首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
大鼠前庭核向迷走神经背侧复合体的间接投射   总被引:2,自引:0,他引:2  
目的:研究大鼠前庭核向迷走神经背侧复合体的间接投射,探索前庭信息向脑干呕吐区传递的神经通路。方法:向前庭神经下核和前庭神经内侧核注入顺行追踪剂菜豆凝集素(PHA-L),向迷走神经背侧复合体注入逆行追踪剂荧光金(FG),用免疫荧光组织化学方法显示PHA-L顺行标记纤维和终末,在荧光显微镜下观察顺行标记PHA-L的纤维和终末与FG逆行标记的细胞重叠区域。结果:在延髓外侧巨细胞旁核和腹外侧区有顺行纤维和终末与逆行标记细胞的重叠。结论:前庭核团可能经外侧巨细胞旁核和腹外侧区向迷走神经背侧复合体有间接投射,为进一步揭示前庭核团与呕吐相关的内脏反应区之间的功能关系提供了形态学基础。  相似文献   

2.
目的:应用菜豆白细胞凝集素(PHA-L)顺行追踪和荧光金(FG)逆行追踪技术研究前庭脊核和X细胞群向脑桥核的直接投射.方法:SD大鼠随机分为PHA-L注射组和FG注射组.将顺行神经追踪剂PHA-L电泳至前庭脊核和X细胞群,逆行神经追踪剂FG分别电泳至脑桥核的外侧亚核和内侧亚核,动物存活7 d,灌流固定后,脑干作冠状冷冻切片,然后进行免疫组织化学显色.结果:PHA-L注射于前庭脊核后,顺行标记纤维和终末主要分布在对侧脑桥核的外侧亚核、内侧亚核及脑桥网状被盖核;FG分别注射于脑桥核的外侧和内侧亚核后,逆行标记细胞仅分布在对侧前庭脊核和X细胞群.结论:前庭脊核和X细胞群向对侧脑桥核的外侧和内侧亚核有直接的纤维投射,该投射可能与前庭-眼反射的调节有关.  相似文献   

3.
目的:观察发自前庭神经内侧核的纤维末梢与投射至纹状体的丘脑束旁核神经元的突触联系。方法:采用15只Wistar大鼠,应用顺行和逆行标记技术,免疫组织化学和免疫电镜方法。结果:将CTb单侧注入纹状体,同时将BDA注入同侧的前庭神经内侧核。在束旁核发现了CTb标记神经元和BDA标记轴突终末,BDA标记纤维和终末存在于外侧束旁核整个长度的背侧2/3区,而CTb标记神经元也存在于外侧束旁核背侧2/3区,2种标记相互重叠。电镜下可见标记终末与标记神经元形成非对称性的轴-体和轴-树突触。结论:由前庭神经内侧核发出的投射纤维在束旁核与投射至纹状体的束旁核神经元之间存在着非对称性的突触联系。  相似文献   

4.
目的 探查间质核 (INV)内内脏传入终末与向臂旁核 (PBN)投射的NOS阳性神经元之间的联系。 方法 逆行、跨神经节追踪以及免疫荧光组织化学方法 ,结合激光共聚焦扫描显微镜观察。 结果 PBN内注射四甲基罗丹明 (TMR)后 ,逆行标记细胞主要位于注射侧的INV ,大多属 2 0 μm以下的中、小型细胞。NOS阳性细胞与TMR逆行标记细胞分布区域重叠。NOS TMR双标记细胞分别占NOS阳性细胞总数的 5 4 8% (17 31)和TMR逆行标记细胞总数的 34% (17 4 9)。舌咽和迷走神经内注射生物素化葡聚糖胺 (BDA)跨神经节标记的内脏神经初级传入终末点状膨体贴近双标记细胞胞体 ,呈紧密接触状。 结论 可能存在经INV向PBN投射的内脏伤害性信息传导通路 ,作为神经递质和神经信息分子的NO可能参与其内脏伤害性信息的传递和调控  相似文献   

