首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B H Chong  X P Du  M C Berndt  S Horn  C N Chesterman 《Blood》1991,77(10):2190-2199
Sera of 12 patients with quinine/quinidine-induced thrombocytopenia showed drug-dependent antibody binding to glycoprotein (GP) Ib-IX complex. The reaction with GPIb-IX complex of 11 of these 12 sera was strongly inhibited by the complex-specific monoclonal antibodies (MoAbs) AK1 and SZ1. The exception was a quinine-induced serum designated BU. The reaction of the six quinidine-induced sera was also partially blocked by an anti-GPIX MoAb, FMC25. Only 3 of the 12 patient sera showed drug-dependent antibody binding to GPIIb/IIIa, which was strongly inhibited by the anti-GPIIIa MoAb 22C4, and the anti-GPIIb alpha MoAb SZ22. With detergent-solubilized Serratia metalloprotease-treated platelets, quinine/quinidine-induced sera, except BU, immunoprecipitated a membrane-bound proteolytic fragment of GPIb-IX complex. In contrast, BU immunoprecipitated glycocalicin and a 40-Kd peptide tail fragment of GPIb alpha from the cell supernatant. Using purified GPIb-IX complex or its components as the target antigen, all the quinine-induced sera, except BU, immunoprecipitated GPIb-IX complex but failed to immunoprecipitate GPIb, GPIX, or the complex reformed from GPIb and GPIX. The quinidine-induced sera strongly immunoprecipitated purified GPIb-IX complex, weakly immunoprecipitated purified GPIX and the recombined complex, but did not immunoprecipitate purified GPIb. The combined data suggest that one quinine-dependent antibody (BU) recognizes an epitope in the peptide tail region of GPIb alpha and the other five quinine-dependent antibodies react with a complex-specific epitope on the membrane-associated region of GPIb-IX complex, whereas each of the six quinidine-induced sera contain two drug-dependent antibodies, one reactive with the GPIb-IX complex-specific epitope and the other reactive with GPIX. The binding domain(s) on GPIIb/IIIa for the quinine/quinidine-dependent antibodies appear to be sterically close to the epitopes for 22C4 and SZ22.  相似文献   

2.
The rapidity by which drug-dependent antiplatelet antibodies can develop is not known, since patients are only studied during or after the episode of thrombocytopenia. This report describes the development of quinidine-induced immune thrombocytopenia in a healthy volunteer during a drug study. The thrombocytopenia developed within two weeks of initiation of quinidine therapy. During the thrombocytopenic episode, but not before receiving the drug, the patient had an IgG antiplatelet antibody that bound to control platelets in the absence of the drug. This antibody was absent when the drug was discontinued and the platelet count rose. The patient's acute serum also induced the release of serotonin from control platelets, and the reaction was enhanced by quinidine. This indicates that drug-dependent antiplatelet antibodies can develop rapidly and supports the hypothesis that quinidine-induced thrombocytopenia is due to a quinidine-dependent platelet-specific IgG.  相似文献   

3.
《Platelets》2013,24(4):173-181
SUMMARY.

Immune thrombocytopenia is a relatively common problem associated with the clinical usage of drugs. Drugs frequently implicated include quinine, quinidine, heparin, penicillins, cephalosporins, co-trimoxazole, gold and D-penicillamine. Bleeding including bruising and purpura is the usual clinical manifestation except in immune heparin-induced thrombocytopenia in which thrombosis occurs more frequently than bleeding. Cessation of the offending drug is the important step in the treatment but other measures may also be required such as platelet transfusion and steroid therapy for patients with clinical bleeding or antithrombotic therapy with warfarin and dextran or low molecular weight heparin/heparinoid for patients with heparin-induced thrombocytopenia and thrombosis. Idiosyncratic drug-induced thrombocytopenia is mediated by an antibody which binds to platelets only in the presence of the drug resulting in the clearance of sensitised platelets by the reticuloendothelial system. In quinine/quinidine-induced thrombocytopenia, the antibodies recognise drug-dependent epitopes on platelet membrane glycoproteins Ib-IX and/or glycoproteins IIb-IIIa. In immune heparin-induced thrombocytopenia the current data suggest a mechanism which probably involves the binding of heparin-antibody complexes to the platelet Fc receptors but the precise mechanism is yet to be fully characterised. The associated thrombosis in this condition is likely to be due to platelet activation and possibly endothelial cell damage induced by the heparin-related antibody.  相似文献   

