首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kuo YC  Yang LM  Lin LC 《Planta medica》2004,70(12):1237-1239
Sixteen flavonoids were isolated from the acetone extract of the leaves of Syzygium samarangense Merr. et Perry. The isolated flavonoids were evaluated for immunopharmacological activity. Human peripheral blood mononuclear cells (PBMC) were used as target cells, and cell proliferation was determined by 3H-thymidine uptake. Among them, (-)-strobopinin (2), myricetin 3-O-(2'-O-galloyl)-alpha-rhamnopyranoside (8), (-)-epigallocatechin 3- O-gallate (10) and myricetin 3-O-alpha-rhamnopyranoside (11) showed inhibitory potency on PBMC proliferation activated by phytohemagglutinin (PHA). The IC50 values of compounds 2, 8, 10, and 11 on activated PBMC proliferation were 36.3, 11.9, 28.9, and 75.6 microM, respectively. The inhibitory mechanisms may involve the blocking of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) production, since compounds 2, 8, 10 and 11 reduced IL-2 and IFN-gamma production in PBMC in a dose-dependent manner.  相似文献   

2.
A new class of 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) and arabinouridines (7, 8) were synthesized by the regiospecific addition of halogenocyanamides (X-NHCN) to the 5-vinyl substituent of the respective 5-vinyl-2'-deoxyuridine (2) and 2'-arabinouridine (3). Reaction of 2 with sodium azide, ceric ammonium nitrate, and acetonitrile-methanol or water afforded the 5-(1-hydroxy-2-azidoethyl)-(10) and 5-(1-methoxy-2-azidoethyl)-2'-deoxyuridines (11). In vitro antiviral activities against HSV-1-TK(+) (KOS and E-377), HSV-1-TK(-), HSV-2, VZV, HCMV, and DHBV were determined. Of the newly synthesized compounds, 5-(1-cyanamido-2-iodoethyl)-2'-deoxyuridine (6) exhibited the most potent anti-HSV-1 activity, which was equipotent to acyclovir and superior to 5-ethyl-2'-deoxyuridine (EDU). In addition, it was significantly inhibitory for thymidine kinase deficient strain of HSV-1 (EC(50) = 2.3-15.3 microM). The 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) all were approximately equipotent against HSV-2 and were approximately 1.5- and 15-fold less inhibitory for HSV-2 than EDU and acyclovir, respectively. Compounds 4-6 were all inactive against HCMV but exhibited appreciable antiviral activity against VZV. Their anti-VZV activity was similar or higher to that of EDU and approximately 5-12-fold lower than that of acyclovir. The 5-(1-cyanamido-2-haloethyl)-(7,8) analogues of arabinouridine were moderately inhibitory for VZV and HSV-1 (strain KOS), whereas compounds 10 and 11 were inactive against herpes viruses. Compounds 5 and 6 also demonstrated modest anti-hepatitis B virus activity against DHBV (EC(50) = 19.9-23.6 microM). Interestingly, the related 5-(1-azido-2-bromoethyl)-2'-deoxyuridine (1n) analogue proved to be markedly inhibitory to DHBV replication (EC(50) = 2.6-6.6 microM). All compounds investigated exhibited low host cell toxicity to several stationary and proliferating host cell lines as well as mitogen-stimulated proliferating human T lymphocytes.  相似文献   

3.
We describe in this paper that the synthetic chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3-carboxylic acid (compound A) and its free aglycogene base (compound B) inhibit, with low cytotoxicity, the replication of herpes simplex virus type 1 and 2 (HSV-1 and HSV-2). Compound A inhibited HSV-1 replication in Vero cells with an EC(50) of 1.3 and 1.4 microM for an acyclovir (ACV)-sensitive strain and an ACV-resistant strain of this virus, respectively. Additionally, it inhibited HSV-2 replication with an EC(50) of 1.1 microM. Compound B also inhibited the ACV-sensitive and -resistant HSV-1 strains, and HSV-2 at EC(50) values of 1.7, 1.9 and 1.6 microM, respectively. Time-of-addition assays, performed with compound A, suggested that this molecule at an early time point of the HSV replication cycle. Kinetic assays demonstrated that compounds A and B inhibit the HSV DNA polymerase activity in a noncompetitive fashion, with a K(i) equal to 0.1 and 0.2 microM, respectively. Taken together, our results suggest that compounds A and B represent promising lead molecules for further anti-HSV drug design.  相似文献   