5.
为了研究内脏初级传入与口面部深层组织躯体伤害性信息是否汇聚于孤束核(NTS)中向臂旁核(PBN)投射的儿茶酚胺(CA)能神经元。本实验将SD大鼠随机分为两组。第一组动物以生物素化的葡聚糖胺(BDA)注入颈部迷走神经主干跨节追踪,四甲基罗达明(TMR)注入臂旁外侧核(LPB)逆行追踪,福尔马林刺激咬肌并行FOS的免疫荧光组织化学染色;第二组动物以BDA注入颈部迷走神经主干跨节追踪,福尔马林刺激咬肌并行FOS和酪氨酸羟化酶(TH)染色。在激光扫描共聚焦显微镜下对两组大鼠NTS内的标记细胞和纤维进行了观察。两组实验中,主要在NTS的内侧、中间内侧和连合亚核内观察到重叠分布的TMR、FOS或TH、FOS单标神经元。其中部分TMR逆行标记的或TH阳性神经元呈FOS阳性并与BDA跨节标记的纤维和终末形成紧密接触。提示大鼠NTS内的CA能神经元可能汇聚了内脏初级传入和口面部深层组织的躯体伤害性刺激信息并向LPB投射。  相似文献   

6.
目的:搞清大鼠三叉神经中脑核(mesencephalic trigeminal nucleus,Vme)与三叉神经运动核(trigeminal motor nucleus,Vmo)神经元之间的间接投射通路。方法:将束路追踪剂霍乱毒素b亚单位(cholera toxin b subunit,CTb)注入一侧咬肌神经跨节标记Vme神经元及其中枢突,同时将四甲基罗达明(tetramethyl rhodamine,TMR)注入对侧Vmo逆行标记运动前神经元,激光共聚焦显微镜下观察二者之间的重叠分布和接触情况。结果:CTb跨节标记终末(Vme神经元的中枢突)与TMR逆标神经元(Vmo的运动前神经元)的胞体或树突重叠分布区域包括:(1)三叉上核(supratrigeminal nucleus,Vsup)尾端,该区域范围小,其内CTb跨节标记终末极密集;(2)Vmo周边区域,以Vmo与Vsup之间的区域为主,其内CTb跨节标记终末呈中等密度分布;(3)小细胞网状结构(parvicellular reticular formation,PCRt),该区域范围最广,CTb跨节标记终末在该区域呈松散分布。激光共聚焦显微镜下可见上述区域内一些CTb标记终末与其中的部分TMR逆标神经元的胞体或树突形成密切接触。结论:大鼠Vme神经元的中枢突经分布在Vsup,Vmo周边区域及PCRt内广泛的运动前神经元向Vmo发出间接投射。  相似文献   

7.
用HRP顺行追踪法研究黄喉鵐延髓层状核向脑桥及中脑的投射.将HRP微电泳入层状核,在同侧上橄榄核,对侧脑桥外侧丘系腹核及中脑背外侧核等处见到密集的顺行标记纤维或终末;在对侧层状核同时见到许多标记细胞和终末;在双侧巨细胞核出现了密布的逆行标记细胞.结果说明层状核投射至同侧上橄榄核,并终止于对侧的外侧丘系腹核及中脑背外侧核;双侧层状核之间有许多的往返联系.此外,层状核接受巨细胞核的传入投射.因此层状核可能是听觉上行通路中在脑干的第二级中继站.  相似文献   

8.
本文用辣根过氧化物酶(HRP)轴突逆行传送法研究了猫脑干中缝大核的传入神经联系。中缝大核注入 HRP 后,在丘脑束旁核内侧部有少量标记细胞。中脑中央灰质腹外侧区有大量标记细胞。中缝背核、中脑网状结构、Darkschewitsch 氏核、巨细胞网状核、旁正中网状核、前庭神经内侧核和外侧核内观察到 HRP 标记细胞的分布。在丘脑下部后区、后连合核、被盖背侧核、环状核,延髓中央核和薄束核内也有少量标记细胞。本文还对中缝大核传入神经联系的机能意义进行了讨论。  相似文献   

