首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether radiotherapy (RT) could enhance the efficacy of dendritic cell (DC)-based immunotherapy of cancer. Mice bearing s.c. D5 melanoma or MCA 205 sarcoma tumors were treated with intratumoral (i.t.) injections of bone marrow-derived unpulsed DCs in combination with local fractionated tumor irradiation. DC administration alone slightly inhibited D5 tumor growth and had no effect on MCA 205. RT alone caused a modest inhibition of both tumors. DC administration combined with RT inhibited D5 and MCA 205 tumor growth in an additive and synergistic manner, respectively. In both tumor models, RT intensified the antitumor efficacy of DC administration independent of apoptosis or necrosis within the tumor mass. Combination treatment of i.t. DCs plus RT was superior to s.c. injections of tumor lysate-pulsed DCs plus interleukin 2 in inhibiting D5 tumor growth and prolonging survival of mice. Splenocytes from mice treated with i.t. DCs plus RT contained significantly more tumor-specific, IFN-gamma-secreting T cells compared with control groups. Moreover, adoptive transfer of these splenocytes mediated significant tumor regression in mice bearing established pulmonary metastases. Combined treatment followed by resection of residual s.c. tumor conferred protective immunity against a subsequent i.v. tumor challenge. Furthermore, i.t. DC plus RT treatment of s.c. tumor in mice bearing concomitant pulmonary metastases resulted in a significant reduction of lung tumors. i.t. DC administration combined with RT induces a potent local and systemic antitumor response in tumor-bearing mice. This novel regimen may be beneficial in the treatment of human cancers.  相似文献   

2.
Dendritic cells (DCs) are potent antigen-presenting cells that are capable of priming systemic antitumor immune response. Here, we evaluated the combined effectiveness of tumor lysate-pulsed DC immunization and interleukin (IL)-12 administration on the induction of antitumor immunity in a mouse hepatocellular carcinoma (HCC) model. Mouse DCs were pulsed with lysate of BNL 1ME A.7R.1 (BNL), a BALB/c-derived HCC cell line, and then injected into syngeneic mice in combination with systemic administration of IL-12. Lymphocytes from mice treated with BNL lysate-pulsed DCs and IL-12 showed stronger cytolytic activity and produced higher amounts of IFN-gamma than those from mice treated with BNL lysate-pulsed DCs alone. Although immunization with BNL lysate-pulsed DCs alone did not lead to complete regression of established tumors, it significantly inhibited tumor growth compared with vehicle injection. Importantly, the combined therapy of BNL lysate-pulsed DCs and IL-12 resulted in tumor rejection or significant inhibition of tumor growth compared with mice treated with BNL lysate-pulsed DCs alone. In vivo lymphocyte depletion experiments demonstrated that this combination was dependent on both CD8+ and CD4+ T cells, but not natural killer cells. These results demonstrated that IL-12 administration enhanced the therapeutic effect of immunization of tumor lysate-pulsed DCs against HCC in mice. This combination of IL-12 and DCs may be useful for suppressing the growth of residual tumor after primary therapy of human HCC.  相似文献   

3.
Pancreatic tumors lack adequate recruitment of immunocompetent cells, especially dendritic cells (DCs). We have shown previously that coculturing of natural killer-like T cells with DCs transfected with pancreatic tumor cell line-derived RNA reverses pancreatic carcinoma cell resistance by directly triggering natural killer-like T lymphocytes in vitro. In the present study, we tested triggering of specific T lymphocytes in vivo by using an immunocompetent mouse strain (C57BL/6). Syngenic, bone marrow-derived DCs were pulsed with tumor RNA derived from the pancreatic cell line PANC02. This cell line is a ductal pancreatic adenocarcinoma and shows high resistance to every known class of clinically active antitumor agent. PANC02 cells were implanted orthotopically via ultrasound guidance and led to pancreatic tumor formation in all of the mice. Thereafter, tumor RNA-pulsed DCs were injected intratumorally. Intratumoral administration of tumor RNA-pulsed DCs induced significantly more potent protective immunity than s.c. or i.v. administration. It was significantly more effective than administration with unpulsed DCs or DCs pulsed with a control tumor RNA derived from a lymphomatous cell line (EL4). The antitumor effect was caused by induction of antigen-specific T lymphocytes as shown by additional in vitro studies. These results favor intratumoral injection of tumor RNA-pulsed DCs for immunotherapy of pancreatic cancer.  相似文献   