4.
5.
A number of novel 5-substituted 2'deoxypyrimidine nucleosides exhibited antiviral activity against herpes simplex virus type 1 strain V3 (HSV-1-V3) when assayed under one-step conditions in primary human lung fibroblast j(PHLF) cell cultures, and compared with the reference compounds cytosine arabinoside (ara-C), 5-iodo-2'-deoxyuridine (IUdR), and 5-iodo-5'amino-2',5'-dideoxyuridine (AIU). The most effective of these were (in order of decreasing activity): (E)-5-(2-bromovinyl)-UdR (BrVUdR) greater than ara-C greater than IUdR greater than 5-azidomethyl-UdR (AMeUdR) greater than 5-formyl-UdR (fUdR) greater than 5-hydroxymethyl-UdR (HMeUdR) greater than AIU greater than 5-mercaptomethyl-UdR (MMeUdR) = 5-hydroxymethyl-2'-deoxy-cytidine (HMeCdR) greater than 5-benzyloxymethyl-UdR (BOMeUdR). In a multistep virus replication experiment (plaque reduction assay on Vero cells) the order of decreasing activity was as follows: BrVUdR = ara-C greater than HMeUdR greater than fUdR IUdR greater than HMeCdR greater than BOMeUdR greater than AMeUdR greater than AIU greater than MMeUdR. BrVUdR effected a 50% reduction in plaque formation of different strains of HSV-1 at a concentration of 0.06-0.22 microM, of pseudorabies virus (PRV) at 0.02-0.23 microM, and of herpes simplex virus type 2 (HSV-2) at 8 microM, whereas the ID50 values for adenovirus type 2 and type 5 were 100 and 50-100 microM, respectively. The growth of synchronied baby hamster kidney cells in suspension cultures was inhibited by 50% at concentrations of 100, 70, 20, 4, 8, and 0.2 microM for BrVUdR, HMeCdR, IUdR, fUdR, BOMeUdR, and HMeUdR, respectively.  相似文献   

6.
In this study, 221 phytocompounds were evaluated for activity against anti-severe acute respiratory syndrome associated coronavirus (SARS-CoV) activities using a cell-based assay measuring SARS-CoV-induced cytopathogenic effect on Vero E6 cells. Ten diterpenoids (1-10), two sesquiterpenoids (11 and 12), two triterpenoids (13 and 14), five lignoids (15-19), curcumin (20), and reference controls niclosamide (21) and valinomycin (22) were potent inhibitors at concentrations between 3.3 and 10 microM. The concentrations of the 22 compounds to inhibit 50% of Vero E6 cell proliferation (CC50) and viral replication (EC50) were measured. The selective index values (SI = CC50/EC50) of the most potent compounds 1, 5, 6, 8, 14, and 16 were 58, >510, 111, 193, 180, and >667, respectively. Betulinic acid (13) and savinin (16) were competitive inhibitors of SARS-CoV 3CL protease with Ki values = 8.2 +/- 0.7 and 9.1 +/- 2.4 microM, respectively. Our findings suggest that specific abietane-type diterpenoids and lignoids exhibit strong anti-SARS-CoV effects.  相似文献   