4.
Berndt  MC; Chong  BH; Bull  HA; Zola  H; Castaldi  PA 《Blood》1985,66(6):1292-1301
Two murine monoclonal antibodies, FMC 25 and AN 51, directed against distinct epitopes on the glycoprotein Ib complex, have been used to further define the mechanism of quinine/quinidine drug-dependent antibody interaction with platelets. FMC 25, directed against an epitope on glycoprotein IX, had no effect on platelet aggregation induced by collagen or adenosine diphosphate and little, if any, effect on ristocetin-induced platelet agglutination. FMC 25 and its (Fab)2 fragment, however, were potent inhibitors of drug-dependent antibody- induced platelet aggregation and blocked binding of drug-dependent antibody to platelets as assessed by indirect platelet immunofluorescence. In contrast, AN 51, directed against an epitope on the alpha-subunit of glycoprotein Ib, blocked ristocetin-induced, factor VIII/von Willebrand factor (FVIII/vWF)-dependent platelet agglutination but not drug-dependent antibody-induced platelet aggregation or binding of drug-dependent antibody to platelets. Selective proteolytic removal of the majority of the alpha-subunit of glycoprotein Ib (glycocalicin) from platelets by treatment with calcium- dependent protease did not affect binding of drug-dependent antibody. In addition, a quinidine-dependent antiplatelet antibody immunoprecipitated glycoprotein Ib complex from normal platelets and the membrane-associated proteolytic remnant of the glycoprotein Ib complex from calcium-dependent protease-treated platelets. Preincubation of drug-dependent antibody with purified glycoprotein Ib complex inhibited subsequent binding of antibody to platelets, but the separated components, glycoprotein Ib and glycoprotein IX, were both ineffective, suggesting that the normal interaction between glycoprotein Ib and glycoprotein IX in the intact complex was necessary for drug-dependent antibody recognition. The functional response of platelets to drug-dependent antibody was not mediated by way of platelet Fc receptor, since aggregation of washed platelets by acetone- aggregated IgG was not inhibited by FMC 25 (Fab)2. FVIII/vWF was not required for drug-dependent antibody-induced platelet aggregation. The combined evidence is consistent with quinine/quinidine-dependent antibody-platelet interaction occurring by way of a FVIII/vWF- independent, Fc receptor-independent mechanism that probably involves binding of antibody to glycoprotein IX or the beta-subunit of glycoprotein Ib or both.  相似文献   

5.
Heparin-induced thrombocytopenia is characterized by moderate thrombocytopenia and thrombotic complications, whereas quinine/quinidine-induced thrombocytopenia usually presents with severe thrombocytopenia and bleeding. Using flow cytometry and assays of procoagulant activity, we investigated whether sera from patients with these immune drug reactions could stimulate normal platelets to generate platelet-derived microparticles with procoagulant activity. Sera or purified IgG from patients with heparin-induced thrombocytopenia stimulated the formation of platelet-derived microparticles in a heparin-dependent fashion. Further studies showed that heparin-induced thrombocytopenia sera also produced a marked increase in procoagulant activity. In contrast, sera from patients with quinine- or quinidine-induced thrombocytopenia did not generate platelet-derived microparticles nor generate increased procoagulant activity. However, quinine/quinidine-induced thrombocytopenia sera produced a significant increase in the binding of IgG to platelets in a drug-dependent fashion, whereas sera from patients with heparin-induced thrombocytopenia demonstrated no drug-dependent binding of IgG to platelets. We also observed increased levels of circulating microparticles in patients with acute heparin-induced thrombocytopenia compared with control patients. Our observations indicate that the generation of procoagulant platelet-derived microparticles in vivo is a plausible explanation for the thrombotic complications observed in some patients with heparin-induced thrombocytopenia.  相似文献   