4.
Dendritic cells (DCs) loaded with tumour antigens have been successfully used to induce protective tumour immunity in murine models and human trials. However, it is still unclear which DC administration route elicits a superior therapeutic effect. Herein, we investigated the vaccine efficiency of DC2.4 cells, a murine dendritic cell line, pulsed with ovalbumin (OVA) in the murine E.G7-OVA tumour model after immunization via various routes. After a single vaccination using 1 x 10(6)OVA-pulsed DC2.4 cells, tumour was completely rejected in the intradermally (i.d.; three of four mice), subcutaneously (s.c.; three of four mice), and intraperitoneally (i.p.; one of four mice) immunized groups. Double vaccinations enhanced the anti-tumour effect in all groups except the intravenous (i.v.) group, which failed to achieve complete rejection. The anti-tumour efficacy of each immunization route was correlated with the OVA-specific cytotoxic T lymphocyte (CTL) activity evaluated on day 7 post-vaccination. Furthermore, the accumulation of DC2.4 cells in the regional lymph nodes was detected only in the i.d.-and s.c.-injected groups. These results demonstrate that the administration route of antigen-loaded DCs affects the migration of DCs to lymphoid tissues and the magnitude of antigen-specific CTL response. Furthermore, the immunization route affects vaccine efficiency.  相似文献   

5.
Dendritic cell (DC)-tumor fusion hybrid vaccines that facilitate antigen presentation represent a novel powerful strategy in cancer immunotherapy. In our study, we investigated the antitumor immunity derived from the vaccination of fusion hybrids between engineered J558/IL-18 myeloma cells secreting Th1 cytokine IL-18 and DCs. DC/J558/IL-18 could secret a higher level of IL-18 than DCs, efficiently expressed J558 tumor antigen P1A, and enhanced ability of allogeneic T cell stimulation when compared to J558/IL-18. Our data showed that the immunization of BALB/c mice with DC/J558/IL-18 hybrids induced the most potent protective immunity against 1 x 10(6) cells with a J558 tumor challenge, compared to those immunized with the mixture of DCs and J558/IL-18, J558/IL-18, or J558. Furthermore, the immunization of mice with engineered DC/J558/IL-18 hybrids elicited stronger NK activity and J558 tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro. In addition, DC/J558/IL-18 tumor cells into syngeneic mice induced a Th1 dominant immune response to J558 and resulted in tumor regression, which indicated that the antitumor effect mediated by DC/J558/IL-18 appeared to be dependent on TH1 cytokine production. These results demonstrate that the engineered fusion hybrid vaccines that combine Th1 gene-modified tumor with DCs may be an attractive strategy for cancer immunotherapy.  相似文献   

6.
Although there are several ways to load tumor antigens to DCs, in vitro preparation of tumor antigens and manipulation of DCs are usually required. Therefore, to develop a simple antitumor immunization method, we examined if direct injection of DCs into tumor apoptosed by ionizing IR could induce efficient antitumor immunity. Ionizing IR with 15 Gy induced apoptosis in tumor maximally after 6 hr. Injection of DCs i.t. into IR tumor induced strong cytotoxicity of splenocytes against tumor cells compared to i.t. injection of DCs or ionizing IR of tumor, both of which induced weak cytotoxicity. In an animal study, i.t. injection of DCs into IR tumor induced therapeutic antitumor immunity against a tumor established at a distant site. Moreover, when TNF-alpha or LPS was added as a danger/maturation signal to DC suspension before i.t. injection, antitumor immunity was significantly potentiated compared to a group treated with i.t. injection of DCs into IR tumor. Our results suggest that injection of DCs into tumor apoptosed by ionizing IR might be a simple and efficient method of immunization against tumor.  相似文献   