7.
The deoxyuridine triphosphate nucleotidohydrolases (dUTPases, EC 3.6.1.23) from Escherichia coli K-12-,Acholeplasma laidlawii B-PG9-, human KB cell-, and the herpes simplex virus (HSV) type 1- and 2-induced dUTPases were purified and used to determine the effect of various mercury (II) compounds on their activities. Mercuric acetate, 5-mercuri-dUTP (HgdUTP), and 5-mercuri-dCTP (HgdCTP) acted as irreversible active site-directed inhibitors of the dUTPases purified from eukaryotic organisms but not those from prokaryotic organisms. The inhibition constants (Ki) were estimated for the KB, HSV-1, and HSV-2 dUTPases to be 8 +/- 2, 12 +/- 3, and 9 +/- 2 microM for mercuric acetate, 204 +/- 25, 121 +/- 15, and 111 +/- 10 microM for HgdUTP, and 775 +/- 25 and 651 +/- 23 microM for HgdCTP, respectively. The conversion of HgdUTP to its mercurithio-derivative resulted in a decrease in the affinity of the derivative for the eukaryotic dUTPases. The 5-mercurithioethylene glycol derivative of dUTP did not act as a substrate for the KB dUTPase but it did act as a substrate for the HSV-1- and HSV-2-induced dUTPases with Ki values of 526 +/- 47 and 483 +/- 32 microM, respectively. These results demonstrate that the eukaryotic dUTPases can be distinguished based upon differences in their affinities for the mercurithio-derivatives of dUTP and suggest that there are differences in the steric binding properties of the nucleotide-binding site of these enzymes.  相似文献   

8.
A bioassay-guided fractionation of an 80% acetone extract from BRIDELIA FERRUGINEA stem bark showing a dose-dependent inhibitory effect towards both the classical and the alternative pathways of the complement system resulted in the isolation of a biflavanol (gallocatechin-(4'- O-7)-epigallocatechin) ( 1), 3,5-dicaffeoylquinic acid ( 2), 1,3,4,5-tetracaffeoylquinic acid ( 3), and a series of 3-methoxyflavone derivatives, including quercetin 3-methyl ether ( 4), quercetin 3,7,3',4'-tetramethyl ether ( 5), myricetin 3',4',5'-trimethyl ether ( 6; new compound) named ferrugin, myricetin 3,3',4',5'-tetramethyl ether ( 7), myricetin ( 8), and quercetin 3- O-glucoside ( 9) as the active constituents. Especially the biflavanol 1 and the caffeoyl esters of quinic acid 2 and 3 showed a strong inhibitory effect (IC (50) < 10 microM) on the classical pathway, compared to rosmarinic acid. Also on the alternative pathway, the biflavanol 1, the quinic acid derivatives 2 and 3, and some of the 3-methoxyflavones 5, 7 and 8 were more active than rosmarinic acid. The quinic acid derivatives were shown to be inhibitors of the C1 component and the terminal route of the complement system.  相似文献   

9.
Cheng HY  Lin TC  Ishimaru K  Yang CM  Wang KC  Lin CC 《Planta medica》2003,69(10):953-956
In this study, the in vitro antiviral properties of prodelphinidin B-2 3,3'-di- O-gallate (PB233'OG) isolated from the bark of Myrica rubra (Myricaceae) was investigated. Results showed that PB233'OG exhibited anti-herpes simplex virus type 2 (HSV-2) activity with IC (50) values of 5.3 +/- 0.1 and 0.4 +/- 0.04 microM for XTT and plaque reduction assays, respectively. The IC (50) value increased with increasing MOI (multiplicity of infection). PB233'OG did not show a cellular cytotoxic effect at concentrations that possessed antiviral activity. Mechanistic studies demonstrated that PB233'OG inhibited HSV-2 attachment to the Vero cell, interfered with the penetration of HSV-2 into the Vero cell, affected the late stage(s) of the HSV-2 infection cycle, and also reduced the viral infectivity at high concentrations. It is concluded that PB233'OG exhibits various modes of action in its anti-HSV-2 effects.  相似文献   