6.
G P Visentin  P J Newman  R H Aster 《Blood》1991,77(12):2668-2676
Recent studies have shown that antibodies characteristic of quinine- and quinidine-induced thrombocytopenia sometimes recognize the platelet membrane glycoprotein (GP) complex IIb/IIIa in addition to their well known target, GPIb/IX. We have investigated the frequency with which drug-induced antibodies bind to GPIIb/IIIa and the nature of their target epitopes. In studies of sera from 13 patients sensitive to quinidine or quinine, we found that 10 contained IgG antibodies specific for both GPIb/IX and GPIIb/IIIa, two reacted with GPIb/IX alone, and one reacted with GPIIb/IIIa alone. In all cases, the presence of drug was required for binding of IgG to target GPs. By immunoabsorption, we found that each of five polyspecific sera contained at least two different antibodies, one reactive with GPb/IX and the other with GPIIb/IIIa. Further studies with eight drug-dependent antibodies (DDAb) specific for GPIIb/IIIa showed that three recognized the GPIIb/IIIa complex only, one recognized GPIIb alone, and three recognized GPIIIa alone. The eighth serum appeared to bind to both GPIIIa alone and to an epitope determined by the GPIIb/IIIa complex. The three antibodies specific for GPIIIa alone also reacted with GPIIIa deglycosylated with endo-H, and with the major (61 Kd) fragment obtained by chymotryptic digestion of GPIIIa but failed to react with reduced GPIIIa. These findings demonstrate that, in drug-induced, immunologic thrombocytopenia, the anti-platelet immune response is typically directed against epitopes on both GPIb/IX and GPIIb/IIIa. The three DDAb we studied that were specific for GPIIIa alone recognize epitopes resistant to chymotrypsin and endo-H treatment that are dependent on intrachain disulfide bonding.  相似文献   

7.
Chong BH 《Platelets》1991,2(4):173-181
SUMMARY. Immune thrombocytopenia is a relatively common problem associated with the clinical usage of drugs. Drugs frequently implicated include quinine, quinidine, heparin, penicillins, cephalosporins, co-trimoxazole, gold and D-penicillamine. Bleeding including bruising and purpura is the usual clinical manifestation except in immune heparin-induced thrombocytopenia in which thrombosis occurs more frequently than bleeding. Cessation of the offending drug is the important step in the treatment but other measures may also be required such as platelet transfusion and steroid therapy for patients with clinical bleeding or antithrombotic therapy with warfarin and dextran or low molecular weight heparin/heparinoid for patients with heparin-induced thrombocytopenia and thrombosis. Idiosyncratic drug-induced thrombocytopenia is mediated by an antibody which binds to platelets only in the presence of the drug resulting in the clearance of sensitised platelets by the reticuloendothelial system. In quinine/quinidine-induced thrombocytopenia, the antibodies recognise drug-dependent epitopes on platelet membrane glycoproteins Ib-IX and/or glycoproteins IIb-IIIa. In immune heparin-induced thrombocytopenia the current data suggest a mechanism which probably involves the binding of heparin-antibody complexes to the platelet Fc receptors but the precise mechanism is yet to be fully characterised. The associated thrombosis in this condition is likely to be due to platelet activation and possibly endothelial cell damage induced by the heparin-related antibody.  相似文献   

8.
Kroll H  Sun QH  Santoso S 《Blood》2000,96(4):1409-1414
Drug-induced immune thrombocytopenia (DITP) is a serious complication of drug treatment. Previous studies demonstrated that most drug-dependent antibodies (DDAbs) react with the platelet membrane glycoprotein (GP) complexes IIb/IIIa and Ib/IX/V. We analyzed the sera from 5 patients who presented with DITP after intake of carbimazole. Notably, thrombocytopenia induced by carbimazole was relatively mild in comparison to patients with DITP induced by quinidine. The sera reacted with platelets in an immunoassay on addition of the drug. In immunoprecipitation experiments with biotin-labeled platelets and endothelial cells, reactivity with the platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) could be demonstrated, whereas neither GPIIb/IIIa nor GPIb/IX was precipitated in the presence of the drug. These results could be confirmed by GP-specific immunoassay (MAIPA) using monoclonal antibodies (mabs) against PECAM-1. In addition, the binding of DDAbs could be abolished by preincubation with soluble recombinant PECAM-1. Carbimazole-dependent antibodies showed similar reactivity with platelets carrying the Leu(125) and Val(125) PECAM-1 isoforms, indicating that this polymorphic structure, which is located in the first extracellular domain, is not responsible for the epitope formation. Binding studies with biotin-labeled mutants of PECAM-1 and analysis of sera with mabs against different epitopes on PECAM-1 in MAIPA assay suggested that carbimazole-dependent antibodies prominently bound to the second immunoglobulin homology domain of the molecule. Analysis of 20 sera from patients with quinidine-induced thrombocytopenia by MAIPA assay revealed evidence that DDAbs against PECAM-1 are involved in addition to anti-GPIb/IX and anti-GPIIb/IIIa. We conclude that PECAM-1 is an important target GP in DITP. (Blood. 2000;96:1409-1414)  相似文献   