7.
Intranodal immunization with antigen-encoding naked RNA may offer a simple and safe approach to induce antitumor immunity. RNA taken up by nodal dendritic cells (DC) coactivates toll-like receptor (TLR) signaling that will prime and expand antigen-specific T cells. In this study, we show that RNA vaccination can be optimized by coadministration of the DC-activating Fms-like tyrosine kinase 3 (FLT3) ligand as an effective adjuvant. Systemic administration of FLT3 ligand prior to immunization enhanced priming and expansion of antigen-specific CD8(+) T cells in lymphoid organs, T-cell homing into melanoma tumors, and therapeutic activity of the intranodal RNA. Unexpectedly, plasmacytoid DCs (pDC) were found to be essential for the adjuvant effect of FLT3 ligand and they were systemically expanded together with conventional DCs after treatment. In response to FLT3 ligand, pDCs maintained an immature phenotype, internalized RNA, and presented the RNA-encoded antigen for efficient induction of antigen-specific CD8(+) T-cell responses. Coadministration of FLT3 ligand with RNA vaccination achieved remarkable cure rates and survival of mice with advanced melanoma. Our findings show how to improve the simple and safe strategy offered by RNA vaccines for cancer immunotherapy.  相似文献   

8.
Dendritic cells (DCs) are potent antigen-presenting cells that can prime and boost systemic antitumor immunity. Here, we have evaluated the ability of DCs transfected to secrete the potent Th1-biasing cytokine interleukin (IL)-18 to promote enhanced antitumor immunity in a mouse sarcoma model. DCs infected with a recombinant adenovirus encoding IL-18 (AdIL18DC) expressed higher levels of MHC and costimulatory molecules and were better stimulators than control DCs in mixed leukocyte reactions in vitro. Immunization of BALB/c mice bearing established day 7 CMS4 tumors with tumor peptide-pulsed control Adpsi5-transfected DCs or nontransduced DCs significantly inhibited the growth of established tumors but did not lead to complete regression of established tumors. Importantly, immunization with antigen-loaded AdIL18DC resulted in tumor rejection or further suppression of tumor growth when compared with controls. The repertoire of naturally presented tumor peptides recognized by splenocytes (as deduced in IFN-gamma ELISA assays) from AdIL18DC-treated animals was far more diverse and of greater magnitude than that of all other groups, in association with improved therapeutic outcome. These results support the ability of IL-18 gene transfer to enhance the capacity of DCs to drive broadly reactive Th1-type therapeutic immunity prompted by single peptide epitope-based vaccines (i.e., epitope spreading).  相似文献   

9.
Shi M  Su L  Hao S  Guo X  Xiang J 《Tumori》2005,91(6):531-538
AIMS AND BACKGROUND: Dendritic cell (DC)-tumor fusion hybrid vaccinees that facilitate antigen presentation represent a novel powerful strategy in cancer immunotherapy. Preclinical studies have demonstrated that IL-12 promotes specific antitumor immunity mediated by T cells in several types of tumors. In the present study, we investigated the antitumor immunity derived from vaccination of fusion hybrids between DCs and engineered J558/IL-12 myeloma cells secreting Th1 cytokine IL-12. METHODS: The expression vector pcDNA-IL-12 was generated and transfected into J558 myeloma cells and then bone marrow-derived DCs were fused with engineered J558/IL-12 cells. The antitumor immunity derived from vaccination of the fusion hybrid DC/J558/IL-12 was evaluated in vitro and in vivo. RESULTS: DC/J558/IL-12 cells secreted recombinant IL-12 (1.6 ng/mL), and inoculation of BALB/c mice with DC/J558/IL-12 hybrid induced a Th1 dominant immune response and resulted in tumor regression. Immunization of mice with engineered DC/J558/IL-12 hybrid elicited stronger J558 tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro as well as more potent protective immunity against J558 tumor challenge in vivo than immunization with the mixture of DCs and J558/IL-12, J558/IL-12 and J558, respectively. Furthermore, the anti-tumor immunity mediated by DC/J558/IL-12 tumor cell vaccination in vivo appeared to be dependent on CD8+ CTL. CONCLUSIONS: These results demonstrate that the engineered fusion hybrid vaccines that combine Th1 cytokine gene-modified tumor cells with DCs may be an attractive strategy for cancer immunotherapy.  相似文献   