9.
大鼠颈髓中央核向前庭神经外侧核的定位纤维投射   总被引:1,自引:0,他引:1  
目的 探讨大鼠颈髓中央核向前庭神经外侧核的定位投射。方法 本实验通过向脊髓内单侧注射菜豆—白细胞凝集素 ,在不同节段上对由脊髓向前庭神经核的纤维投射做顺行示踪。结果 在颈髓颈 2和颈 3节段包括颈髓中央核单侧注射示踪剂后 ,应用免疫组织化学法在对侧前庭神经下核以及前庭神经内侧核的大型细胞、小型细胞部和尾部内可见大量标记终末。在对侧前庭神经外侧核由头部至尾部整个范围内 ,标记物数量最多 ;在颈膨大处单侧注射示踪剂后 ,在对侧前庭神经内侧核的大型细胞部见很多标记轴突和终末 ,但在前庭神经外侧核和前庭神经下核内 ,仅见少量标记轴突和终末。在颈膨大以下脊髓节段注射示踪剂后 ,在前庭神经内侧核的大型细胞部、前庭神经下核及前庭神经外侧核的尾部标记纤维和终末仅零星存在。结论 颈部初级传入纤维经过颈中央核中继后 ,可直接投射到对侧前庭神经外侧核 ,同时 ,研究结果亦提示颈髓中央核可能是颈部传入冲动的中继和整合之处  相似文献   

10.
何德富  陈福俊  周绍慈 《解剖学杂志》2004,27(6):639-641,663,F003
目的:研究大鼠杏仁复合体一听皮层的纤维投射。方法:HRP神经追踪方法结合微电泳技术,以及核黄逆行荧光标记技术。结果:HRP注射到听皮层,同侧杏仁外侧核、杏仁基底核、杏仁前区和杏仁前皮层观察到逆行标记细胞;HRP注射到杏仁外侧核和杏仁基底核,在同侧听皮层出现顺行标记纤维;核黄注入到听皮层,在同侧杏仁外侧核和杏仁基底核发现逆行标记细胞。结论:大鼠听皮层接受同侧杏仁复合体的神经投射。  相似文献   

11.
The present study investigated the projections of the gigantocellular reticular nucleus (Gi) and its neighbors—the dorsal paragigantocellular reticular nucleus (DPGi), the alpha/ventral part of the gigantocellular reticular nucleus (GiA/V), and the lateral paragigantocellular reticular nucleus (LPGi)—to the mouse spinal cord by injecting the anterograde tracer biotinylated dextran amine (BDA) into the Gi, DPGi, GiA/GiV, and LPGi. The Gi projected to the entire spinal cord bilaterally with an ipsilateral predominance. Its fibers traveled in both the ventral and lateral funiculi with a greater presence in the ventral funiculus. As the fibers descended in the spinal cord, their density in the lateral funiculus increased. The terminals were present mainly in laminae 7–10 with a dorsolateral expansion caudally. In the lumbar and sacral cord, a considerable number of terminals were also present in laminae 5 and 6. Contralateral fibers shared a similar pattern to their ipsilateral counterparts and some fibers were seen to cross the midline. Fibers arising from the DPGi were similarly distributed in the spinal cord except that there was no dorsolateral expansion in the lumbar and sacral segments and there were fewer fiber terminals. Fibers arising from GiA/V predominantly traveled in the ventral and lateral funiculi ipsilaterally. Ipsilaterally, the density of fibers in the ventral funiculus decreased along the rostrocaudal axis, whereas the density of fibers in the lateral funiculus increased. They terminate mainly in the medial ventral horn and lamina 10 with a smaller number of fibers in the dorsal horn. Fibers arising from the LPGi traveled in both the ventral and lateral funiculi and the density of these fibers in the ventral and lateral funiculi decreased dramatically in the lumbar and sacral segments. Their terminals were present in the ventral horn with a large portion of them terminating in the motor neuron columns. The present study is the first demonstration of the termination pattern of fibers arising from the Gi, DPGi, GiA/GiV, and LPGi in the mouse spinal cord. It provides an anatomical foundation for those who are conducting spinal cord injury and locomotion related research.  相似文献   

