首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is associated with greater areal BMD (aBMD) and is considered protective against hip and vertebral fracture. Despite this, there is a higher prevalence of lower leg and proximal humerus fracture in obesity. We aimed to determine if there are site‐specific differences in BMD, bone structure, or bone strength between obese and normal‐weight adults. We studied 100 individually‐matched pairs of normal (body mass index [BMI] 18.5 to 24.9 kg/m2) and obese (BMI >30 kg/m2) men and women, aged 25 to 40 years or 55 to 75 years. We assessed aBMD at the whole body (WB), hip (TH), and lumbar spine (LS) with dual‐energy X‐ray absorptiometry (DXA), LS trabecular volumetric BMD (Tb.vBMD) by quantitative computed tomography (QCT), and vBMD and microarchitecture and strength at the distal radius and tibia with high‐resolution peripheral QCT (HR‐pQCT) and micro–finite element analysis. Serum type 1 procollagen N‐terminal peptide (P1NP) and collagen type 1 C‐telopeptide (CTX) were measured by automated electrochemiluminescent immunoassay (ECLIA). Obese adults had greater WB, LS, and TH aBMD than normal adults. The effect of obesity on LS and WB aBMD was greater in older than younger adults (p < 0.01). Obese adults had greater vBMD than normal adults at the tibia (p < 0.001 both ages) and radius (p < 0.001 older group), thicker cortices, higher cortical BMD and tissue mineral density, lower cortical porosity, higher trabecular BMD, and higher trabecular number than normal adults. There was no difference in bone size between obese and normal adults. Obese adults had greater estimated failure load at the radius (p < 0.05) and tibia (p < 0.01). Differences in HR‐pQCT measurements between obese and normal adults were seen more consistently in the older than the younger group. Bone turnover markers were lower in obese than in normal adults. Greater BMD in obesity is not an artifact of DXA measurement. Obese adults have higher BMD, thicker and denser cortices, and higher trabecular number than normal adults. Greater differences between obese and normal adults in the older group suggest that obesity may protect against age‐related bone loss and may increase peak bone mass. © 2014 American Society for Bone and Mineral Research.  相似文献   

2.
Odanacatib, a selective cathepsin K inhibitor, increases areal bone mineral density (aBMD) at the spine and hip of postmenopausal women. To gain additional insight into the effects on trabecular and cortical bone, we analyzed quantitative computed tomography (QCT) data of postmenopausal women treated with odanacatib using Medical Image Analysis Framework (MIAF; Institute of Medical Physics, University of Erlangen, Erlangen, Germany). This international, randomized, double‐blind, placebo‐controlled, 2‐year, phase 3 trial enrolled 214 postmenopausal women (mean age 64 years) with low aBMD. Subjects were randomized to odanacatib 50 mg weekly (ODN) or placebo (PBO); all participants received calcium and vitamin D. Hip QCT scans at 24 months were available for 158 women (ODN: n = 78 women; PBO: n = 80 women). There were consistent and significant differential treatment effects (ODN‐PBO) for total hip integral (5.4%), trabecular volumetric BMD (vBMD) (12.2%), and cortical vBMD (2.5%) at 24 months. There was no significant differential treatment effect on integral bone volume. Results for bone mineral content (BMC) closely matched those for vBMD for integral and trabecular compartments. However, with small but mostly significant differential increases in cortical volume (1.0% to 1.3%) and thickness (1.4% to 1.9%), the percentage cortical BMC increases were numerically larger than those of vBMD. With a total hip BMC differential treatment effect (ODN‐PBO) of nearly 1000 mg, the proportions of BMC attributed to cortical gain were 45%, 44%, 52%, and 40% for the total, neck, trochanter, and intertrochanter subregions, respectively. In postmenopausal women treated for 2 years, odanacatib improved integral, trabecular, and cortical vBMD and BMC at all femur regions relative to placebo when assessed by MIAF. Cortical volume and thickness increased significantly in all regions except the femoral neck. The increase in cortical volume and BMC paralleled the increase in cortical vBMD, demonstrating a consistent effect of ODN on cortical bone. Approximately one‐half of the absolute BMC gain occurred in cortical bone. © 2014 American Society for Bone and Mineral Research.  相似文献   