10.
Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in priming immune responses to tumor. Interleukin (IL)-23 can act directly on DC to promote immunogenic presentation of tumor peptide in vitro. Here, we evaluated the combination of bone marrow-derived DC and IL-23 on the induction of antitumor immunity in a mouse intracranial glioma model. DCs can be transduced by an adenoviral vector coding single-chain mouse IL-23 to express high levels of bioactive IL-23. Intratumoral implantation of IL-23-expressing DCs produced a protective effect on intracranial tumor-bearing mice. The mice consequently gained systemic immunity against the same tumor rechallenge. The protective effect of IL-23-expressing DCs was comparable with or even better than that of IL-12-expressing DCs. IL-23-transduced DC (DC-IL-23) treatment resulted in robust intratumoral CD8(+) and CD4(+) T-cell infiltration and induced a specific TH1-type response to the tumor in regional lymph nodes and spleen at levels greater than those of nontransduced DCs. Moreover, splenocytes from animals treated with DC-IL-23 showed heightened levels of specific CTL activity. In vivo lymphocyte depletion experiments showed that the antitumor immunity induced by DC-IL-23 was mainly dependent on CD8(+) T cells and that CD4(+) T cells and natural killer cells were also involved. In summary, i.t. injection of DC-IL-23 resulted in significant and effective systemic antitumor immunity in intracranial tumor-bearing mice. These findings suggest a new approach to induce potent tumor-specific immunity to intracranial tumors. This approach may have therapeutic potential for treating human glioma.  相似文献   

11.
Dendritic cells (DCs) are potent antigen-presenting cells with the potential for cancer immunotherapy. Adenoviral-mediated gene transfer is an attractive means to manipulate the immunostimulatory properties of DCs for therapeutic advantage. Because adenovirus induces DC maturation, we postulated that it would significantly alter their immune functions. Infected DCs markedly increased allogeneic and antigen-specific T-cell proliferation, and augmented natural killer cell lytic activity and IFN-gamma production. The enhanced effector cell stimulation by infected DCs was dependent on their secretion of interleukin 12. Immunization with infected DCs pulsed with tumor antigen protected against flank tumors in 78% of mice and induced a memory response. Antitumor immunity was dependent on both T cells and natural killer cells. Antigen-pulsed, mock-infected DCs were nonprotective. The findings that adenoviral vectors alone critically alter DC immune functions and antitumor properties have important implications for the design and interpretation of immunotherapy regimens using vector-based gene transfer to modulate immunity.  相似文献   

12.
Dendritic cell (DC)-tumor fusion hybrid vaccine which facilitates antigen presentation represents a new powerful strategy in cancer therapy. In the present study, we investigated the antitumor immunity derived from vaccination of fusion hybrids between wild-type J558 or engineered J558-IL-4 myeloma cells secreting cytokine interleukin-4 (IL-4) and immature DCs (DC(IMAT)) or relative mature DCs (DC(RMAT)). DC(RMAT) displayed an up-regulated expression of immune molecules (Ia(d), CD40, CD54, CD80 and CD86) and certain cytokines/chemokines, and enhanced ability of allogeneic T cell stimulation when compared to DC(IMAT). These DCs were fused with myeloma cells by polyethylene glycol (PEG). The fusion efficiency was approximately 20%. Our data showed that immunization of C57BL/6 mice with DC(RMAT)/J558 hybrids induced protective immunity against a high dose of J558 tumor challenge (1x10(6) cells) in 3 out of 10 immunized mice, compared with no protection seen in mice immunized with DC(IMAT)/J558 hybrids. Furthermore, immunization of mice with engineered DC(RMAT)/J558-IL-4 hybrids elicited stronger J558 tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro and induced more efficient protective immunity (10/10 mice; tumor free) against J558 tumor challenge in vivo than DC(RMAT)/J558 hybrid vaccines. The results demonstrate the importance of DC maturation in DC-tumor hybrid vaccines and indicate that the engineered fusion hybrid vaccines which combine gene-modified tumor and DC vaccines may be an attractive strategy for cancer immunotherapy.  相似文献   