12.
Summary These experiments tested hypotheses about the logic of reticulospinal and reticuloreticular controls over deep back muscles by examining descending efferent and contralateral projections of the sites within the medullary reticular formation (MRF) that evoke EMG responses in lumbar axial muscles upon electrical stimulation. In the first series of experiments, retrograde tracers were deposited at gigantocellular reticular nucleus (Gi) sites that excited the back muscles and in the contralateral lumbar spinal cord. The medullary reticular formation contralateral to the Gi stimulation/deposition site was examined for the presence of single- and double-labeled cells from these injections. Tracer depositions into Gi produced labeled cells in the contralateral Gi and Parvocellular reticular nucleus (PCRt) whereas the lumbar injections retrogradely labeled cells only in the ventral MRF, indicating that separate populations of medullary reticular cells project to the opposite MRF and the lumbar cord. In the second series of experiments the precise relationships between the location of neurons retrogradely labeled from lumbar spinal cord depositions of the retrograde tracer, Fluoro-Gold (FG) and effective stimulation tracks through the MRF were examined. The results indicate that the Gi sites that are most effective for activation of the back muscles are dorsal to the location of retrogradely labeled lumbar reticulospinal cells. To verify that cell bodies and not fibers of passage were stimulated, crystals of the excitatory amino acid agonist, N-methyl-d-asparate (NMDA) were deposited at effective stimulation sites in the Gi. NMDA decreased the ability of electrical stimulation to activate back muscles at 5 min postdeposition, indicating a local interaction of NMDA with cell bodies at the stimulation site. In the third series of experiments, electrical thresholds for EMG activation along a track through the MRF were compared to cells retrogradely labeled from FG deposited into the cervical spinal cord. In some experiments, Fast Blue was also deposited into the contralateral lumbar cord. Neurons at low threshold points on the electrode track were labeled following cervical depositions, indicating a direct projection to the cervical spinal cord. The lumbar depositions, again, labeled cells in MRF areas that were ventral to the locations of effective stimulation sites, primarily on the opposite side of the medulla. In addition, the lumbar depositions back-filled cells in the same cervical segments to which the Gi neurons project. These results suggest that one efferent projection from effective stimulation sites for back muscle activation is onto propriospinal neurons in the cervical cord, which in turn project to lumbar cord levels. In a final series of experiments, a stimulating electrode track through the MRF again identified low threshold and ineffective sites for activating lumbar epaxial EMG. Fluoro-Gold was deposited in the contralateral MRF (MRFc) at a low threshold stimulation site for activating back muscles on that side. Retrogradely labeled cells surrounded effective, but not ineffective, stimulation sites along the electrode track in the MRF. Thus, another projection from effective stimulation sites is to effective stimulation sites in the opposite MRF. These results suggest that neurons in Gi whose stimulation most effectively activates back muscle EMG do not project directly to the lumbar cord, but relay to cervical cord neurons, which in turn project onto lumbar neurons. The MRF commissural connections presumably amplify this descending MRF control of axial back muscles.Abbreviations ECu external cuneate - FB fast blue - FG fluorogold - Gi gigantocellular reticular nucleus - GiA gigantocellular reticular nucleus, alpha - GiV gigantocellular reticular nucleus, ventral - icp inferior cerebellar peduncle - IO inferior olive - LL lateral longissimus - ML medial longissimus - mlf medial longitudinal fasciculus - MRF medullary reticular formation - MRFc medullary reticular formation, contralateral - MVN medial vestibular nucleus - PCRt parvocellular reticular formation - PGi paragigantocellular nucleus - PrH prepositus hypoglossal nucleus - py pyramidal tract - R rhodamine microspheres - Sol nucleus of the solitary tract - Sp5 spinal trigeminal nucleus - 7 facial nucleus  相似文献   

13.
为了研究非呕吐动物大鼠是否存在与呕吐动物相似的呕吐反应区,以及二者之间的异同,给予大鼠腹腔催吐剂-顺氯氨铂后,应用免疫组织化学方法,观察Fos阳性神经元在脑和脊髓内呕吐相关区域的分布。结果发现,在脑干的最后区、孤束核、外侧臂旁核和下丘脑的视上核、室旁核、弓状核有大量的Fos阳性神经元,实验组和对照组有显著性差异(P<0.05)。结论催吐剂的刺激可使大鼠脑内Fos阳性神经元数量增加,除了与呕吐运动相关的部分区域外,其余分布区域均与呕吐动物一致,提示大鼠脑内也存在类似的、与恶心相关的神经化学通路。  相似文献   