3.
Sclerostin is predominantly expressed by osteocytes. Serum sclerostin levels are positively correlated with areal bone mineral density (aBMD) measured by dual‐energy X‐ray absorptiometry (DXA) and bone microarchitecture assessed by high‐resolution peripheral quantitative computed tomography (HR‐pQCT) in small studies. We assessed the relation of serum sclerostin levels with aBMD and microarchitectural parameters based on HR‐pQCT in 1134 men aged 20 to 87 years using multivariable models adjusted for confounders (age, body size, lifestyle, comorbidities, hormones regulating bone metabolism, muscle mass and strength). The apparent age‐related increase in serum sclerostin levels was faster before the age of 63 years than afterward (0.43 SD versus 0.20 SD per decade). In 446 men aged ≤63 years, aBMD (spine, hip, whole body), trabecular volumetric BMD (Tb.vBMD), and trabecular number (Tb.N) at the distal radius and tibia were higher in the highest sclerostin quartile versus the three lower quartiles combined. After adjustment for aBMD, men in the highest sclerostin quartile had higher Tb.vBMD (mainly in the central compartment) and Tb.N at both skeletal sites (p < 0.05 to 0.001). In 688 men aged >63 years, aBMD was positively associated with serum sclerostin levels at all skeletal sites. Cortical vBMD (Ct.vBMD) and cortical thickness (Ct.Th) were lower in the first sclerostin quartile versus the three higher quartiles combined. Tb.vBMD increased across the sclerostin quartiles, and was associated with lower Tb.N and more heterogeneous trabecular distribution (higher Tb.Sp.SD) in men in the lowest sclerostin quartile. After adjustment for aBMD, men in the lowest sclerostin quartile had lower Tb.vBMD and Tb.N, but higher Tb.Sp.SD (p < 0.05 to 0.001) at both the skeletal sites. In conclusion, serum sclerostin levels in men are strongly positively associated with better bone microarchitectural parameters, mainly trabecular architecture, regardless of the potential confounders.  相似文献   

4.
Hypophosphatemic rickets (HR) is characterized by a generalized mineralization defect. Although densitometric studies have found the patients to have an elevated bone mineral density (BMD), data on bone geometry and microstructure are scarce. The aim of this cross‐sectional in vivo study was to assess bone geometry, volumetric BMD (vBMD), microarchitecture, and estimated bone strength in adult patients with HR using high‐resolution peripheral quantitative computed tomography (HR‐pQCT). Twenty‐nine patients (aged 19 to 79 years; 21 female, 8 male patients), 26 of whom had genetically proven X‐linked HR, were matched with respect to age and sex with 29 healthy subjects. Eleven patients were currently receiving therapy with calcitriol and phosphate for a median duration of 29.1 years (12.0 to 43.0 years). Because of the disproportionate short stature in HR, the region of interest in HR‐pQCT images at the distal radius and tibia were placed in a constant proportion to the entire length of the bone in both patients and healthy volunteers. In age‐ and weight‐adjusted models, HR patients had significantly higher total bone cross‐sectional areas (radius 36%, tibia 20%; both p < 0.001) with significantly higher trabecular bone areas (radius 49%, tibia 14%; both p < 0.001) compared with controls. In addition, HR patients had lower total vBMD (radius ?20%, tibia ?14%; both p < 0.01), cortical vBMD (radius ?5%, p < 0.001), trabecular number (radius ?13%, tibia ?14%; both p < 0.01), and cortical thickness (radius ?19%; p < 0.01) compared with controls, whereas trabecular spacing (radius 18%, tibia 23%; p < 0.01) and trabecular network inhomogeneity (radius 29%, tibia 40%; both p < 0.01) were higher. Estimated bone strength was similar between the groups. In conclusion, in patients with HR, the negative impact of lower vBMD and trabecular number on bone strength seems to be compensated by an increase in bone diameter, resulting in HR patients having normal estimates of bone strength. © 2014 American Society for Bone and Mineral Research.  相似文献   

5.
This prospective case‐cohort study aimed to map the distribution of bone density in the proximal femur and examine its association with hip fracture. We analyzed baseline quantitative computed tomography (QCT) scans in 250 men aged 65 years or older, which comprised a randomly‐selected subcohort of 210 men and 40 cases of first hip fracture during a mean follow‐up period of 5.5 years. We quantified cortical, trabecular, and integral volumetric bone mineral density (vBMD), and cortical thickness (CtTh) in four quadrants of cross‐sections along the length of the femoral neck (FN), intertrochanter (IT), and trochanter (TR). In most quadrants, vBMDs and CtTh were significantly (p < 0.05) lower in cases compared to the subcohort and these deficits were present across the entire proximal femur. To examine the association of QCT measurements with hip fracture, we merged the two quadrants in the medial and lateral aspects of the FN, IT, and TR. At most sites, QCT measurements were associated significantly (p < 0.001) with hip fracture, the hazard ratio (HR) adjusted for age, body mass index (BMI), and clinical site for a 1‐SD decrease ranged between 2.28 (95% confidence interval [CI], 1.44–3.63) to 6.91 (95% CI, 3.11–15.53). After additional adjustment for total hip (TH) areal BMD (aBMD), trabecular vBMDs at the FN, TR, and TH were still associated with hip fracture significantly (p < 0.001), the HRs ranged from 3.21 (95% CI, 1.65–6.24) for the superolateral FN to 6.20 (95% CI, 2.71–14.18) for medial TR. QCT measurements alone or in combination did not predict fracture significantly (p > 0.05) better than TH aBMD. With an area under the receiver operating characteristic curve (AUC) of 0.901 (95% CI, 0.852–0.950), the regression model combining TH aBMD, age, and trabecular vBMD predicted hip fracture significantly (p < 0.05) better than TH aBMD alone or TH aBMD plus age. These findings confirm that both cortical and trabecular bone contribute to hip fracture risk and highlight trabecular vBMD at the FN and TR as an independent risk factor. © 2012 American Society for Bone and Mineral Research.  相似文献   

