首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent reports have identified discrepancies between the anatomical distribution of transmitters and their receptors, a phenomenon known as transmitter-receptor mismatch. However, quantitative determinations of transmitter activity and receptor density in individual brain regions have not been conducted in parallel. We therefore sought to determine quantitatively the relationship between muscarinic acetylcholine receptor density and the density of cholinergic innervation as reflected by activity of the biosynthetic enzyme for acetylcholine, choline acetyltransferase (ChAT). To assure sampling of equivalent regions using the two methods, an 'electronic micropunch' technique was developed to allow measurement of [3H]quinuclidinyl benzilate ([3H]QNB) binding within the corresponding cylinders of tissue obtained by the micropunch cannula. Nineteen regions of the rat medulla (1 mm diameter, 1 mm height) were studied. The micropunch region containing the gracile nucleus, the area postrema and the choroid plexus of the fourth ventricle contained the highest ChAT activity, but exhibited little [3H]QNB binding to muscarinic receptors. However, among the remaining 18 regions a strong correlation was obtained between uncorrected muscarinic receptor density and ChAT activity within each micropunched region (r = 0.89, n = 18). Correction for autoradiographic efficiency weakened the overall relationship between receptor density and ChAT activity (r = 0.58, n = 18). This was due to a relatively high density of receptors associated with fiber tract regions containing low ChAT activity. The presence of receptors within white matter is ordinarily obscured by high tritium quenching. This is consistent with the hypothesis that a portion of muscarinic receptors are located extrasynaptically and may be present within axons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
An autoradiographic analysis of cholinergic receptors in mouse brain   总被引:2,自引:0,他引:2  
Autoradiographic techniques were used to localize cholinergic receptors in the central nervous system of female DBA mice. Nicotinic receptors were identified using [3H]-L-nicotine and alpha-[125I]-bungarotoxin (BTX); [3H]-quinuclidinyl benzilate (QNB) was used to examine muscarinic receptor binding. There was little overlap between the regional distribution of binding sites for these ligands. Nicotine binding was highest in thalamic nuclei, the superior colliculus and the interpeduncular nucleus. For BTX binding, high density receptor populations were identified in the hippocampus, caudate putamen, colliculi (superior and inferior) and various nuclei in the hypothalamus and hindbrain. Muscarinic receptors were distributed more uniformly than nicotinic receptors; the colliculi, hippocampus and cerebral cortex had the highest level of QNB binding. Species differences between rats and mice in terms of cholinergic receptor binding are discussed.  相似文献   

3.
Binding of spiperone and 3-quinuclidinyl benzilate (QNB), both labeled with hydrogen 3 (3H), were measured in caudate tissue obtained from 8 living parkinsonian patients at the time of cerebral transplantation. This was clinically homogeneous group of patients. All remained predominantly responsive to levodopa, although with marked disability secondary to clinical fluctuations (short-duration responses) and medication-induced dyskinesias; all were receiving substantial doses of levodopa and 6 of the 8 patients were additionally receiving bromocriptine or pergolide. Binding densities of dopamine D2 receptors, as measured by [3H]spiperone binding, were reduced in this group of patients, compared to caudate specimens from autopsy control subjects. This findings may reflect medication-induced receptor downregulation. Parallel changes occurred with muscarinic cholinergic receptors; [3H]QNB binding was significantly reduced, compared to autopsy control values. This reduction of muscarinic receptors might be due to loss of nigrostriatal terminals that are known to contain muscarinic receptors. Alternatively, muscarinic receptors may have been downregulated by increased corticostriatal glutamatergic input to cholinergic cells, inferred to be present based on the prominent levodopa-induced dyskinesias. Finally, receptor deficits could have been a reflection of more widespread degenerative cerebral disease, although levodopa-refractory symptoms were generally not pronounced in these patients.  相似文献   

4.
Brain muscarinic receptors in senile dementia   总被引:8,自引:0,他引:8  
Muscarinic receptors were analyzed in various post-mortem brain samples of 39 patients with different types of dementia and of 30 age-matched controls by the specific binding of [3H]QNB. The diagnoses were verified neuropathologically. The binding of [3H]QNB was significantly decreased in the hippocampus, amygdala and nucleus accumbens in patients with Alzheimer's disease (AD) and with combined type of dementia (CD), whereas in patients with multi-infarct dementia (MID) the binding was not significantly decreased in the limbic areas but only in the caudate nucleus. Of the clinical variables, orofacial dyskinesias in patients with AD but not with MID correlated with low brain weight and with the decreased [3H]QNB binding in the striatum and frontal cortex. The results reveal some differences between AD and MID. Changes in muscarinic receptor binding show that the cholinergic neurons in the limbic system are especially vulnerable in patients with AD and CD.  相似文献   