9.
The sera of 14 patients with quinine/quinidine-dependent thrombocytopenia were studied in the platelet suspension immunofluorescence test (PSIFT), the 51Cr-lysis assay and the complement fixation test (CFT).
When anti-Ig or anti-IgG reagents were used, the PSIFT proved to be a little more sensitive than the 51Cr-lysis assay and far more sensitive than the CFT. With the PSIFT, it was possible to determine the immunoglobulin class of the antibodies, which in all sera was IgG of the subclass IgGl. In two sera there were also IgG3 antibodies, and in the sera of three patients additional IgM drug-dependent platelet antibodies were detected.
With the anti-C3 reagent, however, lower titres were observed in the PSIFT than in the 51Cr-lysis assay, in contrast to the results with other complement-binding IgG platelet antibodies. The F(ab'), fragments of the antibodies did not react in the PSIFT. This indicates that the Fc part of the antibody is essential for the fixation on the platelet membrane. These findings support the theory that in this syndrome drug-antibody complexes are formed in the absence of platelets that selectively adhere to the Fc receptor on platelets.
The platelets of patients with the Bernard-Soulier syndrome (BSS) reacted normally with the quinine/quinidine-dependent antibodies in some of the sera, but not with those in other sera in the PSIFT. However, lysis of BSS platelets was never observed. The results of absorption studies showed a reflection of the results in the PSIFT, indicating that the receptor for the quinine/quinidine-dependent antibodies is not absent in this disease but altered. Whether a reaction with BSS platelets will take place depends on characteristics of the antibodies.  相似文献   

10.
Sudden, severe thrombocytopenia developed in each of three patients receiving diphenylhydantoin, diazepam, and sulfisoxazole, respectively. Recovery followed discontinuance of the drugs. An antiplatelet antibody requiring the presence of an appropriate drug for interaction with platelets was demonstrated in each case by the 51Cr platelet lysis test using normal, paroxysmal nocturnal hemoglobinuric, or enzyme-treated normal platelets as target cells. These antibodies could not be detected by techniques that depend on clot retraction inhibition, complement fixation, or platelet factor-3 activation. Quinine- and quinidine-dependent antiplatelet antibodies in the serum of 16 patients who developed acute thrombocytopenia while taking either quinine or quinidine could be demonstrated readily with the 51Cr platelet lysis test and could also be detected by other methods employed.  相似文献   

11.
Asvadi P  Ahmadi Z  Chong BH 《Blood》2003,102(5):1670-1677
Immune thrombocytopenia is a common complication of therapy with a large number of drugs. The most widely studied drug-induced immune thrombocytopenia (DIT) is caused by quinine. In most cases of DIT, antibodies bind to the platelet membrane glycoprotein (GP) Ib-IX complex in a drug-dependent fashion and bring about increased platelet clearance by the reticuloendothelial system resulting in thrombocytopenia. Here, we report the characterization of the quinine-dependent antibody activity of sera from 13 patients with quinine-induced thrombocytopenia. In our series of patients, GPIX was the most prevalent target of quinine-dependent antibodies. To identify the structural determinants of GPIX recognized by quinine-dependent antibodies, 4 chimeric mouse/human GPIX constructs and stable Chinese hamster ovary (CHO) cell lines that expressed the chimeras in association with GPIbalpha and GPIbbeta were produced. The analysis of 6 patient sera with the chimeric cell lines provided evidence for localization of the anti-GPIX quinine-dependent antibody binding site to the C-ext region (amino acid [aa] 64-135) of human GPIX. Further characterization of the C-ext region of the GPIX indicated that replacement of the Arg110 and Gln115 of the human GPIX with the corresponding residues from mouse (Gln and Glu, respectively) resulted in a significant reduction in the binding of GPIX antibodies in our series of patients, with Arg110Gln, giving a more pronounced effect than Gln115Glu. Hence, these 2 residues, particularly Arg110, play an important role in the structure of the antigenic site on GPIX recognized by anti-GPIX antibodies.  相似文献   