13.
Ju DW  Tao Q  Lou G  Bai M  He L  Yang Y  Cao X 《Cancer research》2001,61(9):3735-3740
Dendritic cell (DC)-based tumor vaccine represents a promising approach to the immunotherapy of malignant tumors. We prepared a novel type of DC-based vaccine, stable conjugates of DCs and EL4 cells transduced with cDNA of OVA (E.G7). Immunization with DC-E.G7 conjugates led to generation of T helper (Th) 1 cytokine-producing cells, antigen-specific CD8(+) T cells, and strong antitumor immunity that is dependent on both CD4(+) T cells and CD8(+) T cells. To further increase the potency of the vaccine, interleukin 18-transfected DCs were used to prepare the IL18DC-E.G7 conjugates. Immunization with such conjugates significantly increased the production of Th1 cytokine-producing cells and the number of antigen-specific CD8(+) T cells, as well as stronger antitumor immunity. Furthermore, the increased Th1 cytokine production and stronger antitumor effect were not observed in mice depleted of IFN-gamma. These data indicated that DC-tumor cell conjugates are a potent tumor vaccine. Interleukin 18 can be administrated using gene-transfected cells and enhances antitumor immunity, which is mainly mediated by IFN-gamma.  相似文献   

14.
Because dendritic cell (DC)-derived exosomes (EXO) harbor many important DC molecules involved in inducing immune responses, EXO-based vaccines have been extensively used to induce antitumor immunity in different animal tumor models. However, it is not clear which route of EXO administration can induce more efficient antitumor immune responses. In this study, we compared the antitumor immunity derived from EXO vaccine by way of the two common administration routes, the subcutaneous (s.c.) and the intradermal (i.d.) administrations. Our data showed that the i.d. EXO administration resulted in more EXO-absorbed DC migrating into the T-cell areas of draining lymph nodes than the s.c. administration. Interestingly, the i.d. EXO administration also resulted in an enhanced ovalbumin (OVA)-specific CD8(+) T-cell proliferation and CD8(+) CTL effector responses in vivo, compared to the s.c. administration. Similarly, compared to the s.c. vaccination, the i.d. vaccination induced stronger antitumor immunity in the animal tumor model. Therefore, the i.d. EXO vaccination is superior to the s.c. one and should be considered when EXO-based vaccine is designed.  相似文献   

15.
Dendritic cell (DC)-based vaccine is a developing strategy to treat cancer including hepatoma. We evaluated the antitumor efficacy of vaccination with DCs pulsed with apoptotic cells, as compared to vaccination with DCs pulsed with cell lysates, in murine hepatoma models. Murine hepatoma cells, Hepa1-6, MH134 and BNL1ME.A.7R.1, and their syngeneic mice, C57BL/6, C3H/HeN and BALB/c, respectively, were used in the study. Protective and therapeutic antitumor effects of vaccination with bone marrow-derived DCs pulsed with irradiation or sulindac-induced apoptotic cells or cell lysates were analyzed. Immature DCs efficiently phagocytosed apoptotic cells and increased expression of CD86, a cell surface maturation marker. Vaccination with apoptotic cell-pulsed, but not cell lysate-pulsed, DCs promoted significant protective immunity against parental hepatoma in vivo. Spleen cells from mice vaccinated with apoptotic cell-pulsed DCs showed higher cytolytic activity and contained higher number of IFN-gamma producing cells against parental hepatoma cells than those from mice vaccinated with cell lysate-pulsed DCs in vitro. Polyriboinosinic polyribocytidylic acid [poly (I:C)], double strand RNA, further enhanced CD86 expression and the therapeutic efficacy of vaccination with DCs pulsed with apoptotic cells for pre-established hepatoma. These results suggest that vaccination with DCs pulsed with apoptotic cells and treated with poly (I:C) appears to be a promising approach as a new therapeutic means for hepatoma.  相似文献   