5.
We performed receptor autoradiography to determine sequential alterations in the binding of muscarinic cholinergic and adenosine A1 receptors and of a voltage dependent L-type calcium channel blocker 1 h-1 month after transient cerebral ischemia in the gerbil brain. [3H]Quinuclidinyl benzilate (QNB), [3H]cyclohexyladenosine (CHA) and [3H]PN200-110 were used to label muscarinic and adenosine A1 receptors and L-type calcium channels, respectively. Transient ischemia was induced for 10 min. [3H]QNB and [3H]CHA binding showed no significant alteration in selectively vulnerable areas at an early stage (1-24 h) of recirculation. However, the dentate molecular layer which was resistant to ischemia revealed a significant decrease in the [3H]CHA binding sites 24 h after ischemia. Thereafter, the [3H]QNB and [3H]CHA binding showed significant reduction in most of selectively vulnerable areas. Marked reduction was especially found in the dorsolateral part of striatum and the hippocampal CA1 sector which was the most vulnerable to ischemia. In contrast, [3H]PN200-110 binding showed a transient elevation in the hippocampal CA1 sector, the dentate molecular layer and the thalamus 1 h of recirculation. However, the striatum and neocortex revealed no alteration in the [3H]PN200-110 binding. Thereafter, the reduction in the [3H]PN200-110 binding was seen only in the dorsolateral part of the striatum and the hippocampal CA1 sector. The results suggest that transient cerebral ischemia can cause the alterations in the binding of muscarinic cholinergic and adenosine A1 receptors and of L-type calcium channel blocker in most of selectively vulnerable areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The binding of [3H] quinuclidinyl benzilate ( [3H] QNB) to muscarinic cholinergic receptors in dentate gyrus of rat hippocampal formation was analyzed by membrane binding assay and in vitro autoradiography. The destruction of dentate granule cells, either by neonatal irradiation or colchicine injection, resulted in nearly complete elimination of [3H] QNB binding sites in the molecular and granule cell layers. By contrast, neither perforant path transection nor destruction of the septal-hippocampal cholinergic afferents caused a decline of [3H] QNB binding sites. Amygdala kindled seizures resulted in a 30% reduction of [3H] QNB binding sites which was distributed uniformly across the entire molecular and granule cell layers. Thus, most, if not all, of the muscarinic cholinergic receptors present in dentate gyrus appear to reside on the somata and dendritic trees of the dentate granule cells. We propose that this kindled seizure-induced decline of muscarinic receptors represents an endogenous compensatory mechanism designed to stabilize granule cell excitability.  相似文献   

7.
[3H]Flunitrazepam, [3H]PK 11195, [3H]quinuclidinyl benzilate (QNB) and monoamine oxidase (MAO) A and B activity were measured in male rats 1, 3 and 7 days following laparotomy. The surgery resulted in the up-regulation of central benzodiazepine (BZ) receptors in cerebral cortex and of peripheral BZ binding sites in brain and kidney on the first and third days after operation. This increase was followed by a decrease to normal range 7 days after the surgical procedure. [3H]QNB binding to muscarinic receptors in the cerebral cortex as well as MAO A and B activity in rat cerebral cortex and kidney were not affected by the surgical manipulation. The modulatory effect of surgery on BZ receptors corresponds to stages of the healing process in surgical wounds.  相似文献   

8.
Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers [3H]hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in [3H]sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in [3H]QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in [3H]sulpiride and [3H]QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with [3H]SCH23390 and [3H]pirenzepine, respectively. In addition, no change in [3H]forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and [3H]forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.  相似文献   