10.
The synthesis of 5-(2-fluoroethyl)-2'-deoxyuridine (FEDU, 4b), its 2'-fluoro analogue 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-(2-fluoroethyl)-1H,3H- pyrimidine-2,4-dione (FEFAU, 4k), and the 2'-fluoro analogue of the potent antiherpes virus compound 5-(2-chloroethyl)-2'-deoxyuridine (CEDU), 5-(2-chloroethyl)-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-1H,3H-pyr imidine - 2,4-dione (CEFAU, 4i), is described. The antiviral activities of these compounds were determined in cell culture against herpes simplex virus (HSV) types 1 and 2 and varicella zoster virus (VZV). All compounds were shown to possess significant and selective antiviral activity. FEDU proved less potent than CEDU against VZV replication; however, it was more active against HSV-2. CEFAU showed marked activity against HSV-1, HSV-2, and VZV. The compound containing fluorine at both positions, FEFAU, exhibited the strongest antiviral potency against HSV-1, HSV-2, and VZV. It inhibited HSV-1 at a concentration of 0.03-0.2 microgram/mL, HSV-2 at 0.1-0.3 microgram/mL, and VZV at 0.03 microgram/mL. Neither FEDU nor CEFAU or FEFAU exerted a significant inhibitory effect on cell proliferation at a concentration of 100 micrograms/mL. Thus, the cytotoxicity of these compounds is as low as that of CEDU and compares favorably to that of previously described 2'-fluoroarabinosyl nucleoside analogues.  相似文献   

11.
The synthesis of potential "combined prodrugs" wherein phosphonoformate or phosphonoacetate was attached to the 5'-position of 2'-deoxyuridine, 2'-deoxythymidine, 5-iodo-2'-deoxyuridine (IDU), 5-(2-chloroethyl)-2'-deoxyuridine (CEDU), or 5-(2-bromovinyl)-2'-deoxyuridine (BVDU) or to the 3'-position of CEDU is described. The antiviral activities of these derivatives and of reference compounds were compared in Vero, HEp-2, and primary rabbit kidney cells against herpes simplex virus types 1 and 2 (HSV-1 and -2). The CEDU and BVDU analogues were also evaluated against systemic and intracutaneous HSV-1 infection in mice. The nature of the 5-substituent proved critical for antiviral activity, since only the 5-iodo-, 5-(2-bromovinyl)-, and 5-(2-chloroethyl)-substituted derivatives were inhibitory to the herpesviruses. Furthermore, the type specificity is determined by the nature of the 5-substituent: the IDU analogues were similarly inhibitory to HSV-1 and -2 whereas the CEDU and BVDU analogues inhibited HSV-2 replication only at considerably higher concentrations than HSV-1. In vivo, several derivatives were shown to possess significant antiviral activity; however, none surpassed its respective parent compound, CEDU or BVDU, in potency. It seems improbable, therefore, that a synergistic effect between PFA or PAA and the nucleoside analogue occurred. The extent of in vitro and in vivo activity of the CEDU and BVDU 5'-phosphonoformates and 5'-phosphonoacetates is most plausibly explained by the ease by which the "combined prodrugs" are hydrolyzed and the parent compound, CEDU and BVDU, respectively, is released.  相似文献   

12.
13.
The (+)- and (-)-enantiomers of the carbocyclic analogues of (E)-5-(2-bromovinyl)-2'-deoxyuridine (C-BVDU) and 5-iodo-2'-deoxyuridine (C-IDU) were synthesized by separate routes. Both the (+)- and (-)-enantiomers of C-BVDU and C-IDU were markedly inhibitory to herpes simplex virus type 1 (HSV-1) replication. (+)-C-BVDU and (+)-C-IDU were as inhibitory to HSV-1 as the racemic (+/-)-C-BVDU and (+/-)-C-IDU, respectively, whereas the (-)-enantiomers were only 10-fold less active. Also, the (+)- and (-)-enantiomers of C-BVDU were equally inhibitory to the growth of murine mammary carcinoma cells transformed by the HSV-1 or HSV-2 thymidine kinase (TK) gene (designated FM3A TK-/HSV-1 TK+ and FM3A TK-/HSV-2 TK+). The (+)- and (-)-enantiomers of C-BVDU and the (+)- and (-)-enantiomers of C-IDU had a remarkably similar affinity for HSV-1 TK [Ki, 0.09 and 0.19 microM for (+)-C-BVDU and (+)-C-IDU and 0.16 and 0.19 microM for (-)-C-BVDU and (-)-C-IDU, respectively]. The inhibition of HSV-1 TK by BVDU, IDU, (+)-C-BVDU, and (+)-C-IDU was purely competitive with regard to the natural substrate (thymidine), whereas (-)-C-BVDU, (-)-C-IDU, (+/-)-C-BVDU, and (+/-)C-IDU showed a linear mixed-type inhibition of HSV-1 TK. C-BVDU and C-IDU are examples of chiral molecules of which both isomeric forms are markedly active at both the cellular and enzymatic level.  相似文献   