12.
Lopez  JA; Li  CQ; Weisman  S; Chambers  M 《Blood》1995,85(5):1254-1258
The monoclonal antibody SZ1 is of interest for two reasons: it was used to define complex formation between glycoprotein (GP) Ib and GP IX, and its epitope is likely to be identical to that recognized by most quinine- and quinidine-dependent autoantibodies that cause thrombocytopenia. To determine the location of the epitope for SZ1 within the GP Ib-IX complex (which consists of three subunits: GP Ib alpha, GP Ib beta, and GP IX), we tested the ability of the antibody to bind transfected cells that expressed different combinations of complex subunits, and compared this binding to the binding of antibodies of known specificity. SZ1 bound to cells that expressed the entire GP Ib- IX complex in the same pattern as did AN51 (an antibody specific for GP Ib alpha). However, unlike AN51, SZ1 did not bind alpha beta cells (ie, cells that express GP Ib alpha and GP Ib beta, but not GP IX), but did bind to beta IX and alpha IX cells. We then compared the binding patterns of SZ1 and FMC25, an antibody specific for GP IX. Both bound virtually identically to cell lines that expressed every combination of two of the three GP Ib-IX complex subunits. However, the epitopes of the two antibodies were not identical, because fixation with 4% paraformaldehyde of cells that expressed GP IX destroyed the SZ1 epitope while maintaining the FMC25 epitope. Because of the ability of SZ1 to block the binding of many quinine- and quinidine-dependent antibodies, these data strongly suggest that GP IX is the component of the GP Ib-IX complex recognized by those antibodies.  相似文献   

13.
Quinine-ingestion has been associated with immune-mediated recurrent pancytopenia, hemolysis, and renal failure. The structure of fluoroquinolone antibiotics is similar to the structure of quinine. Over a 3 month period, three patients at our institution developed hemolysis and renal failure following ingestion of the fluoroquinolone antibiotic temafloxacin. Two of the three patients required hemodialysis. Following withdrawal from the drug, the hemolysis resolved and the renal function eventually returned to normal in all three patients. One patient also had a transient mild thrombocytopenia. Sera from all three patients were tested for drug-dependent antibodies to red blood cells, platelets, and neutrophils. Temafloxacin-dependent red cell antibodies were detected in one patient, and temafloxacin-dependent red cell and neutrophil antibodies were detected in a second patient. No temafloxacin-dependent antibodies were detected in the third patient. Sera from all three patients were also tested for quinine and quinidine-dependent antibodies to red cells, platelets, and neutrophils. Sera from the patient without temafloxacin-dependent red cell antibodies reacted with red cells in the presence of quinine. These results suggest that, at least in some patients, the toxicities associated with temafloxacin are immune mediated. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Drug-induced Immune thrombocytopenia (DIT) is a common complication of several medications, including commonly used antibiotics. The most widely studied DIT is caused by quinine. In DIT, antibodies predominantly bind to the platelet membrane glycoprotein (GP) IX in a drug-dependent fashion resulting in increased platelet clearance. Binding of the sensitizing drug, such as quinine, to GPIX has been proposed but is yet to be established. This work demonstrates that quinine is retained specifically by human GPIX. Quinine binding was first analyzed in wild-type mouse platelets and in transgenic mouse platelet expressing human GPIX using high performance liquid chromatography. Binding of quinine to GPIX was then measured in Chinese hamster ovary (CHO) cells expressing a combination of wild type, human or mouse, three human/mouse chimeric constructs and six mutant GPIX proteins. Quinine was retained by human GPIX. No detectable absorption was observed with mouse GPIX or human GPIbα. The quinine binding site was mapped to residues 110–115 of human GPIX suggesting that quinine interacts with specific residues of the GP. These findings provide further insights into the molecular mechanisms of DIT.  相似文献   