16.
Several studies have shown that vaccine therapy using dendritic cells (DCs) pulsed with specific tumor antigen peptides can effectively induce antitumor immunity. Peptide-pulsed DC therapy is reported to be effective against melanoma, while it is still not sufficient to show the antitumor therapeutic effect against epithelial solid tumors such as gastrointestinal malignancies. Recently, it has been reported that vaccine therapy using DCs transduced with a surrogate tumor antigen gene can elicit a potent therapeutic antitumor immunity. In this study, we investigated the efficacy of vaccine therapy using DCs transduced with the natural tumor antigen in comparison with peptide-pulsed DCs. DCs derived from murine bone marrow were adenovirally transduced with murine endogenous tumor antigen gp70 gene, which is expressed in CT26 cells, or DCs were pulsed with the immunodominant peptide AH-1 derived from gp70. We compared these two cancer vaccines in terms of induction of antigen-specific cytotoxic T lymphocyte (CTL) responses, CD4+ T cell response against tumor cells, migratory capacity of DCs and therapeutic immunity in vivo. The cytotoxic activity of splenocytes against CT26 and Meth-A pulsed with AH-1 in mice immunized with gp70 gene-transduced DCs was higher than that with AH-1-pulsed DCs. CD4+ T cells induced from mice immunized with gp70 gene-transduced DCs produced higher levels of IFN-gamma by stimulation with CT26 than those from mice immunized with AH-1-pulsed DCs (p < 0.0001), and it was suggested that DCs transduced with tumor-associated antigen (TAA) gene induced tumor-specific CD4+ T cells, and those CD4+ T cells played a critical role in the priming phase of the CD8+ T cell response for the induction of CD8+ CTL. Furthermore, DCs adenovirally transduced with TAA gene showed an enhancement of expression of CC chemokine receptor 7 and improved the migratory capacity to draining lymph nodes. In subcutaneous models, the vaccination using gp70 gene-transduced DCs provided a remarkably higher therapeutic efficacy than that using AH-1-pulsed DCs. These results suggested that vaccine therapy using DCs adenovirally transduced with TAA gene can elicit potent antitumor immunity, and may be useful for clinical application.  相似文献   

17.
Dendritic cells (DCs) are potent antigen presenting cells that exist in virtually every tissue, and from which they capture antigens and migrate to secondary lymphoid organs where they activate na?ve T cells. Although DCs are normally present in extremely small numbers in the circulation, recent advances in DC biology have allowed the development of methods to generate large numbers of these cells in vitro. Because of their immunoregulatory capacity, vaccination with tumor antigen-presenting DCs has been proposed as a treatment modality for cancer. In animal models, vaccination with DCs pulsed with tumor peptides, lysates, or RNA or loaded with apoptotic/necrotic tumor cells could induce significant antitumor CTL responses and antitumor immunity. However, the results from early clinical trails pointed to a need for additional improvement of DC-based vaccines before they could be considered as practical alternatives to the existing cancer treatment strategies. In this regard, subsequent studies have shown that DCs that express transgenes encoding tumor antigens are more potent primers of antitumor immunity both in vitro and in vivo than DCs simply pulsed with tumor peptides. Furthermore, DCs that have been engineered to express certain cytokines or chemokines can display a substantially improved maturation status, capacity to migrate to secondary lymphoid organs in vivo, and abilities to stimulate tumor-specific T cell responses and induce tumor immunity in vivo. In this review we also discuss a number of factors that are important considerations in designing DC vaccine strategies, including (i) the type and concentrations of tumor peptides used for pulsing DCs; (ii) the timing and intervals for DC vaccination/boostable data on DC vaccination portends bright prospects for this approach to tumor immune therapy, either alone or in conjunction with other therapies.  相似文献   