6.
To explore the possible mechanisms underlying sex‐specific differences in skeletal fragility that may be obscured by two‐dimensional areal bone mineral density (aBMD) measures, we compared quantitative computed tomography (QCT)‐based vertebral bone measures among pairs of men and women from the Framingham Heart Study Multidetector Computed Tomography Study who were matched for age and spine aBMD. Measurements included vertebral body cross‐sectional area (CSA, cm2), trabecular volumetric BMD (Tb.vBMD, g/cm3), integral volumetric BMD (Int.vBMD, g/cm3), estimated vertebral compressive loading and strength (Newtons) at L3, the factor‐of‐risk (load‐to‐strength ratio), and vertebral fracture prevalence. We identified 981 male‐female pairs (1:1 matching) matched on age (± 1 year) and QCT‐derived aBMD of L3 (± 1%), with an average age of 51 years (range 34 to 81 years). Matched for aBMD and age, men had 20% larger vertebral CSA, lower Int.vBMD (–8%) and Tb.vBMD (–9%), 10% greater vertebral compressive strength, 24% greater vertebral compressive loading, and 12% greater factor‐of‐risk than women (p < 0.0001 for all), as well as higher prevalence of vertebral fracture. After adjusting for height and weight, the differences in CSA and volumetric bone mineral density (vBMD) between men and women were attenuated but remained significant, whereas compressive strength was no longer different. In conclusion, vertebral size, morphology, and density differ significantly between men and women matched for age and spine aBMD, suggesting that men and women attain the same aBMD by different mechanisms. These results provide novel information regarding sex‐specific differences in mechanisms that underlie vertebral fragility. © 2014 American Society for Bone and Mineral Research.  相似文献   

7.
Musculoskeletal aging in the most resource-limited countries has not been quantified, and longitudinal data are urgently needed to inform policy. The aim of this prospective study was to describe musculoskeletal aging in Gambian adults. A total of 488 participants were recruited stratified by sex and 5-year age band (aged 40 years and older); 386 attended follow-up 1.7 years later. Outcomes were dual-energy X-ray absorptiometry (DXA) (n = 383) total hip areal bone mineral density (aBMD), bone mineral content (BMC), bone area (BA); peripheral quantitative computed tomography (pQCT) diaphyseal and epiphyseal radius and tibia (n = 313) total volumetric BMD (vBMD), trabecular vBMD, estimated bone strength indices (BSIc), cross-sectional area (CSA), BMC, and cortical vBMD. Mean annualized percentage change in bone outcomes was assessed in 10-year age bands and linear trends for age assessed. Bone turnover markers, parathyroid hormone (PTH), and 25-hydroxyvitamin D (25(OH)D) were explored as predictors of change in bone. Bone loss was observed at all sites, with an annual loss of total hip aBMD of 1.2% in women after age 50 years and in men at age 70 years plus. Greater loss in vBMD and BSIc was found at the radius in both men and women; strength was reduced by 4% per year in women and 3% per year in men (p trend 0.02, 0.03, respectively). At cortical sites, reductions in BMC, CSA, and vBMD were observed, being greatest in BMC in women, between 1.4% and 2.0% per annum. Higher CTX and PINP predicted greater loss of trabecular vBMD in women and BMC in men at the radius, and higher 25(OH)D with less loss of tibial trabecular vBMD and CSA in women. The magnitude of bone loss was like those reported in countries where fragility fracture rates are much higher. Given the predicted rise in fracture rates in resource-poor countries such as The Gambia, these data provide important insights into musculoskeletal health in this population. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

