首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The calcium/calmodulin-dependent protein phosphatase calcineurin stimulates cardiac hypertrophy in response to numerous stimuli. Calcineurin activity is suppressed by association with modulatory calcineurin-interacting protein (MCIP)1DSCR1, which is up-regulated by calcineurin signaling and has been proposed to function in a negative feedback loop to modulate calcineurin activity. To investigate the involvement of MCIP1 in cardiac hypertrophy in vivo, we generated MCIP1 null mice and subjected them to a variety of stress stimuli that induce cardiac hypertrophy. In the absence of stress, MCIP1(-/-) animals exhibited no overt phenotype. However, the lack of MCIP1 exacerbated the hypertrophic response to activated calcineurin expressed from a muscle-specific transgene, consistent with a role of MCIP1 as a negative regulator of calcineurin signaling. Paradoxically, however, cardiac hypertrophy in response to pressure overload or chronic adrenergic stimulation was blunted in MCIP1(-/-) mice. These findings suggest that MCIP1 can facilitate or suppress cardiac calcineurin signaling depending on the nature of the hypertrophic stimulus. These opposing roles of MCIP have important implications for therapeutic strategies to regulate cardiac hypertrophy through modulation of calcineurin-MCIP activity.  相似文献   

2.
3.
The calcium-activated phosphatase calcineurin is regulated by a binding cofactor known as modulatory calcineurin-interacting protein (MCIP) in yeast up through mammals. The physiologic function of MCIP remains an area of ongoing investigation, because both positive and negative calcineurin regulatory effects have been reported. Here we disrupted the mcip1 and mcip2 genes in the mouse and provide multiple lines of evidence that endogenous MCIP functions as a calcineurin facilitator in vivo. Mouse embryonic fibroblasts deficient in both mcip1/2 showed impaired activation of nuclear factor of activated T cells (NFAT), suggesting that MCIP is required for efficient calcineurin-NFAT coupling. Mice deficient in mcip1/2 showed a dramatic impairment in cardiac hypertrophy induced by pressure overload, neuroendocrine stimulation, or exercise, similar to mice lacking calcineurin Abeta. Moreover, simultaneous deletion of calcineurin Abeta in the mcip1/2-null background did not rescue impaired hypertrophic growth after pressure overload. Slow/oxidative fiber-type switching in skeletal muscle after exercise stimulation was also impaired in mcip1/2 mice, similar to calcineurin Abeta-null mice. Moreover, CD4(+) T cells from mcip1/2-null mice showed enhanced apoptosis that was further increased by loss of calcineurin Abeta. Finally, mcip1/2-null mice displayed a neurologic phenotype that was similar to calcineurin Abeta-null mice, such as increased locomotor activity and impaired working memory. Thus, a loss-of-function analysis suggests that MCIPs serve either a permissive or facilitative function for calcineurin-NFAT signaling in vivo.  相似文献   

4.
As precursors of platelets, megakaryocytes must fulfil the complex tasks of protein synthesis and platelet assembly. Megakaryocytic dysfunction can lead to neoplastic disorders, such as acute megakaryoblastic leukaemia, an entity with a 500-fold increased incidence in children with Down syndrome (DS). Down Syndrome Critical Region 1 ( DSCR1 ), a member of the calcipressin family of calcineurin inhibitors, is overexpressed in DS, and destabilization of the calcineurin/Nuclear Factor of Activated T cells (NFAT) pathway by overexpression of DSCR1 has been implicated in some of the pathophysiological features of the disease. The roles of NFAT and DSCR1 in megakaryocyte signalling and gene expression, however, are unknown. In this study, we show that calcineurin and NFAT are components of a calcium-induced signalling cascade in megakaryocytes. NFAT activation in megakaryocytes was induced by fibrillar collagen type I and was completely sensitive to the calcineurin inhibitor cyclosporin A. We established DSCR1 as a calcium-induced NFAT target gene in these cells and show that overexpression of DSCR1 in megakaryocytes strongly inhibits NFAT activation as well as NFAT-dependent expression of the Fas ligand gene ( FASLG ). These results suggest that DSCR1 acts as an endogenous feedback inhibitor of NFAT signalling in megakaryocytes, and may have implications for megakaryocytic gene expression in DS.  相似文献   