14.
Summary We have used the autoradiographic method to study the organization of spinal projections from the gigantocellular reticular nucleus in the rat. Of particular note was the evidence obtained for projections to laminae I, II and IX. Reticular projections to laminae I and II arise more rostrally in Gi than those to lamina IX. Projections to laminae III–VIII and X as well as to autonomic nuclei have also been documented. Our results suggest that the gigantocellular reticular nucleus of the rat can be subdivided on connectional grounds.Abbreviations Amb ambiguus nucleus - DOR dorsal - Fac facial nucleus - g7 genu of facial nerve - Gi gigantocellular reticular nucleus - IML intermediolateral cell column - LAT lateral - OI inferior olive - PCRt parvocellular reticular nucleus - PGi paragigantocellular reticular nucleus - PMn paramedian reticular nucleus - PrH prepositus hypoglossal nucleus - Py pyramidal tract - RMg raphe magnus nucleus - Sol nucleus of the solitary tract - Sp5i spinal trigeminal nucleus; pars interpolaris - Sp50 spinal trigeminal nucleus; pars oralis - SpVe spinal vestibular nucleus - 12 hypoglossal nucleus This investigation was supported by BNS-8309245 and NS-10165-10 to Dr. Martin  相似文献   

15.
在已探明三叉神经中脑核神经元中枢突向三叉神经脊束核吻侧亚核的背内侧部(Vodm)及邻接的网状结构(LRF)投射的基础上,本文作者用WGA—HRP顺行标记法追踪了Vodm和其邻接的LRF传出投射的终止部位,以期探索Vme—丘脑通路中第三级神经元的所在。结果发现Vodm及邻接的LRF除投射到一些脑神经运动核、臂旁核、下橄榄主核腹肢内端外,还发现了前人未曾注意到的沿三叉神经感觉主核内缘存在且向腹侧伸延的一个带状区内有浓密的标记终末终止。此标记终末带区在上橄榄核背侧,三叉神经运动核腹侧以及三叉神经感觉主核的背内侧部等处增大,而上橄榄核背侧及三叉运动核腹侧的终末区以往并无人注意到在此有与之相应的核团。  相似文献   

16.
目的 观察大鼠前庭神经核复合体(VNC)内5-羟色胺(5-HT)样阳性终末与表达5-HT1A受体(5-HT1A R)的前庭-臂旁核投射神经元之间的联系.方法 运用逆行束路追踪和免疫荧光组织化学染色相结合的双重标记技术,在激光共焦显微镜下观察.结果 将四甲基罗达明(TMR)注入臂旁核后,在双侧VNC的各个核团内均可观察到许多TMR逆标神经元,但以同侧为主.免疫荧光组织化学染色结果显示,在前庭内侧核(MVe)、前庭下核(SpVe)、前庭上核(SuVe)、前庭外侧核(LVe)、X核以及Y核的一些区域内,许多神经元表达5-HT1A R样免疫阳性,并可观察到大量5-HT样阳性纤维和终末.激光共焦显微镜下可进一步观察到一些TMR逆标神经元同时呈5-HT1A R样免疫阳性,且有部分5-HT样阳性终末与TMR/5-HT1A R双标神经元的胞体或树突形成密切接触.结论 提示5-HT可能通过5-HT1A R对前庭神经核复合体-臂旁核间的信息传递发挥调控作用.  相似文献   