8.
Several studies, using dual‐energy X‐ray absorptiometry (DXA), have reported substantial bone loss after bariatric surgery. However, profound weight loss may cause artifactual changes in DXA areal bone mineral density (aBMD) results. Assessment of volumetric bone mineral density (vBMD) by quantitative computed tomography (QCT) may be less susceptible to such artifacts. We assessed changes in BMD of the lumbar spine and proximal femur prospectively for 1 year using DXA and QCT in 30 morbidly obese adults undergoing Roux‐en‐Y gastric bypass surgery and 20 obese nonsurgical controls. At 1 year, subjects who underwent gastric bypass surgery lost 37 ± 2 kg compared with 3 ± 2 kg lost in the nonsurgical controls (p < 0.0001). Spine BMD declined more in the surgical group than in the nonsurgical group whether assessed by DXA (?3.3 versus ?1.1%, p = 0.034) or by QCT (?3.4 versus 0.2%, p = 0.010). Total hip and femoral neck aBMD declined significantly in the surgical group when assessed by DXA (?8.9 versus ?1.1%, p < 0.0001 for the total hip and ?6.1 versus ?2.0%, p = 0.002 for the femoral neck), but no changes in hip vBMD were noted using QCT. Within the surgical group, serum P1NP and CTX levels increased by 82% ± 10% and by 220% ± 22%, respectively, by 6 months and remained elevated over 12 months (p < 0.0001 for all). Serum calcium, vitamin D, and PTH levels remained stable in both groups. We conclude that moderate vertebral bone loss occurs in the first year after gastric bypass surgery. However, striking declines in DXA aBMD at the proximal femur were not confirmed with QCT vBMD measurements. These discordant results suggest that artifacts induced by large changes in body weight after bariatric surgery affect DXA and/or QCT measurements of bone, particularly at the hip. © 2014 American Society for Bone and Mineral Research.  相似文献   

9.
The aim of this study was to investigate the development of bone mineral density (BMD) and bone mineral content (BMC) in relation to peak height velocity (PHV), and to investigate whether late normal puberty was associated with remaining low BMD and BMC in early adulthood in men. In total, 501 men (mean ± SD, 18.9 ± 0.5 years of age at baseline) were included in this 5‐year longitudinal study. Areal BMD (aBMD) and BMC, volumetric BMD (vBMD) and cortical bone size were measured using dual‐energy X‐ray absorptiometry (DXA) and pQCT. Detailed growth and weight charts were used to calculate age at PHV, an objective assessment of pubertal timing. Age at PHV was a strong positive predictor of the increase in aBMD and BMC of the total body (R2 aBMD 11.7%; BMC 4.3%), radius (R2 aBMD 23.5%; BMC 22.3%), and lumbar spine (R2 aBMD 11.9%; BMC 10.5%) between 19 and 24 years (p < 0.001). Subjects were divided into three groups according to age at PHV (early, middle, and late). Men with late puberty gained markedly more in aBMD and BMC at the total body, radius, and lumbar spine, and lost less at the femoral neck (p < 0.001) than men with early puberty. At age 24 years, no significant differences in aBMD or BMC of the lumbar spine, femoral neck, or total body were observed, whereas a deficit of 4.2% in radius aBMD, but not in BMC, was seen for men with late versus early puberty (p < 0.001). pQCT measurements of the radius at follow‐up demonstrated no significant differences in bone size, whereas cortical and trabecular vBMD were 0.7% (p < 0.001) and 4.8% (p < 0.05) lower in men with late versus early puberty. In conclusion, our results demonstrate that late puberty in males was associated with a substantial catch up in aBMD and BMC in young adulthood, leaving no deficits of the lumbar spine, femoral neck, or total body at age 24 years. © 2012 American Society for Bone and Mineral Research.  相似文献   

10.
Data supporting physical activity guidelines to optimize bone development in men is sparse. Peak bone mass is believed to be important for the risk of osteoporosis later in life. The objective of this study was to determine if an increased amount of physical activity over a 5‐year period was associated with increased bone mineral content (BMC), areal (aBMD) and volumetric (vBMD) bone mineral density, and a favorable development of cortical bone size in young adult men. The original 1068 young men, initially enrolled in the Gothenburg Osteoporosis and Obesity Determinants (GOOD) study, were invited to participate in the longitudinal study, and a total of 833 men (78%), 24.1 ± 0.6 years of age, were included in the 5‐year follow‐up. A standardized self‐administered questionnaire was used to collect information about patterns of physical activity at both the baseline and 5‐year follow‐up visits. BMC and aBMD were measured using dual energy X‐ray absorptiometry, whereas vBMD and bone geometry were measured by peripheral quantitative computed tomography. Increased physical activity between the baseline and follow‐up visits was associated with a favorable development in BMC of the total body, and aBMD of the lumbar spine and total hip (p < 0.001), as well as with development of a larger cortex (cortical cross sectional area), and a denser trabecular bone of the tibia (p < 0.001). In conclusion, increased physical activity was related to an advantageous development of aBMD, trabecular vBMD and cortical bone size, indicating that exercise is important in optimizing peak bone mass in young men. © 2012 American Society for Bone and Mineral Research.  相似文献   