5.
The calcium, calmodulin-dependent phosphatase calcineurin, regulates growth and gene expression of striated muscles. The activity of calcineurin is modulated by a family of cofactors, referred to as modulatory calcineurin-interacting proteins (MCIPs). In the heart, the MCIP1 gene is activated by calcineurin and has been proposed to fulfill a negative feedback loop that restrains potentially pathological calcineurin signaling, which would otherwise lead to abnormal cardiac growth. In a high-throughput screen for small molecules capable of regulating MCIP1 expression in muscle cells, we identified a unique 4-aminopyridine derivative exhibiting an embedded partial structural motif of serotonin (5-hydroxytryptamine, 5-HT). This molecule, referred to as pyridine activator of myocyte hypertrophy, acts as a selective agonist for 5-HT(2A/2B) receptors and induces hypertrophy of cardiac muscle cells through a signaling pathway involving calcineurin and a kinase-dependent mechanism that inactivates class II histone deacetylases, which act as repressors of cardiac growth. These findings identify MCIP1 as a downstream target of 5-HT(2A/2B) receptor signaling in cardiac muscle cells and suggest possible uses for 5-HT(2A/2B) agonists and antagonists as modulators of cardiac growth and gene expression.  相似文献   

6.
Pressure overload is the major stimulus for cardiac hypertrophy. Accumulating evidence suggests an important role for calcium-induced activation of calcineurin in mediating hypertrophic signaling. Hypertrophy is an important risk factor for cardiovascular morbidity and mortality. We therefore employed an in vitro mechanical stretch model of cultured neonatal cardiomyocytes to evaluate proposed mechanisms of calcium-induced calcineurin activation in terms of inhibition of calcineurin activity and hypertrophy. The protein/DNA ratio and ANP gene expression were used as markers for stretch-induced hypertrophy. Stretch increased the calcineurin activity, MCIP1 gene expression and DNA binding of NFATc as well as the protein/DNA ratio and ANP mRNA in a significant manner. The specific inhibitor of calcineurin, cyclosporin A, inhibited the stretch-induced increase in calcineurin activity, MCIP1 gene expression and hypertrophy. The L-type Ca2+ channel blocker nifedipine and a blocker of the Na+/H+ exchanger (cariporide) both suppressed stretch-dependent enhanced calcineurin activity and hypertrophy. Also application of a blocker of the Na+/Ca2+ exchanger (KB-R7943) was effective in preventing calcineurin activation and increases in the protein/DNA ratio. Inhibition of capacitative Ca2+ entry with SKF 96365 was also sufficient to abrogate calcineurin activation and hypertrophy. The blocker of stretch-activated ion channels, streptomycin, was without effect on stretch-induced hypertrophy and calcineurin activity. The present work suggests that of the proposed mechanisms for the calcium-induced activation of calcineurin (L-type Ca2+ channels, capacitative Ca2+ entry, Na+/H+ exchanger, Na+/Ca2+ exchanger and stretch-activated channels) all but stretch-activated channels are possible targets for the inhibition of hypertrophy.  相似文献   

7.
Pathological remodeling of the left ventricle (LV) after myocardial infarction (MI) is a major cause of heart failure. Although cardiac hypertrophy after increased loading conditions has been recognized as a clinical risk factor for human heart failure, it is unknown whether post-MI hypertrophic remodeling of the myocardium is beneficial for cardiac function over time, nor which regulatory pathways play a crucial role in this process. To address these questions, transgenic (TG) mice engineered to overexpress modulatory calcineurin-interacting protein-1 (MCIP1) in the myocardium were used to achieve cardiac-specific inhibition of calcineurin activation. MCIP1-TG mice and their wild-type (WT) littermates, were subjected to MI and analyzed 4 weeks later. At 4 weeks after MI, calcineurin was activated in the LV of WT mice, which was significantly reduced in MCIP1-TG mice. WT mice displayed a 78% increase in LV mass after MI, which was reduced by 38% in MCIP1-TG mice. Echocardiography indicated marked LV dilation and loss of systolic function in WT-MI mice, whereas TG-MI mice displayed a remarkable preservation of LV geometry and contractility, a pronounced reduction in myofiber hypertrophy, collagen deposition, and beta-MHC expression compared with WT-MI mice. Together, these results reveal a protective role for MCIP1 in the post-MI heart and suggest that calcineurin is a crucial regulator of postinfarction-induced pathological LV remodeling. The improvement in functional, structural, and molecular abnormalities in MCIP1-TG mice challenges the adaptive value of post-MI hypertrophy of the remote myocardium. The full text of this article is available online at http://circres.ahajournals.org.  相似文献   