17.
Summary The purpose of this study was to determine ascending and descending afferents to a medullary reticular formation (MRF) site that, when electrically stimulated, evoked EMG activity in lumbar deep back muscles. In anesthetized female rats, the MRF was explored with electrical stimulation, using currents less than 50 A, while EMG activity was recorded from the ipsilateral lateral longissimus (LL) and medial longissimus (ML). MRF sites that evoked muscle activity were located in the gigantocellular nucleus (Gi). At the effective stimulation site, the retrograde fluorescent tracer, Fluoro-Gold (FG), was deposited via a cannula attached to the stimulating electrode. In matched-pair control experiments, FG was deposited at MRF sites that were ineffective in producing EMG activity in LL and ML, for comparison of afferent projections to effective versus ineffective sites. Labeled cells rostral to FG deposition at effective MRF sites were located in the preoptic area, hypothalamus, limbic forebrain and midbrain, with particularly high numbers in the ipsilateral midbrain central gray, tegmentum, paraventricular nucleus and amygdala. At medullary levels, there was a heavy projection from the contralateral Gi. FG labeled cells were also located in the contralateral parvocellular reticular nucleus, and lateral, medial and spinal vestibular nuclei. Labeled cells with ascending projections were observed in greatest number in the rostral cervical spinal cord, with fewer cells at mid cervical levels and even fewer in the lumbar spinal cord. These labeled cells were located primarily in lamina V, VII, VIII and X. Locations of labeled cells following FG deposition at ineffective MRF sites were similar. However, there was a striking difference in the number of cells retrogradely labeled from the effective MRF sites compared to ineffective MRF sites. Significantly greater numbers of labeled cells were observed in the contralateral MRF, the midbrain, and the cervical spinal cord from the FG deposition at effective stimulation sites. These results suggest that one characteristic of MRF sites that activate epaxial muscles is a larger amount of afferent input, from the midbrain central gray and from contralateral Gi, compared to ineffective MRF sites. Ascending and descending inputs converge at the effective MRF sites, and the larger number of descending projections suggests a more powerful contribution of these afferents to deep lumbar back muscle activation.Abbreviations Amyg amygdala - Aq Aqueduct - C Cervical spinal cord - CC Central canal - ECu External cuneate - F Fornix - FG Fluoro-Gold - Gi Gigantocellular reticular nucleus - GiA Gigantocellular reticular nucleus, alpha - GiV Gigantocellular reticular nucleus, ventral - icp inferior cerebellar peduncle - IO Inferior olive - L Lumbar spinal cord - LL Lateral longissimus - LVN Lateral vestibular nucleus - MCG Midbrain central gray - ML Medial longissimus - ml medial lemniscus - MRF Medullary reticular formation - MVN Medial vestibular nucleus - OT Optic tract - PCRt Parvocellular reticular nucleus - Pn Pontine nuclei - PnO Pontine reticular nucleus, oral - PPT Pedunculopontine tegmental nucleus - PVN Paraventricular nucleus - py pyramidal tract - Sol nucleus of the solitary tract - Sp5 Spinal trigeminal nucleus - VMN Ventromedial nucleus - 3v third ventricle - 7 Facial nucleus - 12 hypoglossal nucleus  相似文献   

18.
将WGA—HRP溶液注入于猫红核吻侧段,顺行追踪了红核向三叉神经感觉核簇投射的纤维行径及终未分布,发现红核有下行纤维投射于对侧三叉神经感觉核簇各亚核。结合作者等既往的研究肯定此投射的起源为对侧红核吻侧2/3段小细胞部背外侧的中、小型细胞群。投射终末以尾侧亚核的深层相当于脊髓背角Ⅳ、Ⅴ、Ⅵ层的地区最为密集,特别是V层最为集中。鉴于此区又是三叉神经初级传入纤维的投射区,还有三叉神经二级感觉(特别是痛觉)神经元胞体及树突的存在,因而作者等认为此区应属于尾侧亚核的一个部分,而不应将之归属于网状结构。红核向此区的投射可能和三叉初级传入纤维之间或两者与二级感觉神经元之间有汇聚的关系。这种汇聚可能对口面部的感觉特别是痛觉的传递产生某种调节作用。  相似文献   

19.
本研究采用胆碱酯酶(AchE)组织化学方法观察豚鼠脑干内侧部踏步相关区域[三叉神经中脑核(Me5)、蓝斑(LC)、中缝大核(RM)及邻近网状结构和延髓巨细胞网状核(Gi)]AchE阳性神经元分布,并利用大鼠和猫进行对照。结果表明豚鼠Me5含有AchE强阳性神经元,而在大鼠和猫的Me5则没有观察到。豚鼠LCAchE阳性神经元分布明显较猫LC的弥散分布集中,虽然密集程度较大鼠LC为弱。此外,在上述三种动物中AchE阳性神经元在Gi、RM及其邻近网状结构具有相似的分布。本文就实验结果与踏步运动的关系进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号