14.
Eleven heterocyclic Schiff bases of aminohydroxyguanidine tosylate (SB-AHGs), compounds I-XI, were tested for antiviral activity against herpes simplex virus type 1 (HSV-1) and adenovirus type 5 (Ad 5) via plaque reduction and virus yield reduction assays. This work was undertaken to test the hypothesis that low molecular weight SB-AHGs (MW < 235 for the free SB) make better antiviral agents than high MW SB-AHGs (MW > 300). The plaque reduction assay method demonstrated that three compounds, I, VII and IX, had moderate activity against HSV-1, with 50% inhibitory concentration (IC50) values of 38.0, 23.5 and 52.1 microM, respectively. Against Ad 5, compounds I, VIII and XI exhibited moderate activity, with IC50 values of 52.7, 19.3 and 5.1 microM, respectively. Among the compounds screened, compound I (1-[(3'-hydroxy-6'-methyl-2'-pyridyl)methylene]amino-3-hydroxyguanidi ne tosylate) was the most promising antiviral candidate, with selectivity indices (SI) of 10.2 (HSV-1) and 7.6 (Ad 5), respectively. Virus yield reduction assays indicated that compound I had less antiviral potency against HSV-1 than against Ad 5. The antiviral effects of compound I at a high input virus multiplicity of infection (MOI > 5) indicated that compound I had effective anti-adenoviral activity at 24 h post infection. This work demonstrated that some of SB-AHGs only have moderate antiviral activities against Ad 5 and HSV-1 viruses. In general, low MW SB-AHGs have low cytotoxicities to the host cells.  相似文献   

15.
Flavonoids, a group of low molecular weight phenylbenzopyrones, have various pharmacological properties including antioxidant, anticancer, bactericidal, and anti-inflammatory. We carried out anti-herpetic assays on 18 flavonoids in five classes and a virus-induced cytopathic effect (CPE) inhibitory assay, plaque reduction assay, and yield reduction assay were performed. When flavonoids were applied at various concentrations to Vero cells infected by HSV-1 and 2, most of the flavonoids showed inhibitory effects on virus-induced CPE. Among the flavonoids, EC, ECG (flavanols), genistein (isoflavone), naringenin (flavanone), and quercetin (flavonol) showed a high level of CPE inhibitory activity. The antiviral activity of flavonoids were also examined by a plaque reduction assay. EC, ECG, galangin, and kaempferol showed a strong antiviral activity, and catechin, EGC, EGCG, naringenin, chrysin, baicalin, fisetin, myricetin, quercetin, and genistein showed moderate inhibitory effects against HSV-1. In these experiments, flavanols and flavonols appeared to be more active than flavones. Furthermore, treatment of Vero cells with ECG and galangin (which previously showed strong antiviral activities) before virus adsorption led to a slight enhancement of inhibition as determined by a yield reduction assay, indicating that an intracellular effect may also be involved.  相似文献   