11.
High‐resolution peripheral quantitative computed tomography (HR‐pQCT) measures bone microarchitecture and volumetric bone mineral density (vBMD), important risk factors for osteoporotic fractures. We estimated the heritability (h2) of bone microstructure indices and vBMD, measured by HR‐pQCT, and genetic correlations (ρG) among them and between them and regional aBMD measured by dual‐energy X‐ray absorptiometry (DXA), in adult relatives from the Framingham Heart Study. Cortical (Ct) and trabecular (Tb) traits were measured at the distal radius and tibia in up to 1047 participants, and ultradistal radius (UD) aBMD was obtained by DXA. Heritability estimates, adjusted for age, sex, and estrogenic status (in women), ranged from 19.3% (trabecular number) to 82.8% (p < 0.01, Ct.vBMD) in the radius and from 51.9% (trabecular thickness) to 98.3% (cortical cross‐sectional area fraction) in the tibia. Additional adjustments for height, weight, and radial aBMD had no major effect on h2 estimates. In bivariate analyses, moderate to high genetic correlations were found between radial total vBMD and microarchitecture traits (ρG from 0.227 to 0.913), except for cortical porosity. At the tibia, a similar pattern of genetic correlations was observed (ρG from 0.274 to 0.948), except for cortical porosity. Environmental correlations between the microarchitecture traits were also substantial. There were high genetic correlations between UD aBMD and multivariable‐adjusted total and trabecular vBMD at the radius (ρG = 0.811 and 0.917, respectively). In summary, in related men and women from a population‐based cohort, cortical and trabecular microarchitecture and vBMD at the radius and tibia were heritable and shared some h2 with regional aBMD measured by DXA. These findings of high heritability of HR‐pQCT traits, with a slight attenuation when adjusting for aBMD, supports further work to identify the specific variants underlying volumetric bone density and fine structure of long bones. Knowledge that some of these traits are genetically correlated can serve to reduce the number of traits for genetic association studies. © 2016 American Society for Bone and Mineral Research.  相似文献   

12.
It has previously been shown that smoking is associated with reduced bone mass and increased fracture risk, but no longitudinal studies have been published investigating altered smoking behavior at the time of bone mass acquisition. The aim of this study was to investigate the development of bone density and geometry according to alterations in smoking behavior in a 5‐year, longitudinal, population‐based study of 833 young men, age 18 to 20 years (baseline). Furthermore, we aimed to examine the cross‐sectional, associations between current smoking and parameters of trabecular microarchitecture of the radius and tibia, using high‐resolution peripheral quantitative computed tomography (HR‐pQCT), in young men aged 23 to 25 years (5‐year follow‐up). Men who had started to smoke since baseline had considerably smaller increases in areal bone mineral density (aBMD) at the total body (mean ± SD, 0.020 ± 0.047 mg/cm2 versus 0.043 ± 0.040 mg/cm2, p < 0.01) and lumbar spine (0.027 ± 0.062 mg/cm2 versus 0.052 ± 0.065 mg/cm2, p = 0.04), and substantially greater decreases in aBMD at the total hip (?0.055 ± 0.058 mg/cm2 versus ?0.021 ± 0.062 mg/cm2, p < 0.01) and femoral neck (?0.077 ± 0.059 mg/cm2 versus ?0.042 ± 0.070 mg/cm2, p < 0.01) than men who were nonsmokers at both the baseline and follow‐up visits. At the tibia, subjects who had started to smoke had a smaller increment of the cortical cross‐sectional area (CSA) than nonsmokers (8.1 ± 4.3 mm2 versus 11.5 ± 8.9 mm2, p = 0.03), and a larger decrement of trabecular volumetric BMD (vBMD) than nonsmokers (?13.9 ± 20.5 mg/mm3 versus ?4.1 ± 13.9 mg/mm3, p < 0.001). In the cross‐sectional analysis at follow‐up (23–25 years of age), smokers had significantly lower trabecular vBMD at the tibia (7.0%, p < 0.01) due to reduced trabecular thickness (8.9%, p < 0.001), as assessed using HR‐pQCT, than nonsmokers. In conclusion, this study is the first to report that men who start to smoke in young adulthood have poorer development of their aBMD at clinically important sites such as the spine and hip than nonsmokers, possibly due to augmented loss of trabecular density and impaired growth of cortical cross‐sectional area. © 2012 American Society for Bone and Mineral Research.  相似文献   