15.
Quinine- and quinidine platelet antibodies can react with GPIIb/IIIa   总被引:2,自引:0,他引:2  
Quinine- and quinidine-dependent antiplatelet antibodies are generally believed to bind to the membrane glycoprotein complex, GPIb/IX. However, we and others have found that some drug-dependent antibodies bind to platelets from patients with the Bernard-Soulier syndrome which lack these glycoproteins. We therefore studied the reactions of a group of these antibodies with normal and Bernard-Soulier platelets and their membrane proteins. As indicated by rosette formation of the sensitized platelets around protein A-Sepharose beads, two quinine- and two quinidine-dependent antibodies reacted with both normal and Bernard-Soulier syndrome platelets at a high (300 microM) concentration of drug. At a pharmacologic drug concentration (10 microM), all four antibodies reacted with normal platelets but only the two quinine-induced antibodies reacted with Bernard-Soulier platelets. Immunoprecipitation studies with solubilized, tritium-labelled normal platelets, at both high and low drug concentrations, showed that each of the four antibodies precipitated proteins corresponding to GPIb and GPIX. Fainter bands corresponding to glycoproteins IIb and IIIa, which do not label well with tritium, were also detected. With radioiodinated normal platelets, it was found that each of the four antibodies was capable of precipitating GPIIb/IIIa, but only in the presence of drug. The four antibodies also promoted drug-dependent precipitation of GPIIb and GPIIIa from lysates of radioiodinated Bernard-Soulier platelets. The two quinine-dependent antibodies precipitated these glycoproteins at both high and low drug concentrations, while the quinidine-dependent antibodies reacted much more strongly at the higher drug concentration. Precipitation of GPIb/IX was not observed with BSS platelets. Absorption of a quinine-induced antibody with Bernard-Soulier platelets in the presence of drug eliminated its ability to precipitate GPIIb and GPIIIa. However, the absorbed antibody retained the ability to precipitate GPIb from solubilized normal platelets. Thus, at least two drug-dependent antibodies were present, one specific for GPIb/IX and the other for GPIIb/IIIa. These findings indicate that glycoproteins IIb and/or IIIa, in addition to the GPIb/IX complex, can serve as targets for drug-dependent antibodies in both intact and detergent-solubilized platelet preparations.  相似文献   

16.
Bougie DW  Wilker PR  Aster RH 《Blood》2006,108(3):922-927
Immune thrombocytopenia induced by quinine and many other drugs is caused by antibodies that bind to platelet membrane glycoproteins (GPs) only when the sensitizing drug is present in soluble form. In this disorder, drug promotes antibody binding to its target without linking covalently to either of the reacting macro-molecules by a mechanism that has not yet been defined. How drug provides the stimulus for production of such antibodies is also unknown. We studied 7 patients who experienced severe thrombocytopenia after ingestion of quinine. As expected, drug-dependent, platelet-reactive antibodies specific for GPIIb/IIIa or GPIb/IX were identified in each case. Unexpectedly, each of 6 patients with GPIIb/IIIa-specific antibodies was found to have a second antibody specific for drug alone that was not platelet reactive. Despite recognizing different targets, the 2 types of antibody were identical in requiring quinine or desmethoxy-quinine (cinchonidine) for reactivity and in failing to react with other structural analogues of quinine. On the basis of these findings and previous observations, a model is proposed to explain drug-dependent binding of antibodies to cellular targets. In addition to having implications for pathogenesis, drug-specific antibodies may provide a surrogate measure of drug sensitivity in patients with drug-induced immune cytopenia.  相似文献   