8.
9.
Signaling events controlled by calcineurin promote cardiac hypertrophy, but the degree to which such pathways are required to transduce the effects of various hypertrophic stimuli remains uncertain. In particular, the administration of immunosuppressive drugs that inhibit calcineurin has inconsistent effects in blocking cardiac hypertrophy in various animal models. As an alternative approach to inhibiting calcineurin in the hearts of intact animals, transgenic mice were engineered to overexpress a human cDNA encoding the calcineurin-binding protein, myocyte-enriched calcineurin-interacting protein-1 (hMCIP1) under control of the cardiac-specific, alpha-myosin heavy chain promoter (alpha-MHC). In unstressed mice, forced expression of hMCIP1 resulted in a 5-10% decline in cardiac mass relative to wild-type littermates, but otherwise produced no apparent structural or functional abnormalities. However, cardiac-specific expression of hMCIP1 inhibited cardiac hypertrophy, reinduction of fetal gene expression, and progression to dilated cardiomyopathy that otherwise result from expression of a constitutively active form of calcineurin. Expression of the hMCIP1 transgene also inhibited hypertrophic responses to beta-adrenergic receptor stimulation or exercise training. These results demonstrate that levels of hMCIP1 producing no apparent deleterious effects in cells of the normal heart are sufficient to inhibit several forms of cardiac hypertrophy, and suggest an important role for calcineurin signaling in diverse forms of cardiac hypertrophy. The future development of measures to increase expression or activity of MCIP proteins selectively within the heart may have clinical value for prevention of heart failure.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is a principal stimulator of angiogenesis. However, the downstream targets of VEGF in endothelial cells (ECs) are not entirely clarified. Survey of downstream targets of VEGF in human ECs identified a number of genes, including Down syndrome candidate region 1 (DSCR1). Here, we confirmed the inducible expression of DSCR1 in ECs by Northern and Western blottings. Moreover, VEGF-stimulated induction of DSCR1 was blocked by anti-VEGF receptor-2 monoclonal antibody (mAb), or the specific calcineurin inhibitors cyclosporin A and FK506. The expression of DSCR1 in ECs of neovessels was further shown by immunohistochemical analysis. We therefore examined whether DSCR1 played any roles in angiogenesis. The specific downregulation of DSCR1 expression by antisense oligonucleotide (AS-ODN) inhibited VEGF-stimulated migration of ECs as well as angiogenesis in vivo. AS-ODN inhibited the spreading of ECs on vitronectin, as well as on the immobilized anti-alphavbeta3 mAb, but not on anti-alphavbeta5 mAb. Moreover, AS-ODN inhibited tyrosine phosphorylation of focal adhesion kinase when ECs were plated on a vitronectin-coated dish. Immunoprecipitation followed by Western blotting showed the coimmunoprecipitation of DSCR1 and integrin alphavbeta3. These results suggest that DSCR1 is involved in angiogenesis by regulating adhesion and migration of ECs via the interaction with integrin alphavbeta3.  相似文献   

11.
12.
Mental retardation is the most common phenotypic abnormality seen in Down's syndrome (DS) patients, yet the underlying mechanism remains mysterious. DS critical region 1 (DSCR1), located on chromosome 21, is overexpressed in the brain of DS fetus and encodes an inhibitor of calcineurin, but its physiological significance is unknown. To study its functional importance and role in mental retardation in DS, we generated Drosophila mutants of nebula, an ortholog of human DSCR1. Here, we report that both nebula loss-of-function and overexpression mutants exhibit severe learning defects that are attributed by biochemical perturbations rather than maldevelopment of the brain. These results, combined with our data showing that the same biochemical signaling pathway is altered in human DS fetal brain tissue overexpressing DSCR1, suggest that alteration of DSCR1 expression could contribute to mental retardation in DS.  相似文献   