9.
[3H]Quinuclidinyl benzilate (QNB) binds to specific muscarinic receptors of rat striatum, in vivo. The binding is saturable and displaceable by muscarinic drugs. Clozapine and thioridazine are unique antipsychotic agents with low liability for extra-pyramidal side-effects, and both displaced QNB, while several other neuroleptics did not. In addition to this apparent direct competition for cholinergic receptors, morphine and amphetamine increased QNB binding by indirect influences on muscarinic receptors. In vivo QNB binding not only confirms in vitro findings, but it also detects indirect, probably transsynaptic, alterations of muscarinic cholinergic receptor dynamics.  相似文献   

10.
Anatomical evidence indicates that cholinergic and opioidergic systems are co-localized and acting on the same neurons. However, the regulatory mechanisms between cholinergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are compensatory changes of acetylcholinesterase activity and cholinergic receptors in mice lacking mu-opioid receptor gene. The acetylcholinesterase activity was determined by histochemistry assay. The cholinergic receptor binding was carried out by quantitative autoradiography using [3H]-quinuclidinyl benzilate (nonselective muscarinic receptors), N-[3H]-methylscopolamine (nonselective muscarinic receptors), [3H]-pirenzepine (M1 subtype muscarinic receptors) and [3H]-AF-DX384 (M2 subtype muscarinic receptors) in brain slices of wild-type and mu-opioid receptor knockout mice. The acetylcholinesterase activity of mu-opioid receptor knockout mice was higher than that of the wild-type in the striatal caudate putamen and nucleus accumbens, but not in the cortex and hippocampus areas. In addition, the bindings in N-[3H]-methylscopolamine and [3H]-AF-DX384 of mu-opioid receptor knockout mice were significantly lower when compared with that of the wild-type controls in the striatal caudate putamen and nucleus accumbens. However, there were no significant differences in bindings of [3H]-quinuclidinyl benzilate and [3H]-pirenzepine between mu-opioid receptor knockout and wild-type mice in the cortex, striatum and hippocampus. These data indicate that there are up-regulation of acetylcholinesterase activity and compensatory down-regulation of M2 muscarinic receptors in the striatal caudate putamen and nucleus accumbens of mu-opioid receptor knockout mice.  相似文献   

11.
Stereotactic implantation of fetal brain regional anlage into adult host brain ("brain transplantation") appears to be an increasingly viable strategy for therapy of neurodegenerative diseases. We have studied implantation of fetal striatum into adult striatum, previously lesioned by neurotoxic amino acid injection, as a model for transplantation therapy of Huntington's disease. The beginning of behavioral recovery to apomorphine is not apparent until 6.5 months after implantation. By 4 months after implantation cerebral blood flow through the implants appears equal to that in the intact contralateral striatum. At this time, cerebral glucose utilization is reduced in the implants but increases following apomorphine treatment. The development of D1 and D2 dopamine (DA) receptors is markedly deficient in the striatal grafts at both 4 and 6.5 months after implantation. Very little D2 radioligand binding was observed in the grafts at either time point; D1 receptors appeared in a patchy fashion by 6.5 months at densities approaching normal striatum. In situ hybridization of D2 dopamine receptor mRNA demonstrated robust hybridization signal in normal striatum and accumbens but no signal in 6.5-month-old striatal grafts. Adenylate cyclase (AC) activity, examined with high-affinity [3H]forskolin binding, also appeared in patches similar to D1 receptors at 6.5 months. In contrast, protein kinase C activity, labeled with [3H]phorbol ester, was very apparent in the grafts at both time points. Higher and generally homogenous densities of muscarinic cholinergic receptors, assessed with [3H]QNB binding, develop in the grafts, but there appear to be few functioning cholinergic terminals, as measured by [3H]hemicholinium binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The pharmacological characteristics of both muscarinic receptors and high-affinity choline uptake sites were examined within intracerebral implants of foetal basal forebrain cell suspensions. Approximately 12 weeks after implantation, the transplants were identified by acetylcholinesterase histochemistry. Muscarinic receptors were labelled by [3H]quinuclidinyl benzylate (QNB) autoradiography. The M1 and M2 receptor components of QNB binding were differentiated by pirenzepine competition. The distribution of the high-affinity choline uptake site was examined using [3H]hemicholinium-3 (HC3) autoradiography. Unilateral lesion of the nucleus basalis reduced [3H]QNB (8-25%) and [3H]HC3 (19-43%) binding throughout host frontoparietal cortex ipsilateral to the lesion but did not significantly alter these cholinergic markers within cingulate cortex, subcortical white matter, striatum or septum. Saturation analysis of the implanted tissue revealed the presence of a single population of [3H]QNB and [3H]HC3 binding sites with affinities similar to those of the host tissue (KD = 0.43 nM and 20.4 nM respectively). However, the receptor profile which developed appeared to be intrinsic to the implant; it was unaffected by the site of implantation and was dissimilar to that which ultimately developed in the donor tissue when left in situ.  相似文献   

