting P25 TCR‐Tg T cells 1 week after immunization. P25 TCR‐Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4+ T cells increases MTB Ag‐specific responses and may contribute to protection against MTB infection.  相似文献   

16.
Tuberculosis continues to cause considerable human morbidity and mortality worldwide, particularly in people coinfected with HIV. The emergence of multidrug resistance makes the medical treatment of tuberculosis even more difficult. Thus, the development of a tuberculosis vaccine is a global health priority. Here we review the data concerning the role of CD8+ T cells in immunity to tuberculosis and consider how CD8+ T cells can be elicited by vaccination. Many immunization strategies have the potential to elicit CD8+ T cells and we critically review the data supporting a role for vaccine-induced CD8+ T cells in protective immunity. The synergy between CD4+ and CD8+ T cells suggests that a vaccine that elicits both T-cell subsets has the best chance at preventing tuberculosis.  相似文献   

17.
《Mucosal immunology》2021,14(2):491-499
Recent data from mice and non-human primate models of tuberculosis suggested that CD153, a TNF super family member, plays an important role in Mycobacterium tuberculosis (Mtb) control. However, this molecule has not been comprehensively evaluated in humans. Here, we show that the proportion of Mtb-specific CD4 T cells expressing CD153 was significantly reduced in active TB patients compared to latently infected persons. Importantly, the CD153+ Mtb-specific CD4 response inversely correlated with lung bacterial load, inferred by Xpert cycle threshold, irrespective of HIV status. Antitubercular treatment partially restored CD153 expression on Mtb-specific CD4 T cells. This is the first report of a subset of Mtb-specific CD4 T cells showing strong negative correlation with bacterial burden. Building on substantial evidence from animal models implicating CD153 as a mediator of host protection, our findings suggest it may play a similar role in humans and its measurement may be useful to evaluate TB vaccine efficacy.  相似文献   

18.
CD160, a glycosylphosphatidylinositol-anchored member of the immunoglobulin superfamily, is expressed on both cytolytic lymphocytes and some unstimulated CD4+ T cells. Here we show that CD160 expression was increased after activation of human CD4+ T cells and that crosslinking CD160 with monoclonal antibody strongly inhibited CD3- and CD28-mediated activation. We found that herpesvirus entry mediator (HVEM) was a ligand of CD160 that acted as a 'bidirectional switch' for T cell activation, producing a positive or negative outcome depending on the engagement of HVEM by CD160 and known HVEM ligands such as B and T lymphocyte attenuator (BTLA) and the T lymphocyte receptor LIGHT. Inhibition of CD4+ T cell activation by HVEM-transfected cells was dependent on CD160 and BTLA; when the cysteine-rich domain 1 of HVEM was deleted, this inhibition was lost, resulting in strong T cell activation. CD160 thus serves as a negative regulator of CD4+ T cell activation through its interaction with HVEM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号