13.
In the compensatory state of human left ventricular hypertrophy (LVH), the remodeling processes in the extracellular matrix and the role of calcineurin (Cn) are not completely understood. The present work aimed to analyze the expression and activity of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and of Cn in patients with compensated LVH. By semiquantitative RT-PCR, Western blotting, and gelatine zymography, we determined mRNA, protein, and/or enzyme activity levels of MMPs, TIMPs, atrial natriuretic peptide (ANP), Cn subunits, and of the modulatory calcineurin-interacting protein (MCIP) 1. Myocardial samples from patients showing severe aortic stenosis, normal ejection fraction, and compensated LVH were compared with autopsy samples from healthy hearts. LVH patients showed upregulation of CnA-β mRNA but downregulation of both CnB-α mRNA and protein. Total Cn activity (as determined through NF-AT phosphorylation and MCIP1 mRNA expression) was unchanged. There were no differences in gene expression and activities of MMP-2, MMP-9, and of TIMPs 1–4 between LVH patients and controls. As expected, ANP mRNA expression was high in LVH patients. We propose a prominent role for CnB in controlling Cn activity in compensated LVH. At this stage of the disease, MMP and TIMP activities are balanced. Drs. Grammer and Bleiziffer contributed equally to the study Returned for 1st revision: 23 February 2006 1. revision received: 8 April 2006  相似文献   

14.
15.
Yi KD  Simpkins JW 《Endocrinology》2008,149(10):5235-5243
It is becoming increasingly clear that protein phosphatases are important modulators of cellular function and that disruption of these proteins are involved in neurodegenerative disease processes. Serine/threonine protein phosphatases (PP) such as protein phosphatase PP1, PP2A, and calcineurin are involved in hyperphosphorylation of tau- as well as beta-amyloid-induced cell death. We have previously shown serine/threonine protein phosphatases to be involved in estrogen-mediated neuroprotection. The purpose of this study was to delineate the role of PP1, PP2A, and calcineurin in the mechanism of estrogen mediated neuroprotection against oxidative stress and excitotoxicity. Treatment with protein phosphatases inhibitor II, endothall, or cyclosporin A, which are specific inhibitors of PP1, PP2A, and calcineurin, respectively, did not have an effect on cell viability. However, in combination, these inhibitors adversely affected cell survival, which suggests the importance of serine/threonine protein phosphatases in maintenance of cellular function. Inhibitors of PP1, PP2A, and calcineurin attenuated the protective effects of estrogen against glutamate-induced -neurotoxicity but did not completely abrogate the estrogen-mediated protection. The attenuation of estrogen-induced neuroprotection was achieved through decrease in the activity of theses serine/threonine phosphatases without the concomitant decrease in protein expression. In an animal model, transient middle cerebral artery occlusion caused a 50% decrease in levels of PP1, PP2A, and PP2B ipsilateral to the lesion in a manner that was prevented by estradiol pretreatment. Therefore, we conclude that in the face of cytotoxic challenges in vitro and in vivo, estrogens maintain the function of PP1, PP2A, and calcineurin.  相似文献   

16.
The highly conserved RCN family of proteins regulates the serine/threonine protein phosphatase calcineurin, which is required for the expression of genes involved in Ca(2+)-dependent processes, such as the control of memory, apoptosis, T cell activation, cell cycle, Ca(2+)-homeostasis, and skeletal and cardiac muscle growth and differentiation. However, RCNs regulate calcineurin through two paradoxical actions: they act as feedback inhibitors of calcineurin, whereas their phosphorylation stimulates calcineurin. Here we show that phosphorylation of yeast RCN, Rcn1, triggers degradation through the SCF(Cdc4) ubiquitin ligase complex. Degradation of phosphorylated Rcn1 is required to mitigate inhibition of calcineurin by Rcn1 and results in activation of calcineurin activity in response to Ca(2+) as well as in reactivation of calcineurin in response to changes in Ca(2+) concentration. The SCF(Cdc4)-dependent degradation required phosphorylation of Rcn1 by Mck1, a member of the GSK3 family of protein kinases, and was promoted by Ca(2+). However, such degradation was counteracted by dephosphorylation of Rcn1, which was promoted by Ca(2+)-stimulated calcineurin. Thus, calcineurin activity is fine-tuned to Ca(2+) signals by mechanisms that have opposite functions. Our results identify the molecular mechanism of Rcn1 phosphorylation-induced stimulation of the phosphatase activity of calcineurin. The results provide insight into the mechanism involved in maintaining proper responses to Ca(2+) signals.  相似文献   