13.
Areal bone mineral density (aBMD) measured with dual‐energy X‐ray absorptiometry (DXA) has been associated with fracture risk in children and adolescents, but it remains unclear whether this association is due to volumetric BMD (vBMD) of the cortical and/or trabecular bone compartments or bone size. The aim of this study was to determine whether vBMD or bone size was associated with X‐ray‐verified fractures in men during growth. In total, 1068 men (aged 18.9 ± 0.6 years) were included in the population‐based Gothenburg Osteoporosis and Obesity Determinants (GOOD) Study. Areal BMD was measured by DXA, whereas cortical and trabecular vBMD and bone size were measured by peripheral quantitative computerized tomography (pQCT). X‐ray records were searched for fractures. Self‐reported fractures in 77 men could not be confirmed in these records. These men were excluded, resulting in 991 included men, of which 304 men had an X‐ray‐verified fracture and 687 were nonfracture subjects. Growth charts were used to establish the age of peak height velocity (PHV, n = 600). Men with prevalent fractures had lower aBMD (lumbar spine 2.3%, p = .005; total femur 2.6%, p = .004, radius 2.1%, p < .001) at all measured sites than men without fracture. Using pQCT measurements, we found that men with a prevalent fracture had markedly lower trabecular vBMD (radius 6.6%, p = 7.5 × 10?8; tibia 4.5%, p = 1.7 × 10?7) as well as a slightly lower cortical vBMD (radius 0.4%, p = .0012; tibia 0.3%, p = .015) but not reduced cortical cross‐sectional area than men without fracture. Every SD decrease in trabecular vBMD of the radius and tibia was associated with 1.46 [radius 95% confidence interval (CI) 1.26–1.69; tibia 95% CI 1.26–1.68] times increased fracture prevalence. The peak fracture incidence coincided with the timing of PHV (±1 year). In conclusion, trabecular vBMD but not aBMD was independently associated with prevalent X‐ray‐verified fractures in young men. Further studies are needed to determine if assessment of trabecular vBMD could enhance prediction of fractures during growth in males. © 2010 American Society for Bone and Mineral Research  相似文献   

14.
The cathepsin K inhibitor odanacatib (ODN), currently in phase 3 development for postmenopausal osteoporosis, has a novel mechanism of action that reduces bone resorption while maintaining bone formation. In phase 2 studies, odanacatib increased areal bone mineral density (aBMD) at the lumbar spine and total hip progressively over 5 years. To determine the effects of ODN on cortical and trabecular bone and estimate changes in bone strength, we conducted a randomized, double‐blind, placebo‐controlled trial, using both quantitative computed tomography (QCT) and high‐resolution peripheral (HR‐p)QCT. In previously published results, odanacatib was superior to placebo with respect to increases in trabecular volumetric BMD (vBMD) and estimated compressive strength at the spine, and integral and trabecular vBMD and estimated strength at the hip. Here, we report the results of HR‐pQCT assessment. A total of 214 postmenopausal women (mean age 64.0 ± 6.8 years and baseline lumbar spine T‐score –1.81 ± 0.83) were randomized to oral ODN 50 mg or placebo, weekly for 2 years. With ODN, significant increases from baseline in total vBMD occurred at the distal radius and tibia. Treatment differences from placebo were also significant (3.84% and 2.63% for radius and tibia, respectively). At both sites, significant differences from placebo were also found in trabecular vBMD, cortical vBMD, cortical thickness, cortical area, and strength (failure load) estimated using finite element analysis of HR‐pQCT scans (treatment differences at radius and tibia = 2.64% and 2.66%). At the distal radius, odanacatib significantly improved trabecular thickness and bone volume/total volume (BV/TV) versus placebo. At a more proximal radial site, odanacatib attenuated the increase in cortical porosity found with placebo (treatment difference = –7.7%, p = 0.066). At the distal tibia, odanacatib significantly improved trabecular number, separation, and BV/TV versus placebo. Safety and tolerability were similar between treatment groups. In conclusion, odanacatib increased cortical and trabecular density, cortical thickness, aspects of trabecular microarchitecture, and estimated strength at the distal radius and distal tibia compared with placebo. © 2014 American Society for Bone and Mineral Research  相似文献   

15.
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by periarticular bone loss and new bone formation. Current data regarding systemic bone loss and bone mineral density (BMD) in PsA are conflicting. The aim of this study was to evaluate bone microstructure and volumetric BMD (vBMD) in patients with PsA and psoriasis. We performed HR‐pQCT scans at the ultradistal and periarticular radius in 50 PsA patients, 30 psoriasis patients, and 70 healthy, age‐ and sex‐related controls assessing trabecular bone volume (BV/TV), trabecular number (Tb.N), inhomogeneity of the trabecular network, cortical thickness (Ct.Th), and cortical porosity (Ct.Po), as well as vBMD. Trabecular BMD (Tb.BMD, p = 0.021, 12.0%), BV/TV (p = 0.020, –11.9%), and Tb.N (p = 0.035, 7.1%) were significantly decreased at the ultradistal radius and the periarticular radius in PsA patients compared to controls. In contrast, bone architecture of the ultradistal radius and periarticular radius was similar in patients with psoriasis and healthy controls. Duration of skin disease was associated with low BV/TV and Tb.N in patients with PsA. These data suggest that trabecular BMD and bone microstructure are decreased in PsA patients. The observation that duration of skin disease determines bone loss in PsA supports the concept of subclinical musculoskeletal disease in psoriasis patients. © 2015 American Society for Bone and Mineral Research.  相似文献   