13.
[3H]Quinuclidinyl benzilate (QNB) binds to specific muscarinic receptors of rat striatum, in vivo. The binding is saturable and displaceable by muscarinic drugs. Clozapine and thioridazine are unique antipsychotic agents with low liability for extrapyramidal side-effects, and both displaced ONB, while several other neuroleptics did not. In addition to this apparent direct competition for cholinergic receptors, morphine and amphetamine increased ONB binding by indirect influences on muscarinic receptors. In vivo QNB binding not only confirms in vitro findings, but it also detects indirect, probably transsynaptic, alterations of muscarinic cholinergic receptor dynamics.  相似文献   

14.
The autoradiographic distributions of receptors with high affinity for [3H]oxotremorine-M (the M2 receptor) and [3H]pirenzepine (the M1 receptor) were studied in the rat brain. M1 receptors were seen in highest density only in telencephalic structures: cerebral cortex (layers I-II), hippocampus, dentate gyrus, medial and basolateral amygdala, nucleus accumbens and caudate/putamen. M2 receptors were detected throughout the brain, with highest levels observed in cerebral cortical layers III and V, forebrain cholinergic nuclei, caudate/putamen, various thalamic areas, inferior and superior colliculus, interpeduncular and pontine nuclei, brainstem cholinergic nuclei and cervical spinal cord regions. M2 receptors were found to be good markers for cholinergic cell groups and the majority of cholinergic projection areas, whereas M1 receptors were only found in a large sub-group of telencephalic cholinergic projection areas, and the pattern of distribution of receptors in these areas differed from that of M2 receptors. Scatchard analysis of [3H]oxotremorine-M binding to inferior collicular slices revealed one site with a dissociation constant (Kd) of 1.9 nM and a receptor density (Bmax) of 1.4 pmol/mg protein. Our data support the hypothesis that M1 and M2 receptors are physically distinct sub-types of the muscarinic acetylcholine receptor.  相似文献   

15.
The muscarinic antagonist L-[3H]quinuclidinyl benzilate (L-[3H]QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-[3H]QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-[3H]QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-[3H]QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-[3H]QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-[3H]QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-[3H]QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-[3H]QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.  相似文献   

16.
[3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors.  相似文献   

17.
An autoradiographic analysis of high-affinity binding sites for the vesicular acetylcholine transport blocker [3H]vesamicol (2-(4-phenylpiperidino) cyclohexanol; AH 5183) was conducted in rat brain. [3H]Vesamicol binding was displaced 52-99% by DPPN [( 2,3,4,8]-decahydro-3-(4-phenyl-1-piperidinyl)-2-napthalenol) (IC50 = 14 nM) and by ketanserin (500 nM), haloperidol (43 nM), and vesamicol analogs, but not by drugs selective for adenosine, adrenergic, amino acid, calcium channel, monoaminergic, opioid, PCP, sigma, or several other receptor classes. [3H]Vesamicol binding was most concentrated in the interpeduncular nucleus and fifth and seventh cranial nerve nuclei. Moderate binding was found in the lateral caudate-putamen, medial nucleus accumbens, olfactory tubercle, vertical and horizontal diagonal bands of Broca, and basolateral amygdala. The distribution of [3H]vesamicol binding was similar to distributions of acetylcholine (r = 0.88), acetylcholine esterase (r = 0.97), choline acetyltransferase (ChAT) (r = 0.97), and [3H]hemicholinium-3 binding sites (r = 0.95-0.99). Lower correlations were obtained between [3H]vesamicol and muscarinic receptor densities (r = 0.50-0.70). Few exceptions to the match between binding and cholinergic neuronal markers were found, e.g., the molecular layer of the cerebellum and the thalamus. Lesions of cholinergic neuronal projections to the neocortex or hippocampus reduced [3H]vesamicol binding in each of these regions, but to a lesser extent than reductions in ChAT. [3H]Vesamicol binding sites appear to be anatomically associated with brain cholinergic neurons, a locus that is consistent with the control by this site of vesicular acetylcholine uptake.  相似文献   