17.
The calcium- and calmodulin-dependent protein phosphatase calcineurin has been implicated in the transduction of signals that control the hypertrophy of cardiac muscle and slow fiber gene expression in skeletal muscle. To identify proteins that mediate the effects of calcineurin on striated muscles, we used the calcineurin catalytic subunit in a two-hybrid screen for cardiac calcineurin-interacting proteins. From this screen, we discovered a member of a novel family of calcineurin-interacting proteins, termed calsarcins, which tether calcineurin to alpha-actinin at the z-line of the sarcomere of cardiac and skeletal muscle cells. Calsarcin-1 and calsarcin-2 are expressed in developing cardiac and skeletal muscle during embryogenesis, but calsarcin-1 is expressed specifically in adult cardiac and slow-twitch skeletal muscle, whereas calsarcin-2 is restricted to fast skeletal muscle. Calsarcins represent a novel family of sarcomeric proteins that link calcineurin with the contractile apparatus, thereby potentially coupling muscle activity to calcineurin activation.  相似文献   

18.
19.
An important effector of Ca2+ signaling in animals and yeast is the Ca2+/calmodulin-dependent protein phosphatase calcineurin. However, the biochemical identity of plant calcineurin remained elusive. Here we report the molecular characterization of AtCBL (Arabidopsis thaliana calcineurin B-like protein) from Arabidopsis. The protein is most similar to mammalian calcineurin B, the regulatory subunit of the phosphatase. AtCBL also shows significant similarity with another Ca2+-binding protein, the neuronal calcium sensor in animals. It contains typical EF-hand motifs with Ca2+-binding capability, as confirmed by in vitro Ca2+-binding assays, and it interacts in vivo with rat calcineurin A in the yeast two-hybrid system. Interaction of AtCBL1 and rat calcineurin A complemented the salt-sensitive phenotype in a yeast calcineurin B mutant. Cloning of cDNAs revealed that AtCBL proteins are encoded by a family of at least six genes in Arabidopsis. Genes for three isoforms were identified in this study. AtCBL1 mRNA was preferentially expressed in stems and roots and its mRNA levels strongly increased in response to specific stress signals such as drought, cold, and wounding. In contrast, AtCBL2 and AtCBL3 are constitutively expressed under all conditions investigated. Our data suggest that AtCBL1 may act as a regulatory subunit of a plant calcineurin-like activity mediating calcium signaling under certain stress conditions.  相似文献   

20.
In the present study we characterized two labor-induced genes, DSCR1 (Down syndrome candidate region 1) and TCTE1L (murine t-complex like), which were identified by suppression subtractive hybridization in the pregnant ovine myometrium. DSCR1 and TCTE1L cDNA sequences were retrieved from a custom-made labor-myometrial cDNA library by hybridization screening. The characterized cDNA sequences include 5'-untranslated region (UTR), coding region and 3'-UTR, which are 12 bp, 351 bp and 1716 bp for TCTE1L, and 64 bp, 594 bp and 1539 bp for DSCR1 respectively. The two cDNA sequences encode proteins of 116 and 197 amino acids for TCTE1L and DSCR1 respectively. Northern analysis further confirmed the significant increases of myometrial DSCR1 and TCTE1L mRNA associated with spontaneous term labor (n=6) compared with gestation-matched controls not in labor (n=6). The abundance of DSCR1 and TCTE1L mRNA was attenuated when myometrial contraction was inhibited by Nimesulide (n=6), a specific prostaglandin H synthase 2 inhibitor. Fetal occupancy greatly upregulated DSCR1 and TCTE1L mRNA in the gravid horn during betamethasone-induced premature labor (n=6) compared with the non-gravid horn not in labor (n=3). Estradiol upregulated TCTE1L mRNA, but had no effect on DSCR1 mRNA expression in the non-pregnant sheep myometrium. Progesterone alone had no effect on both DSCR1 and TCTE1L mRNA expression, however progesterone antagonized estradiol's stimulating effect on myometrial TCTE1L mRNA expression in ovariectomized non-pregnant sheep. Upregulation of DSCR1 and TCTE1L in both betamethasone-induced premature labor and spontaneous term labor and inhibition of their expression by Nimesulide suggest a functional role of these two genes in myometrial activation associated with onset of labor. Mechanical stretch, labor and steroids differentially regulated DSCR1 and TCTE1L mRNA in the pregnant and non-pregnant sheep myometrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号