16.
Nonpharmacologic approaches to preserve or increase bone mineral density (BMD) include whole‐body vibration (WBV), but its efficacy in elderly persons is not clear. Therefore, we conducted the Vibration to Improve Bone in Elderly Subjects (VIBES) trial, a randomized, placebo‐controlled trial of 10 minutes of daily WBV (0.3g at 37 Hz) in seniors recruited from 16 independent living communities. The primary outcomes were volumetric BMD of the hip and spine measured by quantitative computed tomography (QCT) and biochemical markers of bone turnover. We randomized 174 men and women (89 active, 85 placebo) with T‐scores –1 to –2.5 who were not taking bone active drugs and had no diseases affecting the skeleton (mean age 82 ± 7 years, range 65 to 102). Participants received daily calcium (1000 mg) and vitamin D (800 IU). Study platforms were activated using radio frequency ID cards providing electronic adherence monitoring; placebo platforms resembled the active platforms. In total, 61% of participants in the active arm and 73% in the placebo arm completed 24 months. The primary outcomes, median percent changes (interquartile range [IQR]) in total volumetric femoral trabecular BMD (active group (2.2% [–0.8%, 5.2%]) versus placebo 0.4% [–4.8%, 5.0%]) and in mid‐vertebral trabecular BMD of L1 and L2 (active group (5.3% [–6.9%, 13.3%]) versus placebo (2.4% [–4.4%, 11.1%]), did not differ between groups (all p values > 0.1). Changes in biochemical markers of bone turnover (P1NP and sCTX) also were not different between groups (p = 0.19 and p = 0.97, respectively). In conclusion, this placebo‐controlled randomized trial of daily WBV in older adults did not demonstrate evidence of significant beneficial effects on volumetric BMD or bone biomarkers; however, the high variability in vBMD changes limited our power to detect small treatment effects. The beneficial effects of WBV observed in previous studies of younger women may not occur to the same extent in elderly individuals. © 2015 American Society for Bone and Mineral Research.  相似文献   

17.
African‐American women have a lower risk of fracture than white women, and this difference is only partially explained by differences in dual‐energy X‐ray absorptiometry (DXA) areal bone mineral density (aBMD). Little is known about racial differences in skeletal microarchitecture and the consequences for bone strength. To evaluate potential factors underlying this racial difference in fracture rates, we used high‐resolution peripheral quantitative computed tomography (HR‐pQCT) to assess cortical and trabecular bone microarchitecture and estimate bone strength using micro–finite element analysis (µFEA) in African‐American (n = 100) and white (n = 173) women participating in the Study of Women's Health Across the Nation (SWAN). African‐American women had larger and denser bones than whites, with greater total area, aBMD, and total volumetric BMD (vBMD) at the radius and tibia metaphysis (p < 0.05 for all). African‐Americans had greater trabecular vBMD at the radius, but higher cortical vBMD at the tibia. Cortical microarchitecture tended to show the most pronounced racial differences, with higher cortical area, thickness, and volumes in African‐Americans at both skeletal sites (p < 0.05 for all), and lower cortical porosity in African‐Americans at the tibia (p < 0.05). African‐American women also had greater estimated bone stiffness and failure load at both the radius and tibia. Differences in skeletal microarchitecture and estimated stiffness and failure load persisted even after adjustment for DXA aBMD. The densitometric and microarchitectural predictors of failure load at the radius and tibia were the same in African‐American and white women. In conclusion, differences in bone microarchitecture and density contribute to greater estimated bone strength in African‐Americans and probably explain, at least in part, the lower fracture risk of African‐American women. © 2013 American Society for Bone and Mineral Research.  相似文献   

18.
Premenopausal women with idiopathic osteoporosis (PreMenIOP) have marked deficits in skeletal microstructure. We have reported that sequential treatment with teriparatide and denosumab improves central skeletal bone mineral density (BMD) by dual-energy X-ray absorptiometry and central QCT in PreMenIOP. We conducted preplanned analyses of high-resolution peripheral quantitative computed tomography (HR-pQCT) scans from teriparatide and denosumab extension studies to measure effects on volumetric BMD (vBMD), microarchitecture, and estimated strength at the distal radius and tibia. Of 41 women enrolled in the parent teriparatide study (20 mcg daily), 34 enrolled in the HR-pQCT study. HR-pQCT participants initially received teriparatide (N = 24) or placebo (N = 10) for 6 months; all then received teriparatide for 24 months. After teriparatide, 26 enrolled in the phase 2B denosumab extension (60 mg q6M) for 24 months. Primary outcomes were percentage change in vBMD, microstructure, and stiffness after teriparatide and after denosumab. Changes after sequential teriparatide and denosumab were secondary outcomes. After teriparatide, significant improvements were seen in tibial trabecular number (3.3%, p = 0.01), cortical area and thickness (both 2.7%, p < 0.001), and radial trabecular microarchitecture (number: 6.8%, thickness: 2.2%, separation: −5.1%, all p < 0.02). Despite increases in cortical porosity and decreases in cortical density, whole-bone stiffness and failure load increased at both sites. After denosumab, increases in total (3.5%, p < 0.001 and 3.3%, p = 0.02) and cortical vBMD (1.7% and 3.2%; both p < 0.01), and failure load (1.1% and 3.6%; both p < 0.05) were seen at tibia and radius, respectively. Trabecular density (3.5%, p < 0.001) and number (2.4%, p = 0.03) increased at the tibia, while thickness (3.0%, p = 0.02) increased at the radius. After 48 months of sequential treatment, significant increases in total vBMD (tibia: p < 0.001; radius: p = 0.01), trabecular microstructure (p < 0.05), cortical thickness (tibia: p < 0.001; radius: p = 0.02), and whole bone strength (p < 0.02) were seen at both sites. Significant increases in total vBMD and bone strength parameters after sequential treatment with teriparatide followed by denosumab support the use of this regimen in PreMenIOP. © 2022 American Society for Bone and Mineral Research (ASBMR).  相似文献   