18.
Recently, several studies have shown that vaccine therapy using dendritic cells (DCs) genetically engineered to express a surrogate tumor antigen can effectively induce antitumor immunity. In this study, murine bone marrow DCs were adenovirally transduced with murine endogenous tumor antigen gp70 expressed in CT26 cells and granulocyte macrophage colony-stimulating factor (GM-CSF), and we examined whether antigen-specific CTL responses and therapeutic immunity could be induced in mice immunized with those genetically modified DCs. The cytotoxic activity against CT26 in mice immunized with gp70-transduced DCs was significantly higher than that in control (P < 0.01) and was enhanced by GM-CSF-cotransduction (P < 0.001). GM-CSF gene transfer into DCs expressing tumor-associated antigen enhances CC chemokine receptor 7 expression on DCs, leading to improved migratory capacity of DCs to draining lymph nodes. Consequently, an effective antitumor immune response would be induced. Vaccination using gp70-transduced DCs provided remarkable therapeutic efficacy in s.c. models. Moreover, it could be sufficiently augmented by GM-CSF-cotransduction of DCs. These results support that vaccination therapy using DCs simultaneously transduced with tumor-associated antigen can elicit potent CTL response, and GM-CSF-cotransduction of DCs could optimize therapeutic response. Further investigation is needed to optimize this vaccine therapy to achieve the obvious benefit in clinical application.  相似文献   

19.
Tumor antigen gene-modified dendritic cells (DC) generates robust antigen-specific protective antitumor responses. Though the role of CD4 positive and CD8 positive cells in the immunological response to gene-modified DC has been well-characterized, the role of NK cells in this response has been somewhat less clear. Owing to the significant contribution of innate immunity in other model systems, we postulated that NK cells would hold a critical position in the generation of an immune response following immunization with tumor antigen-engineered DC. Immunization with MART-1 melanoma antigen-engineered DC in C57BL/6 mice resulted in the generation of antigen-specific cytotoxic T lymphocytes and in vivo protective responses to the murine B16 melanoma. These responses were dependent on the presence of functional NK cells, although NK cells alone were not sufficient in generating protective responses. Adoptive transfer of NK cells into an NK-deficient but T-cell-competent environment restored the protective response to gene-modified DC immunization. In conclusion, protective immunity after tumor antigen gene-modified DC immunization requires collaboration between CD4+ and CD8+ T cells and NK cells.  相似文献   

20.
Genetic immunization of mice with dendritic cells (DCs) engineered to express a melanoma antigen generates antigen-specific, MHC-restricted, CD4-dependent protective immune responses. We wanted to determine the role of CD4 cells and CD40 ligation of MART-1 gene-modified DC in an animal model of immunotherapy for murine melanoma. CD4 knock-out (CD4KO) or antibody-depleted mice were immunized with DC adenovirally transduced with the MART-1 gene (AdVMART1/DC) with or without CD40 cross-linking. Tumor protection was absent in CD4-depleted mice, but protection was reestablished when the CD40 receptor was engaged using three different constructs. Transduction of DCs with vectors expressing the Th1 cytokines interleukin (IL)-2, IL-7, or IL-12 could not reproduce the CD40-mediated maturation signal in this model. CD8 T-cell depletion in CD4KO mice immunized with CD40-ligated DCs abrogated the protective response. Pooled analysis of CD40 cross-linking of AdVMART1/DC administered to wild-type C57BL/6 mice revealed an overall enhancement of antitumor immunity. However, this effect was inconsistent between replicate studies. In conclusion, maturation of AdVMART1-transduced DCs through the CD40 ligation pathway can promote a protective CD8 T-cell-mediated immunity that is independent of CD4 T-cell help.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号