16.
A series of racemic (1 alpha (E), 2 beta, 3 alpha)-1-[2,3-bis(hydroxymethyl)cyclobutyl]-5-(2-halovinyl)uracils was synthesized and evaluated in cell culture. The bromovinyl, iodovinyl, and chlorovinyl analogues, 13, 15, and 16, respectively, are all potent inhibitors of varicella zoster virus (VZV), but are less inhibitory to the replication of human cytomegalovirus (HCMV) and herpes simplex viruses 1 and 2 (HSV-1, HSV-2). The excellent anti-VZV activities of 13, 15, and 16 coupled with their virtual inability to inhibit WI-38 cell growth indicate high in vitro therapeutic indices. VZV thymidine kinase readily converts these compounds to their respective monophosphates but not to their corresponding diphosphates. Compound 13a, the (1'R) enantiomer of the bromovinyl analogue 13, was also synthesized, and its potency is comparable to that of the racemate. A lower homologue 14, (1 alpha (E),2 beta, 3 alpha)-1-[2-hydroxy-3-(hydroxymethyl)cyclobutyl]-5- (2-bromovinyl)uracil, was found to be inactive against VZV, HCMV, HSV-1, and HSV-2.  相似文献   

17.
18.
5'-O-Trityl derivatives of thymidine (dThd), (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), and their acyclic analogs 1-[(Z)-4-triphenylmethoxy-2-butenyl]thymine (KIN-12) and (E)-5-(2-bromovinyl)-1-[(Z)-4-triphenylmethoxy-2-butenyl]uracil (KIN-52) have been synthesized and evaluated for their inhibitory activity against the amino acid sequence related mitochondrial dThd kinase (TK-2), herpes simplex virus type 1 (HSV-1) TK, and Drosophila melanogaster multifunctional 2'-deoxynucleoside kinase (Dm-dNK). Several compounds proved markedly inhibitory to these enzymes and represent a new generation of nucleoside kinase inhibitors. KIN-52 was the most potent and selective inhibitor of TK-2 (IC(50), 1.3 microM; K(i), 0.50 microM; K(i)/K(m), 0.37) but was not inhibitory against HSV-1 TK and Dm-dNK at 100 microM. As found for the alternative substrate BVDU, the tritylated compounds competitively inhibited the three enzymes with respect to dThd. However, whereas BVDU behaved as a noncompetitive inhibitor (alternative substrate) of TK-2 and HSV-1 TK with respect to ATP as the varying substrate, the novel tritylated enzyme inhibitors emerged as reversible purely uncompetitive inhibitors of these enzymes. Computer-assisted modeling studies are in agreement with these findings. The tritylated compounds do not act as alternative substrates and they showed a type of kinetics against the nucleoside kinases different from that of BVDU. KIN-12, and particularly KIN-52, are the very first non-nucleoside specific inhibitors of TK-2 reported and may be useful for studying the physiological role of the mitochondrial TK-2 enzyme.  相似文献   

19.
20.
Four known flavonoids and two galloyl glucoses isolated from the stem-bark of Juglans mandshurica (Juglandaceae), namely taxifolin (1), afzelin (2), quercitrin (3), myricitrin (4), 1,2,6-trigalloylglucose (5), and 1,2,3,6-tetragalloylglucose (6), were evaluated for their anti-complement activity against complement system. Afzelin (2) and quercitrin (3) showed inhibitory activity against complement system with 50% inhibitory concentrations (IC(50)) values of 258 and 440 microM. 1,2,6-Trigalloylglucose (5) and 1,2,3,6-tetragalloylglucose (6) exhibited anti-complement activity with IC(50) values of 136 and 34 microM. In terms of the evaluation of the structure-activity relationship of 3,5,7-trihydroxyflavone, compounds 2, 3, and 4 were hydrolyzed with naringinase to give kaempferol (2a), quercetin (3a), and myricetin (4a) as their aglycones, and these were also tested for their anti-complement activity. Of the three aglycones, kaempferol (2a) exhibited weak anti-complement activity with an IC(50) value of 730 microM, while quercetin (3a) and myricetin (4a) were inactive in this assay system. Among the compounds tested, 1,2,3,6-tetragalloylglucose (6) showed the most potent anticomplement activity (IC(50), 34 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号