17.
Perdomo J  Yan F  Ahmadi Z  Jiang XM  Stocker R  Chong BH 《Blood》2011,117(22):5975-5986
The development of immune cytopenias is a well-recognized side effect of many drugs. Quinine- and quinidine-dependent antibodies are classic examples of drug-induced effects that cause severe, life-threatening thrombocytopenia. Whereas the effects of drug-dependent antibodies on platelets have been well documented, their effects on megakaryocyte (Mk) biology are still unclear. We analyzed sera from several quinine-induced thrombocytopenia (QITP) patients on highly pure Mks (98% glycoprotein IIb-positive [GPIIb(+)]; 92% GPIX(+)) derived from human CD34(+) cells cultured with human thrombopoietin. We demonstrate by flow cytometry and confocal microscopy that QITP IgGs bind Mks efficiently in the presence of quinine. Incubation of day-4 Mks with QITP sera or purified IgG resulted in induction of apoptosis, a significant decrease in cell viability, and an increase in cell death. Furthermore, QITP sera preferentially reduced the number of late GPIX(+)/GPIbα(+) Mks and the number of receptors per cell in the surviving population. Ploidy distribution, lobularity, and average cell size of Mks remained unchanged after treatment. In addition, treated Mks showed a marked decrease in their proplatelet production capacity, suggesting that drug-dependent antibodies hinder platelet production. Therefore, QITP antibodies considerably reduce the proplatelet production capabilities of Mks despite undetectable effects on DNA content, morphology, and cell size.  相似文献   

18.
Three patients are described who developed severe thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure after ingestion of quinine. In one patient, the same clinical findings recurred several months later after another exposure to quinine. Serum from one patient contained quinine-dependent IgG antibodies reactive with the platelet glycoprotein (GP) Ib/IX complex. In the second and third cases, serum contained IgG and IgM antibodies reactive with both the GP Ib/IX and IIb/IIIa complexes in the presence of quinine. Quinine appears to have induced both immune thrombocytopenia and the hemolytic uremic syndrome (HUS) in these individuals. Findings made in these cases may have implications for the pathogenesis of some forms of HUS.  相似文献   

19.
Acute thrombocytopenia is a recognized complication of treatment with GPIIb/IIIa inhibitors whose cause is not yet known. We studied 9 patients who developed severe thrombocytopenia (platelets less than 25 x 10(9)/L) within several hours of treatment with the GPIIb/IIIa inhibitors tirofiban (4 patients) and eptifibatide (5 patients). In each patient, acute-phase serum contained a high titer (range, 1:80-1:20 000) IgG antibody that reacted with the glycoprotein IIb/IIIa complex only in the presence of the drug used in treatment. Four patients had been previously treated with the same drug, but 5 had no known prior exposure. Pretreatment serum samples from 2 of the latter patients contained drug-dependent antibodies similar to those identified after treatment. No tirofiban- or eptifibatide-dependent antibodies were found in any of 100 randomly selected healthy blood donors, and only 2 of 23 patients receiving tirofiban or eptifibatide who did not experience significant thrombocytopenia had extremely weak (titer, 1:2) tirofiban-dependent antibodies. In preliminary studies, evidence was obtained that the 9 antibodies recognize multiple target epitopes on GPIIb/IIIa complexed with the inhibitor to which the patient was sensitive, indicating that they cannot all be specific for the drug-binding site. The findings indicate that acute thrombocytopenia after the administration of tirofiban or eptifibatide can be caused by drug-dependent antibodies that are "naturally occurring" or are induced by prior exposure to drug. These antibodies may be human analogs of mouse monoclonal antibodies that recognize ligand-induced binding sites (LIBS) induced in the GPIIb/IIIa heterodimer when it reacts with a ligand-mimetic drug.  相似文献   

20.
Three patients had recurrent episodes of thrombocytopenia that resembled drug purpura, but the drug history in each case did not support the diagnosis. Although the patients specifically denied taking quinidine, serologic testing with this drug was done because the patients had access to it, and it is the commonest cause of drug purpura. Highly specific quinidine-dependent antiplatelet antibodies were found in the sera of all three patients. After being informed of the laboratory findings, the patients have had no recurrences of purpura. Serologic tests for quinidine- or quinine-dependent antibodies can help elucidate some obscure cases of purpura that may be self-induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号