19.
We investigated the associations of 3D geometric measures and volumetric bone mineral density (vBMD) of the proximal femur assessed by quantitative computed tomography (QCT) with hip fracture risk among elderly men. This study was a prospective case‐cohort design nested within the Osteoporotic Fractures in Men Study (MrOS) cohort. QCT scans of 230 men (65 with confirmed hip fractures) were evaluated with Mindways' QCTPRO‐BIT software. Measures that are indicative of bone strength for the femoral neck (FN) and for the trochanteric region (TR) were defined. Bending strength measures were estimated by minimum section modulus, buckling strength by buckling ratio, and a local thinning index (LTI). Integral and trabecular vBMD measures were also derived. Areal BMD (aBMD) of the total proximal femur from dual‐energy X‐ray absorptiometry (DXA) is presented for comparison. Associations of skeletal measures with incident hip fracture were estimated with hazard ratios (HR) per standard deviation and their 95% confidence intervals (CI) from Cox proportional hazard regression models with adjustment for age, body mass index (BMI), site, and aBMD. Men with hip fractures were older than men without fracture (77.1 ± 6.0 years versus 73.3 ± 5.7 years, p < 0.01). Age, BMI, and site‐adjusted HRs were significant for all measures except TR_LTI. Total femural BMD by DXA (HR = 4.9, 95% CI 2.5–9.9) and QCT (HR = 5.5, 95% CI 2.5–11.7) showed the strongest association followed by QCT FN integral vBMD (HR = 3.6, 95% CI 1.8–6.9). In models that additionally included aBMD, FN buckling ratio (HR = 1.9, 95% CI 1.1–3.2) and trabecular vBMD of the TR (HR = 2.0, 95% CI 1.2–3.4) remained associated with hip fracture risk, independent of aBMD. QCT‐derived 3D geometric indices of instability of the proximal femur were significantly associated with incident hip fractures, independent of DXA aBMD. Buckling of the FN is a relevant failure mode not entirely captured by DXA. Further research to study these relationships in women is warranted. © 2016 American Society for Bone and Mineral Research.  相似文献   

20.
There has been evidence that cyclical mechanical stimulation may be osteogenic, thus providing opportunities for nonpharmacological treatment of degenerative bone disease. Here, we applied this technology to a cohort of postmenopausal women with varying bone mineral density (BMD) T-scores at the total hip (−0.524 ± 0.843) and spine (−0.795 ± 1.03) to examine the response to intervention after 1 year of daily treatment with 10 minutes of vibration therapy in a randomized double-blinded trial. The device operates either in an active mode (30 Hz and 0.3 g) or placebo. Primary endpoints were changes in bone stiffness at the distal tibia and marrow adiposity of the vertebrae, based on 3 Tesla high-resolution MRI and spectroscopic imaging, respectively. Secondary outcome variables included distal tibial trabecular microstructural parameters and vertebral deformity determined by MRI, volumetric and areal bone densities derived using peripheral quantitative computed tomography (pQCT) of the tibia, and dual-energy X-ray absorptiometry (DXA)-based BMD of the hip and spine. Device adherence was 83% in the active group (n = 42) and 86% in the placebo group (n = 38) and did not differ between groups (p = .7). The mean 12-month changes in tibial stiffness in the treatment group and placebo group were +1.31 ± 6.05% and −2.55 ± 3.90%, respectively (group difference 3.86%, p = .0096). In the active group, marrow fat fraction significantly decreased after 12 months of intervention (p = .0003), whereas no significant change was observed in the placebo group (p = .7; group difference −1.59%, p = .029). Mean differences of the changes in trabecular bone volume fraction (p = .048) and erosion index (p = .044) were also significant, as was pQCT-derived trabecular volumetric BMD (vBMD; p = .016) at the tibia. The data are commensurate with the hypothesis that vibration therapy is protective against loss in mechanical strength and, further, that the intervention minimizes the shift from the osteoblastic to the adipocytic lineage of mesenchymal stem cells. © 2020 American Society for Bone and Mineral Research (ASBMR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号