18.
Physiological and biochemical evidence indicates the existence of functional muscarinic cholinergic receptors in the anterior pituitary. The selectivity of these receptors has been characterised by studying the binding of [3H]quinuclidinyl benzilate ([3H]QNB) and [3H]diphenyl-acetoxy-N-methyl-piperidine ([3H]4-DAMP) in membrane preparation of male rat anterior pituitary at 25 degrees C. Competition experiments with receptor selective muscarinic antagonists were used to characterise specific selective muscarinic receptor binding. Both [3H]QNB and [3H]4-DAMP bound to anterior pituitary membranes at low concentrations, binding was saturable and was potently displaced by 4-DAMP (M1, M3 subtypes selective antagonist) > atropine (general) > pirenzepine (M1). Methoctramine (M2) didn't antagonise the [3H]QNB binding efficiently. Acetylcholine and carbachol increased the intracellular Ca2+ level in 62% and 65% of cultured rat anterior pituitary cells in a dose-dependent manner, and this effect was prevented by pirenzepine. Based on these results we suggest that both M1 and M3 muscarinic receptors are present and active in the majority of cells in the rat anterior pituitary gland, but their physiological role in the adult rat remains to be examined.  相似文献   

19.
Choline acetyltransferase (ChAT) activity is present in isolated cerebral capillaries, where it has been considered to be a marker for perivascular cholinergic nerve terminals. However, ChAT-like immunoreactivity has been visualized in endothelial cells. This finding raised the possibility that at least part of the biochemically detected ChAT has a nonneuronal origin. To evaluate the relative contribution of endothelial cells and nerve fibers to the total acetylcholine (ACh)-synthesizing capacity of cerebral capillaries, ChAT activity and ACh release were measured in capillaries and in purified endothelial cells isolated from bovine cerebral cortex. Isolated capillaries showed ChAT activity, which was inhibited by 2-benzoylethyl trimethylammonium to the same extent as cerebral ChAT. When preincubated with [3H]choline, these capillaries presented a calcium-dependent enhancement in tritium release upon electrical field stimulation. Purified endothelial cells had minor ChAT activity and lacked the ability to release tritium in response to electrical stimulation, although the endothelial markers alkaline phosphatase, gamma-glutamyltranspeptidase, and 1,1'-dioctadecyl-1,3,3',3'-tetramethyl-iodocarbocyanide perchlorate-labeled acetylated low-density lipoprotein uptake were fully preserved. These data indicate that, within isolated cerebral capillaries, ACh is synthesized and released by a periendothelial structure. The fact that ACh release is provoked by electrical stimulation and by a calcium-dependent mechanism strongly suggests that cerebrovascular ACh has a neuronal origin.  相似文献   

20.
Acetylcholine and muscarinic agonists inhibit chemosensory activity in the rabbit carotid sinus nerve (CSN). Because the mechanism of this inhibition is poorly understood, we have investigated the kinetics and distribution of muscarinic receptors in the rabbit carotid body with the specific muscarinic antagonist [3H]quinuclidinylbenzilate ([3H]QNB). Equilibrium binding experiments identified displaceable binding sites (1 microM atropine) with a Kd = 71.46 pM and a Bmax = 9.23 pmol/g tissue. These binding parameters and the pharmacology of the displaceable [3H]QNB binding sites are similar to specific muscarinic receptors identified in numerous other nervous, muscular and glandular tissues. Comparisons of specific binding in normal and chronic CSN-denervated carotid bodies suggest that muscarinic receptors are absent on afferent terminals in the carotid body; however, nearly 50% of the specific [3H]QNB binding is lost following chronic sympathectomy, suggesting the presence of presynaptic muscarinic receptors on the sympathetic innervation supplying the carotid body vasculature. Autoradiographic studies have localized the remainder of [3H]QNB binding sites to lobules of type I and type II parenchymal cells. In separate experiments, the muscarinic agonists, oxotremorine (100 microM) stimulation of the in vitro carotid body. Our data suggest that muscarinic inhibition in the rabbit carotid body is mediated by receptors located on type I cells which are able to modulate the excitatory actions of acetylcholine at nicotinic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号